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Neural progenitor fate decision defects, cortical hypoplasia
and behavioral impairment in Celsr1-deficient mice
C Boucherie1, C Boutin1,5, Y Jossin2, O Schakman3, AM Goffinet1, L Ris4, P Gailly3 and F Tissir1

The development of the cerebral cortex is a tightly regulated process that relies on exquisitely coordinated actions of intrinsic and
extrinsic cues. Here, we show that the communication between forebrain meninges and apical neural progenitor cells (aNPC) is
essential to cortical development, and that the basal compartment of aNPC is key to this communication process. We found that
Celsr1, a cadherin of the adhesion G protein coupled receptor family, controls branching of aNPC basal processes abutting the
meninges and thereby regulates retinoic acid (RA)-dependent neurogenesis. Loss-of-function of Celsr1 results in a decreased
number of endfeet, modifies RA-dependent transcriptional activity and biases aNPC commitment toward self-renewal at the
expense of basal progenitor and neuron production. The mutant cortex has a reduced number of neurons, and Celsr1 mutant mice
exhibit microcephaly and behavioral abnormalities. Our results uncover an important role for Celsr1 protein and for the basal
compartment of neural progenitor cells in fate decision during the development of the cerebral cortex.
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INTRODUCTION
The cerebral cortex is the seat of higher brain functions and its
formation requires the production and positioning of a right
number and diversity of neurons for intricate circuits assembly.
During early cortical development, neural stem cells (NSC) divide
symmetrically in the ventricular zone (VZ) and both daughter cells
re-enter the cell cycle, leading to an increased number of NSC. At
the onset of neurogenesis, radial or apical (aNPC), the progenitors
of excitatory cortical neurons, which derive from NSC, shift from a
symmetric/proliferative to an asymmetric/differentiative mode of
division. Asymmetric divisions produce aNPC as well as neurons,
either directly or indirectly through basal/intermediate progeni-
tors (BP).1 Each BP divides symmetrically to give rise to postmitotic
neurons, thus increasing the final output of neurons.1,2 Hence, a
delicate balance between the proliferation and differentiation of
aNPC must be maintained during neurogenesis. This balance is
regulated by intrinsic and extrinsic factors at the level of individual
aNPC, which undergo a rigorous sequence of fate choices. Errors
in fate decisions often lead to devastating disorders that vary from
severe and lethal malformations, to cognitive, social and motor
disabilities.3

The Celsr1 gene codes for an atypical cadherin usually located at
epithelial cells adherens junctions where it coordinates polarity in
the plane of the epithelium, in cooperation with a set of conserved
‘core’ planar cell polarity (PCP) genes/proteins such as Vangl2 or
Fzd3 and 6.4 Mice carrying mutations in Celsr1 have defects in
neural tube closure,5–7 inner ear hair cells,6 cilia polarity,8,9 as well
as in cell movement and rearrangement.10,11 In humans, muta-
tions of CELSR1 are associated with craniorachischisis,12 the most
severe form of neural tube closure defects. Despite the robust and
maintained expression of Celsr1 in the developing forebrain

germinal zones,13 its function, after neural tube closure, has not
been assessed.
Here, we report that at the onset of neurogenesis, the Celsr1

protein localizes to the endfeet of aNPC and has an important role
in shaping their basal compartment. Compared with those of
control mice, Celsr1-deficient aNPC endfeet have fewer contact
with the basal lamina and are less accessible to retinoic acid (RA)
delivered by meningeal cells. They undergo more proliferative
divisions, thereby expanding the pool of aNPC at the expense of
BP and neuron production, and leading to marked morphological
and behavioral defects. Finally, we provide evidence that RA
signaling controls fate decision of neural progenitors.

MATERIALS AND METHODS
Mutant mice and in vivo treatment
All procedures were carried out in accordance with European guidelines
and approved by the animal ethics committee of the Université catholique
de Louvain. Mouse lines used in this study are: Celsr1−/− and Celsr1f/f,7

Nestin-CreERT (C57BL/6-Tg(Nes-cre/ERT2)KEisc/J; Jackson Lab, Bar Harbor,
ME, USA), Rosa-dTomato (B6.CgGt(ROSA)26Sortm9(CAG-dTomato)Hze/J;
Jackson Lab), Dlx5/6-Cre-IRES-eGFP (Tg(mI56i-cre,EGFP)1Kc/J; Jackson Lab)
and Emx1-Cre (B6.Cg-Emx1tm1(cre)Krj/J; Jackson Lab). For in utero RA
supplementation, pregnant females were subjected to a daily intraper-
itoneal injection of 20 mg kg− 1 of RA. Cell fate experiments in Celsr1−/−;
Nestin-CreERT2; lox-STOP-lox dTomato mice were carried out at e14.5 after a
single 4-Hydroxytamoxifen injection (1.25 mg) in pregnant female at e13.5.
Clonal analyses in Celsr1f/f;Nestin-CreERT2;lox-STOP-lox dTomato embryos
were performed at e14.5 after a single 4-Hydroxytamoxifen injection at
e10.5 (0.3 mg per pregnant female).
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Behavioral tests
All the mice were tested at 3 months of age. The open-field test was used
to assess a non-forced ambulation as mice can move freely without any
influence of the examiner. Mice were placed in a square arena (60 × 60 cm)
and video tracked (Ethovision 6.1, Noldus; Wageningen, The Netherlands)
for 20 min. The total distance covered by animals and the time spent in the
center versus periphery were measured.
The elevated plus maze test was used to assess anxiety. Mice were

placed in an elevated plus maze consisting of two opposing open arm
(exposed place) and two opposing closed arm (safer place). Time spent in
each arm and distance covered were recorded by a video tracking system
for 5 min.
Morris water maze was used to assess spatial learning and memory.

Water maze was made of a round pool with a diameter of 113 cm virtually
divided into four quadrants (North, South, West and East) and filled with
water (26 C). Several visual cues were placed around the pool. Mice were
tested during 4 days with three consecutive trials per day. During the trials,
animals were placed in the pool facing the sidewall and allowed to swim
freely to the platform visible the first day and submerged 1 cm under the
water surface for the 3 next days. The platform was placed at the center of
the North-East quadrant of the pool and maintained in this position
throughout the 4 days. The initial position in which the animal was left in
the pool varied among trials. If the animal did not find the platform during
a period of 60 s, it was gently guided to it. Then, it was allowed to remain
on the platform for 5 s and removed from the pool before being placed in
the next initial starting position in the pool. On the 5th day, the animals
were submitted to a probe test that consisted in allowing the animals to
swim freely for 1 min in the pool without the escape platform. During the
trial and the probe test, mice were video-tracked. The time latency to reach
the platform, the swim speed, and the time spent in each quadrant were
measured.
The three-chamber test was used to assess sociability. The test box was

divided into three equal compartments (20 cm each), and dividing walls
had retractable doorways allowing access into each chamber. First, for
habituation, test mice were placed in the middle chamber for 5 min with
the doorways closed. Then, to evaluate sociability, the test mice were
placed in the central compartment and an unfamiliar mouse, called
stranger, was restricted in a wire cage placed in one of the side
compartments, whereas the other side compartment contains an empty
wire cage. The test mice were video tracked for 10 min. The total distance
covered by the animals and the time spent in each chamber were
measured.

Immunohistochemistry
We used 12 μm-thick cryosections from embryos, fixed 30–45 min in 4%
paraformaldehyde and 50 μm-thick slices (sliding microtome) from
postnatal brains fixed with 4% paraformaldehyde. Sections were blocked
in PBS supplemented with 0.5% Triton X-100 and 3% Bovine serum
albumin, and incubated with the following primary antibodies: Celsr1
(homemade, 1/500), Laminin (Sigma-Aldrich, Overijse, Belgium, Cat no.
L9393, 1/50), Nestin (Chemicon/Millipore, Overijse, Belgium, Cat no.
MAB353, 1/1000), Pax6 (Covance, Cat no. MAB353, 1/500), Tbr2 (Abcam,
Brussels, Belgium, Cat no. ab23345, 1/500), Tuj1 (Covance, Cat no.
MMS-435P-0250, 1/500), Crabp2 (Abcam, Cat no. ab74365, 1/100), Sox2
(Millipore, Cat no. AB5603, 1/500), Mash1 (BD Pharmigen, Erembodegem,
Belgium, Cat no. 556604, 1/200), phospho-Vimentin (Abcam, Cambdrige,
UK, Cat no. ab22651, 1/100), Satb2 (Abcam, Cat no. ab51502, 1/1000), Cux1
(Santa Cruz, Santa Cruz, CA, USA, at no. SC-13024, 1/500), Foxp2 (Abcam,
Cat no. ab16046, 1/1000) and Ctip2 (Abcam, Cat no. ab18465, 1/500).

Whole-mount preparation of the ventricular wall
Lateral ventricular walls were dissected and immediately immersed in PBS
as described previously.8 Whole-mount preparations were fixed in 4%
paraformaldehyde and 0.1% Triton X-100 for 12 min, washed three times in
PBS-0.1% Triton X-100, blocked in PBS supplemented with 0.5% Triton
X-100 and 3% BSA, and incubated with β-Catenin antibody (Cell Signaling,
Danvers, MA, USA, Cat no. 9581, 1/500), ZO-1 (Invitrogen, Brussels, Belgium,
Cat no. 61-7300, 1/200), γ-Tubulin (Abcam, Cat no. ab11317, 1/500) and
GFAP (Millipore, Cat no. AB5804, 1/1000).

In utero electroporation
E14.5 embryos were electroporated with 1 μg pCAG-Gfp and collected at
e15.5. Injection needles were pulled from Wiretrol II glass capillaries
(Drummond Scientific, Broomall, PA, USA) and calibrated for 1 μl injections.
Plasmid DNAs were resuspended in 10 mM Tris, pH 8.0, with 0.01% Fast
Green. Forceps-type electrodes (Nepagene, Sonidel, Dublin, Ireland) with
5 mm pads were used for electroporation (five 50 ms pulses of 25 V at
E12.5 or five 50 ms pulses of 40 V at E14.5). Newborn (P0) mice were
electroporated with a pcx-Gfp plasmid as previously described.8

Real-time PCR
Total mRNA was isolated from e14.5 telencephalon using RNeasy mini kit
according to the supplier’s instructions. Reverse transcription was carried
out using a RT cDNA synthesis Kit, 1 μg of total RNA in a total reaction
volume of 20 μl (Qiagen, Antwerp, Belgium), SYBR green super mix, and an
iCycler real-time PCR detection system (Bio-Rad, Gent, Belgium).

FACS
For aNPC sorting experiments, cortices of e14.5 control and mutant were
processed in parallel. Single cell suspensions were produced using the
MACS Neural Tissue Dissociation kit containing papain (MiltenyiBiotec,
Paris, France) following the manufacturer’s instructions. Cell viability
(typically 495%) was assessed with Trypan blue staining. Cell surface
staining of CD133 (prominin1) was performed on cell suspensions with rat
anti-13A4-APC conjugated (1:100, eBioscience, Brussels, Belgium, Clone
13A4). Cells were incubated with CD133 antibody on ice for 60 min in PBS
(1000 μl final volume per brain). Rat IgG-APC (1:100, eBioscience) was used
as isotype controls. Cells were sorted according to their APC staining. FACS
were performed on a BD FACSAria III sorter (BD Bioscience), and analyzed
using the FACS Diva software (BD Bioscience).

Stranded RNA-Seq on purified aNPC
Total RNA from FACS purified e14.5 CD133-positive aNPC was extracted
using Reliaprep RNA miniprep system (Promega, Leiden, Netherlands). Two
brains of each genotype were pooled to get one biological replicate. The
sequencing was performed by Beckman Coulter Genomics. Total RNA was
further purified by ribodepletion and cDNA synthesis and library
construction was performed on an automated Illumina TruSEQ stranded
RNA-Seq library construction with a Biomek liquid handling platform.
Detection of sequencing fragments was performed using the Illumina
HiSeq 2500 platform. Alignment was made with Bowtie/Tophat, gene
counts with Cufflinks and expression values/differential expression with
edgeR. The sequencing output was on average 70.106 reads per sample.

Quantification
For quantification on coronal sections, pictures were acquired so as to cover
the entire VZ/SVZ (subventricular zone) or all cortical layers. Both
hemispheres were analyzed. ImageJ was used for counts and measurements.

Statistics
For pairwise analysis of treatment conditions or genotypes, Student’s t-
tests were used. For three chamber test, one-way analysis of variance
(ANOVA) was used. For cell population quantification during development,
effect of treatment on different genotypes and water maze, two-way
ANOVA and Bonferoni post-test were used. Data are represented as
mean± s.e.m. Chi contingency test was used for distribution analyses.

RESULTS
Loss of Celsr1 promotes self-renewal of progenitors at the expense
of neurogenesis
Celsr1 mRNA is specifically expressed by neural progenitors in
mouse and human germinal zones13 (Supplementary Figure 1a, b;
adapted from http://brainspan.org14). We used a tamoxifen
inducible system to label aNPC and trace their progeny. Tamoxifen
was injected to pregnant females at e13.5, and Celsr1−/−;NestinCreERT2;
loxP-stop-loxP-dTomato embryos were collected at e14.5 and
compared to control littermates (Celsr1+/+;NestinCreERT2;loxP-stop-
loxP-dTomato). Mutant aNPC generated more Tomato-positive cells
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in the VZ and less cells in the SVZ than controls (Supplementary
Figure 2a–c; percentage of Tomato+ cells in VZ: Wild type=53.6%,
Celsr1−/−=70.2%, n=3, P=0.0008, Student’s t-test). This observation
was corroborated by in utero electroporation of a Gfp coding
plasmid at e14.5, which disclosed an accumulation of Gfp- and

Pax6-positive cells in the mutant versus control VZ at e15.5
(Figures 1a–c, percentage of Pax6+ cells in Gfp cell population: Wild
type=66.3%, Celsr1−/−=72.7%, n=4, P=0.0064, Student’s t-test). To
further investigate the effect of Celsr1 loss-of-function on fate
decision, we injected low concentrations of tamoxifen to mice

Figure 1. Cortical phenotype of Celsr1 mutant mice. (a–c) Pax6 (red) and Gfp (green) staining of coronal brain sections from wild type (a) and
Celsr1−/− (b) embryos, electroporated with a Gfp- coding plasmid at e14.5 and collected at e15.5. Scale bars 50 μm. (c) Quantification of Gfp-
positive cells residing in the VZ, 24 h after electroporation. n= 4 brains for each genotype, error bars are s.e.m., Student’s t-test, Po0.01. (d–f)
clonal analysis of aNPC progeny in whole-mounts of the ventricular wall from Celsr1+/+;NestinCreERT2;dTomato (d) and Celsr1f/f;NestinCreERT2;
dTomato (e) Scale bars 50 μm. (f) Quantification of the number of cells per clone. 18 % of mutant clones have more than 17 cell per clone (0 %
in controls), n= 6 whole-mounts for each genotype. (g–l) Immunochemistry for aNPC (Pax6) and BPs (Tbr2) at e12.5 (g, h), e14.5 (i, j) and e16.5
(k, l). Scale bars 50 μm. (m) Quantification of Tbr2-positive cells in lateral pallium at indicated stages. n= 3 brains per stage and per genotype,
bars represent s.e.m., two-way ANOVA, Po0.001.
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Figure 2. Cortical hypoplasia and abnormal behavior in Celsr1-deficient mice. (a, b) Mature brains from Wild type (a) and Celsr1−/− (b) mice.
Note the reduced size in the mutant. (c) Quantification of neurons of different cortical layers. n= 3 brains per genotype, bars represent s.e.m.,
Student’s t-test, Po0.05 for Cux1-positive cells (layers II and III); and Po0.01 for Foxp2-positive cells (layer IV). The number of cells in the Wild
type is set to 100%. (d, e) Nissl staining of the adult VZ/SVZ in wild type (d) and Celsr1−/− (e). (f, g) Activity of males in open field. Bars represent
s.e.m., Student’s t-test, Po0.01. (h) Time spent by males in open areas of elevated plus maze (EPM). Bars represent s.e.m., Student’s t-test,
Po0.05; (i) Learning ability of males in the Water maze. Bars represent s.e.m., Student’s t-test, Po0.05. (j) Social behavior in the ‘3 chamber’
test for males. Bars represent s.e.m., one-way ANOVA, Po0.001 for both genotypes (stranger versus empty chamber). (k, l) Activity of females
in open field. Bars represent s.e.m., Student’s t-test, P40.05. (m) Time spent by females in open areas of elevated plus maze. Bars represent s.e.
m., Student’s t-test, P40.05. (n) Learning ability of females in the Water maze. Bars represent s.e.m., Student’s t-test, P40.05 (o) Social behavior
in the ‘3 chamber’ test for females. Bars represent s.e.m., one-way ANOVA, Po0.001 control females, P40.05 for mutant females (stranger
versus empty chamber). n= 14 controls (Celsr1+/+;Emx1-Cre: nine males, five females), n= 10 Celsr1Emx1cKO (five males, five females).
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carrying a floxed allele (Celsr1f) at e10.5, with the aim to inactivate
the gene in sparse aNPC and enable a clonal analysis. Examination
of the ventricular surface at e14.5 detected larger clones in
conditional mutants (Celsr1f/f;NestinCreERT2;loxP-stop-loxP-dTomato)
than in controls (Celsr1+/+;NestinCreERT2;loxP-stop-loxP-dTomato)
(Figures 1d–f).
These results suggest that Celsr1-deficient aNPC undergo more

symmetric, proliferative divisions than their control counterparts,
leading to accumulation of aNPC (Pax6+ cells) in the VZ. Reasoning
that this could disrupt the radial versus tangential expansion of
the developing cerebral cortex, we measured the length of the VZ
(which reflects the expansion of the pool of progenitors) and
found that it was similar in mutant and control embryos at e10.5,
but increased significantly in mutant samples from e12.5 onwards
(Supplementary Figure 2d, e, n= 3 brains per genotype and per
stage, Po0.001, two-way ANOVA). This increase resulted in a local
distortion of the VZ at e16.5 (Supplementary Figure 2f, g), and
correlated with a higher number of Pax6-positive aNPC in the VZ
(Wild type = 410.7 ± 11.3, Celsr1−/−= 452± 14.5, n= 3 brains per
stage and per genotype, Po0.01, two-way ANOVA;
Supplementary Figure 2h). During corticogenesis, aNPC produce
Tbr2+ BP, which divide in the SVZ to scale up neuron production.
Concomitant to the increased number of aNPC progenitors, the
number of Tbr2-positive BP decreased in mutants (Figures 1g–m,
Supplementary Figure 3a–n). The reduction of BPs was significant
starting from e12.5 in the lateral pallium (Figure 1m, Tbr2+ cells in
VZ/SVZ, wild type = 366± 72.6, Celsr1−/−= 293.8 ± 49.3, n= 3,
Po0.001, two-way ANOVA), and from e14.5 in the dorsal pallium
(Supplementary Figure 3n, Tbr2+ cells in VZ/SVZ, Wild type =
351.8 ± 67.8, Celsr1−/−= 307.9 ± 26.5, n= 3, Po0.05, two-way
ANOVA). This was further confirmed by the observation of a
decreased number of mitotic, Phospho-Vimentin+ cells in the SVZ
at e14.5 (Supplementary Figure 4a–f, dorsal pallium: wild type =
4.2 ± 0.5, Celsr1−/−= 2.3 ± 0.4, n= 3, P= 0.0185, Student’s t-test;
lateral pallium: Wild type = 3.2 ± 0.5, Celsr1−/−= 1.5 ± 0.3, n= 3,
P= 0.0046, Student’s t-test).

Celsr1-deficient aNPC produce more adult NSCs
According to their localization in the developing telencephalon,
aNPC cells produce cortical or striatal neurons. To test whether the
effect of Celsr1 on fate decision is region specific, we characterized
other neurogenic areas in the developing and adult brain. In
absence of Celsr1, aNPC in ganglionic eminences, which generate
striatal neurons and cortical interneurons, underwent more
proliferative divisions than control ones, as illustrated by: (i)
Increased number of Sox2-positive cells (Supplementary Figure
5a–e, Sox2+ cells in VZ/SVZ at e12.5: wild type = 207± 5.9, Celsr1−/−

= 271.3 ± 11.7, n= 3; at e16.5: Wild type = 96.2 ± 5.6, Celsr1−/−=
161.9 ± 5.6, n= 3, Po0.0001, two-way ANOVA); (ii) Decreased
number of Mash1+ BPs (Supplementary Figure 5a–d, f, Mash1+

cells in VZ/SVZ at e12.5: wild type = 340.7 ± 7.2, Celsr1−/−=
312± 9.6, n= 3; at e16.5: wild type = 128± 5.8, Celsr1−/−=
110.3 ± 5.9, n= 3, Po0.002, two-way ANOVA); and (iii) Narrowing
of the intermediate zone containing Dlx5/6+ postmitotic neurons
(Supplementary Figure 5g–i, width of Dlx5/6-Gfp+ area at
e16.5, wild type = 283.3 ± 3.3 μm, Celsr1−/−= 234 ± 4.9 μm, n= 3,
P= 0.0005, Student’s t-test).
In addition to postmitotic neurons, B1 cells, a pool of neural

progenitors that remain quiescent until reactivation in the adult
brain, are mainly derived from aNPC during early neurogenesis.15

In the adult VZ/SVZ, B1 cells display an epithelial apicobasal
organization reminiscent of aNPC cells. The morphology of these
cells was similar in Celsr1 mutants and controls. Following
electroporation at early postnatal stages, Gfp-filled B1 cells
extended from the ventricle apically (Supplementary Figure 6a,
b) to the VZ/SVZ blood vessel plexuses basally (Supplementary
Figure 6c, d). Similarly, B1 cells exhibited apical processes abutting
the ventricle (Supplementary Figure 6e, f) and basal endfeet lining
blood vessels (Supplementary Figure 6g, h) at P90. Whole-mount
staining of the ventricular lateral wall showed that B1 cells
expressing GFAP were surrounded by ependymal GFAP-negative
cells (Supplementary Figure 6e, f), forming the so called pinwheel
structure.16 Contrary to ependymal multiciliated cells, B1 cells are
decorated by a single cilium. We used the basal body marker γ-
tubulin to visualize the pinwheels and found that these structures
were more abundant in mutant than in control mice at P30 and
P90. (mean number of pinwheels per field (0.044 mm2) in the
dorso-lateral wall at P30: Wild type = 16.6 ± 1.3, Celsr1−/−

= 28.2 ± 1.5, n= 6 whole mounts, P= 0.0004, Student’s t-test,
Supplementary Figure 7a–e; at P90: wild type = 7.5 ± 0.8, Celsr1−/−

= 12.8 ± 1.5, n= 6 whole mounts, P= 0.0016, Student’s t-test,
Supplementary Figure 7h–q). In addition, the mutant lateral wall
contained larger clusters of B1 cells than control, both at P30
(Supplementary Figure 7f) and P90 (Supplementary Figure 7r);
leading to a dramatic increase of the density of adult NSC (number
of NSC per field in the dorso-lateral wall at P30: wild type = 39.6
± 3.9, Celsr1−/−= 104.4 ± 7, n= 6 whole mounts, Po0.0001;
Student’s t-test, Supplementary Figure 7g; at P90: Wild type =
16.4 ± 1.7, Celsr1−/−= 47.1 ± 5, n= 6 whole mounts, Po0.0001,
Student’s t-test, Supplementary Figure 7s). Thus, in Celsr1 mutants,
aNPC produce more adult NSCs (B1 cells), and less neurons than in
controls.

Celsr1 mutant mice have cortical hypoplasia and disturbed
behavior
We measured brain weight at P0, P4, P8, P10 and P12, and found
significant differences between Celsr1−/− and controls starting
from P4 (Supplementary Figure 8a; wild type= 171 ± 7.6 mg,
Celsr1−/−= 138.6 ± 2.5 mg, P= 0.0002, n= 15, Student’s t-test). At
P90, the hypoplasia was particularly apparent in cerebral cortex

Figure 2. Continued
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Figure 3. Celsr1 expression during cortical development. (a–i) Coronal sections stained for Celsr1 (green, white), and Phospho-Vimentin
(pVimentin, a–c) or Nestin (d–i) (red). At e10.5 (a–c), Celsr1 protein localizes at the apical side (arrowheads) but not in endfeet (brackets). Scale
bars 50 μm. At e12.5 (d–f) and e16.5 (g–i), Celsr1 is distributed both in apical and basal compartments. Scale bars 50 μm. (j–o) Coronal sections
in forebrain of Wild type (j–l) and Celsr1−/− mice (m–o) immunostained for Nestin (j, m), Gfp (green) and Laminin (red) (k, n), Laminin (green)
and Tuj–1 (red) (l, o). Note the intact basal lamina (arrowheads). Scale bars 50 μm (j, m), 10 μm (k, n), 100 μm (l, o). (p, r) Gfp-filled basal
processes of aNPC from Wild type (p) and Celsr1−/− mice (q). Note the simplified morphology in the mutant. Scale bars 20 μm. (r) Quantification
of endfeet in Wild type and Celsr1−/− mice at P1. n= 65 aNPC for Wild type, and 81 for Celsr1−/−; Chi square test, X2= 0.002.
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and cerebellum, with unmasking of the superior and inferior
colliculi (Figures 2a, b). Immunolabeling using layer specific
markers showed a reduction in the number of Foxp2+ and
Cux1+ neurons (Figure 2c, number of Foxp2+ cells (wild type =
341± 15.3, Celsr1−/−= 266± 15.1, n= 3, P= 0.0083; number of
Cux1+ cells: wild type = 644.4 ± 34.8, Celsr1−/−= 550± 20, n= 3,
P= 0.0467, Student’s t-test). In addition, histological examination
of brain sections revealed that Celsr1−/− mice displayed a thicker
VZ/SVZ (Figures 2d, e). Celsr1−/− adult mice exhibited turning
behavior, a distinctive feature of inner ear/vestibular system
dysfunction (Supplementary Movie 1). To investigate further the

impact of loss of Celsr1 on cortical development, we selectively
inactivated Celsr1 in neocortical areas by crossing mice carrying
the Celsr1f allele with Emx1-Cremice. Like the constitutive mutants,
Celsr1f/f;Emx1-Cre conditional knockout mice (hereafter referred
to as Celsr1Emx1cKO) displayed smaller cortices than controls
(Celsr1+/+;Emx1-Cre) (Supplementary Figure 8b–e, weight of the
Emx1-Cre-Tomato+ area: control males = 87 ± 3.3 mg, Celsr1Emx1cKO

males = 75± 9.9 mg, n= 3, P= 0.0256; control females =
75.6 ± 4.2 mg, Celsr1Emx1cKO females = 59.1 ± 2.4 mg, n= 4,
P= 0.0138, Student’s t-test). We assessed the impact of these
morphological changes on behavior. Celsr1Emx1cKO mice exhibited

Figure 4. RG endfeet modulate the RA neurogenic signal. (a, b) The RA shuttle protein Crabp2 is enriched in aNPC endfeet. Scale bars 50 μm.
(c–f) Modification of transcription of RA target genes Tnc and Igfbp5 revealed by RNA-Seq on isolated aNPC (c, d) and confirmed by qRT-PCR
on e14.5 telencephalon (e, f). n= 3 brains for RNA-Seq and four brains for qRT-PCR. Bars represent s.e.m. Two-way ANOVA for qRT-PCR. (g–p)
RA supplementation from e11.5 to e14.5 rescues the production of BPs (g–k) and lateral expansion of the VZ (l–p). n= 4 embryos per
condition. Bars represent s.e.m. Two-way ANOVA, Po0.001 without RA and P40.05 with RA.
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gender-specific defects in activity, attention, anxiety, spacial
learning and social interactions (Figures 2f–o). Males displayed
more spontaneous motor activity and spent more time than
controls in exposed areas in open field and elevated plus maze
(distance covered in open field: controls = 8220 ± 726.2 cm,
Celsr1Emx1cKO= 13670 ± 1747 cm, n= 14 controls and 10
Celsr1Emx1cKO, P= 0.0040, Student’s t-test, Figure 2f; time spent
in exposed areas in open field: controls = 186.7 ± 24.7 s,
Celsr1Emx1cKO= 287.5 ± 23.7 s, P= 0.0096, Student’s t-test
Figure 2g; time spent in open area in elevated plus maze,
controls = 94.95 ± 7.2 s, Celsr1Emx1cKO= 127.6 ± 14 s, P= 0.0352, Stu-
dent’s t-test, Figure 2h). The hiding behavior defect suggests

attention and or anxiety deficit in addition to hyperactivity. Males
also exhibited a spatial learning deficit in the water maze setup
(time spent to find the platform controls at day 3 = 8.9 ± 1.9 sec,
Celsr1Emx1cKO= 19.2 ± 4.2 sec, n= 5–9 animals per genotype,
Po0.05, two-way ANOVA, Figure 2i), but no social behavior
defect in the ‘three-chamber’ test (time spent in empty chamber
controls = 193.9 ± 14.7 sec, with stranger = 296.2 ± 16.5 sec,
Celsr1Emx1cKO in empty chamber = 169.1 ± 23.3 sec, with stranger =
336.3 ± 33.5 sec, n= 5–9 animals per genotype, Po0.001 for both
genotype, one-way ANOVA, Figure 2j).
Although mutant females tended to be more active and less

anxious than controls, the differences were not statistically
significant (distance covered in open field: controls
= 6735 ± 1461 cm, Celsr1Emx1cKO= 14070 ± 3505 cm, n= 5 per gen-
otype, P= 0.0894, Student’s t-test, time spent in exposed areas in
open field: controls = 170.6 ± 54.5 s, Celsr1Emx1cKO= 254.4 ± 23.7 s,
P= 0.1963, Student’s t-test, Figures 2k,l), elevated plus maze (time
spent in open area in elevated plus maze, controls = 92.74 ± 14.6 s,
Celsr1Emx1cKO= 115.6 ± 21.6 s, P= 0.4063, Student’s t-test,
Figure 2m), and water maze (Day 1–3, P40.05, two-way ANOVA,
Figure 2n); Yet, they exhibited a social interaction defect, spending
similar time periods in the empty chamber as with the stranger
mouse (controls in empty chamber = 164.3 ± 13.4 s, with
stranger = 340.6s ± 20.8 s, n= 5, Po0.001; Celsr1Emx1cKO in empty
chamber = 235.8 ± 37.8 s, with stranger = 257.1 s ± 44.5 s, n= 5
animals per genotype, P40.05, one-way ANOVA, Figure 2o). This
combination of traits has been described in rodent models of
attention deficit/hyperactivity disorder (ADHD),17 and autism
spectrum disorder (ASD),18,19 two neurodevelopmental conditions
with high co-morbidity.20 Taken together, these results suggest
that the loss of Celsr1 promotes proliferation of aNPC at the
expense of neurogenesis, decreases the number of neurons,
leading to cortical hypoplasia and disrupted behavior.

Celsr1 inactivation modifies the transcriptome of aNPC
To investigate further how Celsr1 controls the balance between
proliferation and differentiation of aNPC, we purified control and
mutant Prominin-positive cells by FACS at e14.5, extracted RNA
and compared their transcriptome using RNA-Seq (Supplementary
Figure 9). We found that 276 genes displayed an altered
expression in Celsr1-deficient aNPC (Supplementary Table 1, False
discovery rate Po0.01, fold changes 41.5). Compared with
controls, 20% of misregulated genes were upregulated, and 80%
were downregulated (Supplementary Figure 9a). Hierarchically
clustered gene ontology terms for biological processes

Figure 5. Effect of RA supplementation on cortical development and
behavior in Celsr1 Emx1cKO mice. (a) Quantification of Cux1-positive
neurons (layers II and III) in Celsr1wildtype, Celsr1Emx1cKO-RA and
Celsr1Emx1cKO+RA. n= 5 brains per genotype; bars represent s.e.m.;
Student’s t-test; Celsr1Wildtype versus Celsr1Emx1cKO-RA, Po0.05;
Celsr1Wildtype versus Celsr1Emx1cKO+RA, P40.05. The number of cells
in the Wild type is set to 100%. (b) Locomotor activity of males in
open field. Bars represent s.e.m.; Student’s t-test; Celsr1Wildtype versus
Celsr1Emx1cKO-RA, Po0.05; Celsr1Wildtype versus Celsr1Emx1cKO+RA,
P40.05. (c, d) Time spent by males in exposed areas of open field (c)
and open arms of elevated plus maze (d). Bars represent s.e.m.,
Student’s t-test, Celsr1Wildtype versus Celsr1Emx1cKO-RA, Po0.05;
Celsr1Wildtype versus Celsr1Emx1cKO+RA, P40.05; (e) Learning ability
of males in the water maze. Bars represent s.e.m., Student’s t-test,
Celsr1Wildtype versus Celsr1Emx1cKO-RA, Po0.05; Celsr1Wildtype versus
Celsr1Emx1cKO+RA, Po0.05. (f) Social behavior in the ‘3 chamber’ test
for females. Bars represent s.e.m., one-way ANOVA, P40.05 for
Celsr1Emx1cKO-RA (stranger versus empty chamber); Po0.001 for
Celsr1Wildtype and Celsr1Emx1cKO+RA (stranger versus empty cham-
ber). For the RA rescue experiments, n= 9 animals per genotype and
per condition.
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emphasized genes involved in Wnt/PCP signaling, cilia assembly
and movement, brain development and generation of neurons,
cell proliferation and differentiation, positive regulation of
transmembrane receptor protein serine/threonine kinase signal-
ing pathway, and regulation of cellular response to growth factor
stimulus (Supplementary Table 2). Changes in Wnt/PCP, cilia
movement and assembly, and microtubule cytoskeleton were
predictable given the established role of Celsr1 in PCP and cilia
biogenesis, and the relationship between Wnt and PCP.5,8,9 On the
other hand, several genes involved in Wnt signaling such as Sulf1,
Sulf2, GPC3, Rspo1-3 are also implicated in transmembrane
receptor protein serine/threonine kinase signaling.
Consistent with the increased proliferation of aNPC in Celsr1

mutants, we found that 19% of the upregulated genes promote
proliferation (Supplementary Figure 9b). Those include Tmsb4x,21

Rpl34,22 Nsg2,23 Tnc,24 Snhg6,25 Pttg1 (Supplementary Figure 9d),26

and Dbi (Supplementary Figure 9e).27 Of note, in humans, the
extracellular matrix protein TNC (Tenascin C) is highly expressed in
the outer SVZ, a region which, in gyrencephalic brains, contains
highly proliferative outer radial glia.24 Moreover, Thymosin beta4
(Tmsb4x) strongly promotes proliferation of neural progenitors.21

On the other hand, 13% of the downregulated genes are known
tumor suppressors (Supplementary Figure 9c). They include
Sulf1,28 Sostdc1,29 Ccdc67,30 Ptprt,31 Igfbp5,32 Rbm47,33 Sepp134

(Supplementary Figure 9f), Mamdc2,35 Mecom,36 Zmat4,37 Dab2,38

Gpx3,39 Ptprg,40 Cds141 or Spred242 (Supplementary Figure 9g). In
addition, Ptpn6,43 Kank1,44 Lrp1b,45 Lrig3,46 Nkd1,47 Crabp2,48

Igfbp349 and Cbx750 have been implicated in glioblastoma
progression, confirming that invasiveness of glioblastoma and
proliferation of RG progenitors use common molecules and
signaling pathways.24

The most enriched terms in gene ontology for cellular
component pointed to cilia, proteinaceous ECM (extracellular
matrix) and intrinsic component of plasma membrane
(Supplementary Table 3, Supplementary Figure 9h), suggesting
that Celsr1 may be instrumental to the communication between
aNPC and their environment. Indeed, many differentially
expressed genes encode extracellular proteins (Sulf1, Metallothio-
nein-3, (Supplementary Figure 9i), Mmp2, Adamts2, Adamts18
(Supplementary Figure 9j), Galnt10 and Galnt12), membrane-
bound proteins (Ptpn6, Ptprt, Sgms2, Tmsb4x (Supplementary
Figure 9k) and Mamdc2 (Supplementary Figure 9l), ECM compo-
nents (Tnc and Col1a2), or growth factor-binding proteins (Igfbp3
and Igfbp5). All these molecules can promote and regulate
interactions between cell surface receptors, ligands and ECM.
Finally, it is worth mentioning that 10% (26/276) of misregu-

lated genes are associated with ASD (Supplementary Table 4), and
2.5% (7/276) with ADHD (Supplementary Table 5).

Celsr1 is required in aNPC endfeet to mediate RA signaling
The phenotype and transcriptional landscape of Celsr1−/− mutant
aNPC indicate that they fail to perceive critical neurogenic signals.
To examine the relationship between the loss of Celsr1 and the
cortical phenotype, we studied the distribution of Celsr1 protein in
the embryonic mouse telencephalon and found that, prior to the
onset of neurogenesis, Celsr1 was confined to the apical junctions
of NSC (Figures 3a–c). From e12.5 onwards, Celsr1 accumulated
progressively in basal processes and endfeet of RG progenitors
(Figures 3d–i), as was shown in the brainstem and spinal cord.11,51

Because Celsr1 is a putative adhesion protein, we investigated the
attachment of RG processes to the pia in Celsr1−/− mice.
Immunohistochemistry with antibodies to the intermediate
filament-associated protein Nestin showed that mutant aNPC
were correctly oriented (Figures 3j, m) and reached the basal
lamina (Figures 3k, n). Furthermore, we did not observe
discontinuities in the basal lamina or neuronal heterotopia in
meningeal spaces (Figures 3l, o). However, close scrutiny of the

aNPC basal compartment after electroporation of a Gfp encoding
plasmid revealed that the number of basal processes was
dramatically reduced in Celsr1−/− mice (Figures 3p–r). Hence,
Celsr1 redistributes to basal processes of aNPC at the onset of
neurogenesis, and its deficiency affects their complexity. As
mutant aNPC endfeet were drastically affected, we considered
signals emanating from meninges, which were previously
proposed to regulate brain development through secreted
molecules.52,53 Chief among meningeal signals is RA, which is
believed to trigger the switch from proliferative to neurogenic
divisions at the onset of neurogenesis.52 Meningeal cells, the main
source of RA in the developing cortex, appear progressively
around the telencephalon in a lateral to dorsal gradient between
e12.5 and e14.5,52 which correlates perfectly with the defect in BP
production seen in Celsr1−/− cortex (Figure 1m, Supplementary
Figure 3n). Furthermore, we found that Crabp2, a cytosol-to-
nuclear shuttling protein that facilitates the binding of RA to its
cognate nuclear receptor, was concentrated in RG endfeet
(Figures 4a, b) where it could mediate RA uptake and its relocation
to the nucleus. In agreement with this hypothesis, the expression
of Crabp248 as well as other RA target genes involved in neural
differentiation such as Tnc,24,54 and Igfbp555,56 was misregulated in
Celsr1−/− mice (Supplementary Table 1, Figures 4c, d).
To test further whether RA is involved in the altered neurogenesis

observed in mutant mice, we subjected Celsr1−/− embryos to RA
supplementation in utero between e11.5 and e14.5. This treatment
restored the expression of Tnc and Igfbp5 (Figures 4e, f). It also
rescued the number of Tbr2-positive BP cells (Figures 4g-k, Tbr2+

cells in VZ/SVZ at e14.5, wild type=458.8 ± 13.8, Celsr1−/−

=360.9 ± 8.6, n=4, Po0.001, two-way ANOVA; wild type+RA=
416.8 ±17.6, Celsr1−/−+RA=448.3 ±21.9, n=4, P40.05, two-way
ANOVA); and the length of the VZ (Figures 4l–p, wild type= 0.57
± 0.005, Celsr1−/−=0.70±0.011, n=4, Po0.001, two-way ANOVA;
wild type+RA=0.54± 0.008, Celsr1−/−+RA=0.55±0.010, n=4,
P40.05, two-way ANOVA). Long-term RA supplementation (from
e11.5 to e17.5) had profound consequences on the mature brain,
and on behavior of adult mice (Figure 5). The treatment rescued the
number of cortical neurons (number of Cux1+ cells: wild type-
RA=100%, wild type+RA=100.2%, Celsr1−/−-RA= 85.1%, Celsr1−/−

+RA=100.6%, n=5, P40.05, Figure 5a;), and the hyperactivity and
hiding behaviors (distance covered in open field: controls-
RA=9045±708.4 cm, Celsr1Emx1cKO-RA=13279± 1175 cm, controls
+RA=8994±678.9 cm, Celsr1Emx1cKO+RA=7942±1493 cm, n = 9,
P40.05 for RA treatment, one-way ANOVA, Figure 5b; time spent
in exposed areas in open field: controls-RA=195.7± 26.3 cm,
Celsr1Emx1cKO-RA=320.5± 37.8 cm, controls+RA=204±21.1 cm,
Celsr1Emx1cKO+RA=215.5± 64.9 cm, n=9, P40.05 for RA treatment,
one-way ANOVA, Figure 5c; time spent in open area in elevated
plus maze: controls-RA=1193±61.1 cm, Celsr1Emx1cKO-RA=1625±
176.8 cm, controls+RA=1381±85.6 cm, Celsr1Emx1cKO+RA=1279±
136.2, n=9, P40.05 for RA treatment, one-way ANOVA, Figure 5d),
but it did not restore the learning abilities of the mutant males
(time spent to find the platform after 3 days, controls-RA =8.9±
1.9 s, Celsr1Emx1cKO-RA=19.2 ±4.2 s, controls+RA=10.3± 2.1 s,
Celsr1Emx1cKO+RA=19.8± 5.2 s, n=9, Po0.05 for day 1–3, two-way
ANOVA, Figure 5e). Long-term repetitive treatment with RA also
rescued social interaction defects in Celsr1Emx1cKO females (time
spent in empty chamber Celsr1Emx1cKO-RA= 235.8 ±37.8 s, with
stranger = 257.1 ±44.5 s, P40.05, Celsr1Emx1cKO+RA in empty
chamber =96± 37 s, with stranger = 339±37 s, Po0.001, n=9
animals per genotype, Student’s t-test; Figure 5f). These results
support a link between RA and the Celsr1−/− phenotype.

DISCUSSION
The control of neurogenesis during embryonic development is
crucial to regulate the number, diversity and position of neurons,
and to normalize cortical size and architecture. At the onset of
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neurogenesis, aNPC integrate intrinsic and extrinsic signals that
determine their fate choices. Here, we report that Celsr1, which
localizes to the basal compartment of aNPC,51 contributes to such
signals and regulates the type of division of progenitors. We
propose that the basal compartment of aNPC interprets signals
secreted from the meninges, such as that of RA, and thereby
regulates expression of genes involved in the neurogenic switch.
Celsr1 mutant mice exhibit errors in neural progenitor fate

decision that lead to a reduced number of cortical neurons,
abnormal brain architecture (that is, thicker VZ/SVZ, and thinner
upper layers of the neocortex), microcephaly and behavioral
impairment. Celsr1Emx1cKO mice are hyperactive and display
abnormal exploratory behavior, spending more time than controls
in exposed regions, and in unprotected arms of the elevated plus
maze. The fact that mutant mice explore uncomfortable, risky, or
threatening environments could be linked to anxiety-related
responses or reflect a diminished attention to their environment, a
conclusion supported by their reduced spacial learning abilities. In
addition to the increased locomotor and reduced anxiety and/or
attention in males, Celsr1Emx1cKO females spend significantly less
time than controls interacting with a stranger mouse, a sign of
social withdrawal. This combination of phenotypes is evocative of
neurodevelopmental human disorders where: (i) ASD and ADHD
co-occur with high frequency (up to 50% of children with ADHD
meet criteria for ASD, and up to 80% of ASD children meet criteria
for ADHD;20 and (ii) Brains of patients with both ASD and
hyperactivity displayed thickening of the VZ/SVZ and altered
neurogenesis,57 in addition to microcephaly.58,59 In humans,
neural tube closure defects and fetal lethality may have prevented
the identification of causative links between CELSR1 and
neurodevelopmental disorders in large cohorts. Nevertheless,
CELSR1 mutations have been associated with autism, hyperactiv-
ity, delayed speech and intellectual disability (https://decipher.
sanger.ac.uk/).60 Further studies using appropriately designed
genome editing strategies and brain organoids should help assess
the role of CELSR1 in human cortical development.
Mechanistically, we find that the Celsr1 protein is confined to

apical junctions in NSC but distributes to the basal compartment
in aNPC, and this localization is essential to shape the basal
processes. Accumulation of proteins that regulate proliferation
versus differentiation of neural progenitors in specific cell
compartments and especially in aNPC endfeet has been reported.
For instance, Cyclin D2, a crucial cell cycle regulator, accumulates
in aNPC endfeet and, among cells that inherit basal processes after
division, may promote re-entry into the cell cycle.61 Likewise, the
Fragile X mental retardation protein FMRP involved in the
transition from aNPC to BP is also distributed in aNPC basal
processes,62 where it controls transport and localization of kinesin
Kif26a.63 Accumulation of the Celsr1 protein in aNPC endfeet may
promote the branching and/or stabilization of the basal compart-
ment of aNPC. Both processes require a coordinated reorganiza-
tion of the cytoskeleton and involve actin and microtubules
dynamics, a typical feature of PCP signaling.64 Celsr1 is a seven-
pass transmembrane protein of the adhesion G protein-coupled
receptor family with an ectodomain containing cadherin repeats,
EGF, laminin and hormone receptor motifs, thus making it a good
candidate to bridge the ECM and the cytoskeleton. Such an
interaction is instrumental to aNPC morphogenesis and commu-
nication with meninges since the simplified shape of basal
processes in Celsr1-deficient mice, correlates with alterations in
gene expression, and with a defective neurogenic switch. Of note,
the Celsr1 paralog Celsr3 is required at later embryonic stages for
the gliogenic switch.65

The meninges are a source of developmental cues. The pia
produces the chemoattractant Cxcl12 (Sdf1), which regulates the
positioning of cortical interneurons and Cajal-Retzius cells.53 The dura
is involved in skull development by producing TGFβ and FGF2 to
induce bone formation.66,67 RA derived from meninges may play

a role in the neurogenic induction during corticogenesis,52 even
though this is debated.68 Our RNA-Seq data revealed that receptors
and binding proteins involved in RA signaling (for example, Rarα,
Rarβ, Rxrα, Rxrβ, Nr2f1, Crabp2, Ppard and Fabp5) are expressed in
aNPC. Furthermore, removing RA-producing meninges by Foxc1
inactivation produces phenotypic features rather similar to those in
Celsr1−/− mice (this study), and in RARα/γ double knockout,69 namely
an increased number of self-renewing divisions of aNPC with lateral
expansion of the VZ. In addition, neurogenesis defects found in
Celsr1−/− and Foxc1−/− mutants are both rescued by RA treatment. RA
is a strong morphogen whose activity must be tightly regulated.
Restricting its production to the meninges and its uptake by Crabp2,
a shuttle protein which accumulates in aNPC endfeet, may provide
an efficient way to deliver the appropriate amount of RA to the
distant nucleus.
Transcriptional dysregulations found in Celsr1−/− point to

common pathways and mechanisms by which Celsr1, through
the basal processes of aNPC, controls the switch from self-renewal
to differentiation. Many genes and proteins that are differentially
expressed in Celsr1 mutant aNPC modulate growth factor
signaling at the membrane or via extracellular space. Tyrosine
phosphatases (Ptpn6, Ptprt, Ptprg) which blocks the activation of
tyrosine kinase receptors with known proliferation inducing
activity, such as Egfr70 or Pdgfrb, are reduced. Likewise, Sulf1,
which decreases receptor affinity to ligands by modifying sulfation
of their co-receptor heparin sulfate proteoglycans,71 is diminished.
At the plasma membrane level, Lrig3, Myof and Spred2 (through
receptor degradation and through interaction with PI3K) also
negatively regulate growth factors (FGF or EGF) signaling.72
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