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Abstract

We propose a new framework for rigorous robustness analysis of stochastic biochemical systems that is based on
probabilistic model checking techniques. We adapt the general definition of robustness introduced by Kitano to the class of
stochastic systems modelled as continuous time Markov Chains in order to extensively analyse and compare robustness of
biological models with uncertain parameters. The framework utilises novel computational methods that enable to
effectively evaluate the robustness of models with respect to quantitative temporal properties and parameters such as
reaction rate constants and initial conditions. We have applied the framework to gene regulation as an example of a central
biological mechanism where intrinsic and extrinsic stochasticity plays crucial role due to low numbers of DNA and RNA
molecules. Using our methods we have obtained a comprehensive and precise analysis of stochastic dynamics under
parameter uncertainty. Furthermore, we apply our framework to compare several variants of two-component signalling
networks from the perspective of robustness with respect to intrinsic noise caused by low populations of signalling
components. We have successfully extended previous studies performed on deterministic models (ODE) and showed that
stochasticity may significantly affect obtained predictions. Our case studies demonstrate that the framework can provide
deeper insight into the role of key parameters in maintaining the system functionality and thus it significantly contributes to
formal methods in computational systems biology.
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Introduction

Robustness is one of the fundamental features of biological

systems. According to Kitano [1] ‘‘robustness is a property that allows a

system to maintain its functions against internal and external perturbations’’.

To formally analyse robustness, we must thus precisely define a

model of a biological system, its perturbations and the notions of a

system’s function. In this paper, we propose a novel framework for

robustness analysis of stochastic biochemical systems. To this end,

inspected systems are described by means of stochastic biochem-

ical kinetic models, system’s functionality is defined by its logical

properties, and system’s perturbation is modelled as a change in

stochastic kinetic parameters or initial conditions of the model.

Processes occurring inside living cells exhibit dynamics that can

be observed and classified as carrying out a certain function –

maintaining stable concentrations, responding to an environment

change, growth, etc. Kinetic models with parameters are used to

formally capture cell dynamics. Limited knowledge of numerical

parameters poses a challenge since precise values of all parameters

(kinetic constants, initial concentrations, environmental conditions,

etc.) may be unknown, may be known but imprecisely, or may in

principle form a bounded uncertainty interval (e.g., non-homoge-

neous cell populations, different structural conformations of a

molecule leading to multiple kinetic rates, etc.). Hence, the

behaviour of a kinetic model for a given single parametric

instantiation and its derived functionality may not provide an

adequate result. Therefore it is necessary to take into account

possible uncertainties, variance and inhomogeneities.

The concept of robustness addresses this aspect of functional

evaluation by considering a weighted average of every behaviour

across a space of perturbations, each altering the model

parameters (hence its behaviour) and in a particular way, having

a certain probability of occurrence. A general definition of

robustness, as introduced by Kitano [2], gives us robustness degree

that quantitatively characterises to what extent is the evaluated

system functionality preserved under considered perturbations:

RMA,P ~
def
ð

P

y(p)DMA (p)dp

whereM is the system, A is the function under scrutiny, P is the

space of all perturbations, y(p) is the probability of the

perturbation p[P and DMA (p) is an evaluation function stating how

much the function A is preserved under a perturbation p in the

system M.

For the macroscopic view as provided by the deterministic

modelling framework based on ordinary differential equations

(ODEs), the concept of robustness has been widely studied. There

exist several well-established analytic techniques based on static

analysis as well as dynamic numerical methods for effective

robustness analysis of ODE models. In circumstances of low

molecular/cellular numbers such as in signalling [3], immunity

reactions or gene regulation [4], intrinsic and extrinsic noise plays
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an important role and thus these processes are more faithfully

modelled stochastically.

In our work, we consider stochastic biochemical kinetic models

with the semantics given by Continuous Time Markov Chains

(CTMCs). The evolution of a probability density vector (further

denoted as a distribution) describing populations of particular

species is given by the chemical master equation (CME) [5]. A

function of a system in the biological sense is any intuitively

understandable behaviour, e.g., stability of ERK signal effector

population in high concentration is observed during first 10

minutes. In order to define the robustness of a system formally we

need to make precise the intuitive and informal concept of

functionality. Our framework builds on the formal methods where

the function of a system is expressed indirectly by its logical

properties. This leads to a more abstract approach emphasising

the most relevant aspects of a system function and suppressing less

important technicalities. We use stochastic temporal logics, namely

the bounded time fragment of Continuous Stochastic Logic (CSL) [6]

further extended with rewards [7]. The aforementioned example of

the behaviour can be formalised using the CSL formula

P§0:9½G½0,10�(ERKwhigh)� that expresses the property ‘‘The

probability that the population of ERK remains in high

concentration during first 10 minutes is greater than 90%’’. To

broaden the scope of possibly captured functionalities we extend

CSL with a class of post-processing functions defined over probability

density vectors. We show that the bounded fragment of CSL with

rewards and post-processing functions can adequately capture

many biologically relevant scenarios observed in a finite time

horizon.

The main methodological contribution of this paper is the

adaptation of the concept of robustness to stochastic systems. The

main challenge of such adaptation lies in the interpretation of the

evaluation function DMA (p). We discuss several definitions of the

evaluation function that give us different options how to quantify

the ability of the system to preserve the inspected functionality

under parameter perturbation. We show how the robustness of

stochastic systems can be analysed using the proposed framework

that is based on our recently published numerical approximation

Figure 1. Robustness analysis workflow. The robustness analysis framework considers several objects on the input side. In particular, stochastic
kinetic model is supplied with the quantitative hypothesis and the perturbation space of interest. The robustness analysis procedure systematically
traverses the perturbation space and explores the system’s functionality determined by the quantitative hypothesis. The output side of the
framework provides the evaluation function describing the system’s functionality with respect to the perturbation space. A single value
characterising the system robustness is computed by integrating the evaluation function over the perturbation space.
doi:10.1371/journal.pone.0094553.g001

Figure 2. Running example. The example model contains one species X with the population bounded to 40, two reactions: production of X
(1?X with rate k1), degradation of X (X?1 with the rate k2

:½X �, k2~0:01) and the initial population of X~15. The corresponding CTMC has 41
states (initial state s0 corresponds to the state with initial population). The inspected formula W represents the quantitative property ‘‘What is the
probability that the population of X is between 15 and 20 at time 1000?’’ The perturbation space P is given by the interval of the stochastic rate
constant k1[½0:1,0:3�. On the right, there are depicted three transient distributions at time 1000 for three different values of k1 and the resulting
probabilities for the formula W obtained as the sum of probabilities in states with populations from 15 to 20.
doi:10.1371/journal.pone.0094553.g002
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of the evaluation function [8]. In contrast to existing methods

employing parameter sampling and statistical techniques our

approximation provides accuracy guarantees.

We apply the framework to two relevant biological problems

from the area of cellular processes where stochasticity is inherent

and where it plays a crucial role, especially due to low numbers of

molecules involved. First, we analyse a model predicting dynamics

Figure 3. Perturbation space refinement. Part (A) depicts three resulting probabilities (green dots) of the formula W (for the initial state s),
denoted as ProbCp (s,W), for three values of the rate constant k1 corresponding to three perturbation points p[P from Figure 2. The shape of
ProbCp (s,W) for all p[P is estimated at these three points by polynomial interpolation and shown as a black curve. The top four parts (A), (B), (C) and
(D) illustrate the min-max approximation of the evaluation function (i.e., the values ProbCp (s,W) for all p[P) using the decomposition of P into 2, 4, 8
and 16 subspaces. The exact shape of the evaluation function is visualised as the red thick curve in (D) and is compared to the initial estimate and to
the min-max approximation. Two types of errors are illustrated: the approximation error is depicted as yellow rectangles and the uniformization error
as the purple rectangles. As can be seen, a more refined decomposition reduces both types of errors in each further refined subspace. Part (E) depicts
how the errors arise during the computation of parametrised uniformisation. The yellow curves illustrate the minimal and maximal transient
probability distributions with respect to the inspected interval of the parameter k1[½0:1,0:2�. The purple curves illustrate the approximations of the
the minimal and maximal distributions computed using parametrised uniformisation. Part (F) demonstrates how the error can be reduced using
perturbation space decomposition. It illustrates the errors for the parameter k1[½0:1,0:15�.
doi:10.1371/journal.pone.0094553.g003
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of a gene regulatory circuit controlling the G1=S phase transition

in the cell cycle of mammalian cells. Stochasticity of the gene

regulation becomes critical especially when dealing with genetic

switches that make irreversible decisions in tissue development or

cell cycle control processes. Without studying the distribution of

cell population with respect to the probability of decisions they

make, we cannot analyse how robust the decisions are and how

certain parameters affect them. Second, we study two models

representing different topologies of a general two-component

signalling mechanism present in procaryotic cells. Cell signalling is

another phenomenon amenable to stochasticity. In state-of-the-art

medicine it is necessary to study signalling pathways from the

perspective of robust signal response. The notion of robustness is

in this case understood in terms of the amount of noise produced

in signal response. The lower the level of noise, the more robust is

the signal response. We show that our framework provides deeper

understanding of how the validity of an inspected hypothesis

depends on reaction rate parameters and initial conditions.

The first case study exploits the usability of the method to

analyse bistability (and its robustness) in the stochastic framework

and thus provides a stochastic analysis analogy to the study

presented in [9] under the deterministic (ODE) setting. Robustness

is employed to characterise parameterisations of the model with

respect to the tendency of the molecule population to choose one

of the possible steady states, irreversibly deciding whether the cell

will or will not commit to S-phase. The results show that intrinsic

and extrinsic noise, caused by randomness in protein-DNA

binding/unbinding events and other processes controlling the

chemical affinity of involved molecules, can significantly affect the

cell decision. In our model, the intrinsic noise of chemical

reactions is inherently captured by stochastic mass action kinetics

whereas the extrinsic noise is considered by means of parameter

uncertainty.

The second case study focuses on analysing the effect of intrinsic

noise on the signalling pathway functionality. In particular, two

topologically different variants of a two-component signalling

pathway are exploited for different levels of input signal and

different levels of intrinsic noise appearing in transcription of the

two signalling components. The considered topologies have been

compared in the previous study presented by Steuer et al. [10],

where robustness has been analysed in the setting of deterministic

(ODE) models. Here the signalling mechanism is remodelled in the

stochastic setting and robustness is employed to quantify under

which circumstances the individual topologies are less amenable to

intrinsic noise of the underlying protein transcription mechanism.

The results show that the stochastic approach can uncover facts

unpredictable in the deterministic setting.

Formal analysis of complex stochastic biological systems

employing both the numerical and the statistical methods

generally suffers from extremely high computational demands.

These computational demands are even more critical if we need

to analyse systems with uncertain parameters, which is also the

case of our framework. However, our framework has been

designed to be adapted to high-performance computing

platforms (e.g., multi-core workstations and massively parallel

general-purpose graphic processing units) and also to be

successfully combined with existing acceleration methods

described in, e.g., [11–13]. Although the acceleration is a

subject of our future research (inspired by our previous results

[14]), we already employ the fact that the approximation

method can be efficiently parallelised. In the second case study,

where the analysis of the inspected perturbation space requires

an extensive numerical computation, we utilise a high-perfor-

mance multi-core workstation to achieve the acceleration.

The main contributions of this paper can be summarised in the

following way:

1. Adaptation of the general concept of robustness of Kitano [2]

to the class of stochastic systems modelled by CTMCs.

2. Introduction of a novel framework based on formal methods to

evaluate robustness of the stochastic system with respect to the

Figure 4. Piece-wise linear approximation. A piece-wise linear approximation (PLA) is shown in green. It is computed by linearly interpolating
the grid points in which the upper and lower bounds of the evaluation function may be computed more precisely as the minimum resp. maximum of
the values from all parameter subintervals sharing boundary grid points. The obtained result is more precise than the original min-max
approximation (in purple), albeit without the conservative guarantee on bounds.
doi:10.1371/journal.pone.0094553.g004
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functionality given by a stochastic temporal property and to

perturbations of reaction rate parameters and initial conditions.

3. Experimental results providing detailed analysis of stochasticity

and parameter uncertainty in mammalian cell cycle gene

regulation and robustness analysis of different topologies of

two-component signalling systems incorporating stochastic

noise.

Related Work
The discussion of related work can be roughly divided into two

parts. First, we summarise the existing methods for parameter

exploration and robustness analysis of stochastic models. Second,

we briefly mention the methods and tools allowing for robustness

analysis of ODE models.

The main goal of our framework is to analyse how the validity

of an a priori given hypothesis expressed as a temporal property

depends on uncertain parameters of the inspected stochastic

system. For this purpose we adapt the general definition of

robustness [2] to the class of stochastic systems. While the concept

of robustness is well established for deterministic systems [15,16], it

has not been adequately addressed for stochastic systems. The key

difference is the fact that evolution of a stochastic system is given

by a set of paths in contrast to a single trajectory as in the case of a

deterministic system. Hence a stochastic system at any given time

is described by a probability distribution over states of the

corresponding CTMC in contrast to the single state representation

of a deterministic system. Therefore, the definition of robustness

for stochastic systems requires a more sophisticated interpretation

of the evaluation function that determines how the quantitative

temporal property is preserved under a perturbation of the system

parameters.

Owing to the reasons mentioned in the previous paragraph,

parameter estimation methods and the concept of robustness are

not yet as established for stochastic models as in the case of ODE

models. We have recently published a method [8] where the CSL

model checking techniques are extended in order to systematically

explore the parameters of stochastic biochemical kinetic models.

In [17] a CTMC is explored with respect to a property formalised

as a deterministic timed automaton (DTA). It extends [18] to

parameter estimation with respect to the acceptance of the DTA.

Most approaches to parameter estimation [18–20] rely on

approximating the maximum likelihood. Their advantage is the

possibility to analyse infinite state spaces [18] (employing dynamic

state space truncation with numerically computed likelihood) or

even models with no prior knowledge of parameter ranges [20]

(using Monte-Carlo optimisation for computing the likelihood). In

[21] the moment closure approach is considered to capture the

distribution of highly populated species in combination with

discrete stochastic description for low populated species. The

method is able to cope with multi-modal distributions appearing in

multi-stable systems. The method introduced in [22] exploits fluid

(limit) approximation techniques, enabling an alternative ap-

proach to CSL model checking of stochastic models. Despite the

computational efficiency, a shared disadvantage of all the

mentioned methods is that they rely on approximations applicable

only to models that include highly populated species. This is not

the case of, e.g., gene regulation dynamics.

Approaches based on Markov Chain Monte-Carlo sampling

and Bayesian inference [23–25] can be extended to sample-based

approximation of the evaluation function, but at the price of

undesired inaccuracy and high computational demands [26,27].

Compared to these methods, our method provides the upper and

lower bounds of the result, which makes it more reliable and

precise but at the price of even higher computational demands.

The most relevant contribution to this domain has been recently

introduced by Bartocci et al. [28]. To the best of our knowledge,

this is the only related work addressing robustness of stochastic

biochemical systems. The work is based on the idea of directly

adapting the concept of behaviour-oriented robustness to

stochastic models. Individual simulated trajectories of the CTMC

are locally analysed with respect to a formula of Signal Temporal

Logic (STL), a linear-time temporal logic interpreted on

simulated time sequences. For each simulated trajectory, the

so-called satisfaction degree representing the distance from being

(un)satisfied is computed, thus resulting into a randomly sampled

distribution of the satisfaction degree. This distribution thus gives

another source of information in addition to the probability of

formula satisfaction (percentage of valid trajectories in the

sampled set). In comparison, our method directly (and exactly)

computes the probability of formula satisfaction for a different

kind of temporal logic – the branching-time CSL logic. This

allows to express more intricate properties that require branching

time, e.g., multi-stability. On the other hand, our method is

based on transient analysis, not allowing to compute the local

analysis of individual trajectories, i.e., to obtain the satisfaction

degree would require non-trivial elaboration at the level of

numerical algorithms.

Figure 5. Model of regulation of the mammalian cell cycle. The
core gene regulatory module controlling the G1=S-phase transition in
the cell cycle of mammalian cells [45] is depicted in the upper part. The
retinoblastoma protein pRB (A) [HumanCyc:HS06650] interacts with the
retinoblastoma-binding transcription factor E2F1 (B) [Human-
Cyc:HS02261]. In high concentration levels, the E2F1 protein activates
the G1=S transition mechanism. On the other hand, low concentration
of E2F1 prevents committing to S-phase. Positive autoregulation of
E2F1 causes bistability. Stochastic mass action reformulation of the
G1=S regulatory circuit is shown in the table below. The gene
regulation is modelled by means of a set of second-order reactions
simplifying the elementary processes behind transcription. In particular,
the model includes the interactions among transcription factors (A, B
stand for pRB and E2F1 , respectively) and respective genes and protein
production/degradation reactions. The interactions are represented by
reversible TF-gene binding reactions in the second row of the table
(genes are denoted by small letters). Individual protein production
reactions controlled by these interactions are represented by the
irreversible gene expression reactions in the first row of the table.
Protein degradation is modelled as spontaneous by means of first-order
reactions. Kinetic coefficients are set only approximately provided that
they are considered equal for all instances of a particular process
(binding, dissociation, promoted protein production). The only excep-
tion is the spontaneous (basal) expression of b which is set to a low rate.
This mimics the fact that E2F1 is only rapidly produced under the
circumstances of self-activation [9]. Degradation parameters are left
unspecified.
doi:10.1371/journal.pone.0094553.g005
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In the domain of ODE models, there exist several analytic

methods for effective analysis under parameter uncertainty. They

build on the static analysis (stoichiometric analysis, flux balance

analysis) as well as dynamic numerical methods (simulation,

monitoring by temporal formulae, sensitivity analysis) implement-

ed in tools (e.g. [29–31]). Robustness analysis with respect to

functionality specified in terms of temporal formulae has been

recently introduced [32,33]. There exist two major approaches of

defining and analysing robustness. If only the parameters of the

model are perturbed, we speak of a behaviour-oriented approach to

robustness. This approach has been explored by Fainekos and

Pappas [32], further extended by A. Donzé et al. [34] and

implemented in the toolbox Breach [35]. Another option could be

to perturb the model structure, i.e., the reaction topology, as done

in gene knock-outs. Such changes are in principle discrete and the

problem of robustness computation for such perturbations could

be reduced to solving many instances of the same problem for each

topology. However, identifying model behaviour shared among

individual perturbations can lead to more efficient analysis [36].

Yet another way to look at perturbations is from the perspective

of property uncertainty. If the system is considered fixed and all

parameters exactly known, the uncertainty then lies in the

property of interest. For a specific property such as ‘‘The

concentration of X repeatedly rises above 10 and drops below 5

within the first 20 minutes’’, where all three numerical constants

can be altered, we explore how much would they have to be

altered in order to affect the property’s validity in the given model.

This approach has been adopted for ODEs by F. Fages et al. [33]

and implemented in the tool BIOCHAM [31]. When only the

parameters of the property are perturbed, it is the case of a property-

oriented approach to robustness.

A specific emphasis has been also given to the analysis of

stochastic noise in deterministic dynamical systems modelled in

terms of ODE [10] or discrete-time difference equations [37]. The

main motivation is the robust design of synthetic biological

networks that can ensure robust implementation of desired

features at the level of cell regulatory mechanisms and signalling

pathways. The considered models do not incorporate stochasticity

at the level of molecular dynamics but only at the level of

parameter uncertainty. The approach allows to analyse robustness

of stochastically fluctuating parameters analytically. However, the

stochasticity of biochemical interactions is completely neglected,

which implies that those methods do not consider intrinsic

molecular noise. On the contrary, the method presented in this

paper inherently and rigorously targets parameter uncertainty in

stochastic dynamics. As shown in the second case study, the results

give us detailed insights into robustness of stochastic dynamics.

Such a level of detail cannot be achieved with deterministic

models.

Methods

Methodology Overview
The framework for robustness analysis implements a workflow

that is briefly summarised in Figure 1. The following objects make

the input of the workflow:

N Stochastic kinetic model. A finite state model (with

semantics given by CTMC) defined by a set of chemical

Figure 6. Results of robustness analysis for hypothesis (1) using the until operator. Hypothesis (1) requires stabilisation of E2F1 in the low
concentration mode (Bv3). A CSL formula with the until operator is used in this case. Each of the curves represents the evaluation function over cA

degradation obtained for a particular setting of cB. More precisely, the horizontal axis shows the perturbation of pRB degradation rate and the vertical
axis shows the probability of the hypothesis to be satisfied. In the upper left corner, robustness values are shown for each of the curves. The values
are displayed with the absolute error quantifying the precision of the approximate method. For comparison, the values are computed also on piece-
wise affine approximations of the evaluation function. It can be seen that the robustness values are small which is due to the fact that fluctuations of
molecular numbers cause frequent crossing of the required bound in the considered time horizon.
doi:10.1371/journal.pone.0094553.g006
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species participating in a set of chemical reactions (each species

has a bound specifying its maximal population)

N Parameter perturbation. A perturbation space defined by

a Cartesian product of uncertain stochastic rate constants

(given as intervals with minimal and maximal values) and

initial conditions of the system (given as a set of states

representing initial populations of particular species)

N Quantitative hypothesis about the system. Stochastic

temporal property formalised using the bounded time

fragment of CSL extended with rewards and post-processing

functions that is interpreted over the paths and states of

CTMC.

The procedure of robustness analysis considers the given CTMC C
that is explored with respect to the CSL formula W over the space

of perturbations P. The perturbation space can be discrete but still

very large or continuous and thus infinite. The central goal of the

procedure is to efficiently approximate the evaluation function

DCW : P?R§0, which for each parameter point (parameterisation)

p[P returns the quantitative model checking result for the

respective CTMC C (built for the parameterisation p) and the

given property W. Depending on the property W, the value DCW(p)

represents the probability, the expected reward or the value of a

post-processing function corresponding to the parameterisation p.

The approximation of the evaluation function DCW is the main

output of the framework. It is further processed in order to obtain

a single aggregated value that characterises the robustness degree of

the model with respect to the perturbations P and the property W.

To effectively approximate the function DCW, we employ the min-

max approximation method recently published in [8]. The

method guarantees upper and lower bounds of the function DCW
without neglecting any sharp changes or discontinuities. This

method exploits numerical techniques for probabilistic model

checking, can provide arbitrary degree of precision, and thus can

be considered as an orthogonal approach to the parameter

sampling and adaptive grid refinement embedded within statistical

techniques.

The framework extends the min-max approximation to a more

general class of stochastic biochemical models (i.e., incorporation

of stochastic Hill kinetics) and a more general class of quantitative

properties (i.e., including post-processing functions), and allows us

to compute the robustness degree of such systems. In our

framework we provide the user not only a single value

characterising the robustness of the system but also the landscape

visualisation of the evaluation function.

In the next subsections, we describe all the components of the

framework in detail.

Model
The formalism used to model a biochemical system is essential,

since it not only dictates the possible behaviours that may or may

not be captured, but also determines the means of detecting them.

ODEs enable the study of large ensembles of molecules in a

population, since they abstract from individualistic properties of

each molecule, such as position or its stochastic behaviour, and

take only concentrations of each species as its variables. Stochastic

Figure 7. Results of robustness analysis for hypothesis (1) using the reward operator. Hypothesis (1) requires stabilisation of E2F1 in the
low concentration mode (Bv3). A CSL formula with cumulative reward operator is used in this case. Each of the curves represents the evaluation
function over cA degradation obtained for a particular setting of cB. More precisely, the horizontal axis shows the perturbation of pRB degradation
rate and the vertical axis shows the probability of the hypothesis to be satisfied. In the upper left corner, robustness values are shown for each of the
curves. The values are displayed with the absolute error quantifying the precision of the approximate method. For comparison, the values are
computed also on piece-wise affine approximations of the evaluation function. It can be seen that the robustness values change rapidly with
different settings of cB. This observation goes with the fact that with faster degradation of E2F1 there is a higher probability that the positively self-
regulated protein is locked in the stable mode of no production. The decrease of the value with increasing cA is due to the weakening effect of
inhibition by pRB.
doi:10.1371/journal.pone.0094553.g007
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models such as CTMCs abstract from positions of molecules but

maintain their individual interactions. Even more detailed models

such as Brownian dynamics, which keep track of positions but

abstract from the geometry and orientation of each molecule,

could be used. However, as the amount of information about each

individual molecule increases, the computational complexity of

proving that some property holds over all behaviours of a model

becomes quickly infeasible even for small models.

In our framework we focus on stochastic biochemical systems

that can be formalised as a finite state systemM defined by a set of

N chemical species in a well-stirred volume with fixed size and fixed

temperature participating in M chemical reactions. The number Xi of

molecules of each species Li has a specific bound and each

reaction is of the form u1L1z . . . zuN LN?v1L1z . . . zvNLN

where ui,vi[N0 represent stoichiometric coefficients.

A state of a system in time t is the vector

X(t)~(X1(t),X2(t), . . . ,XN (t)). When a single reaction with index

r[f1, . . . ,Mg with vectors of stoichiometric coefficients Ur and Vr

occurs the state changes from X to X’~X{UrzVr, which we

denote as X?
r

X’. For such reaction to happen in a state X all

reactants have to be in sufficient numbers and the state X’ must

preserve all species bounds. The reachable state space ofM, denoted

as S, is the set of all states reachable by a finite sequence of

reactions from an initial state X0. The set of indices of all reactions

changing the state Xi to the state Xj is denoted as

reac(Xi,Xj)~frDXi ?
r

Xjg. Henceforward, reactions will be re-

ferred directly by their indices.

According to [5,13] the behaviour of a stochastic systemM can

be described by the CTMC C~(S,X0,R) where the transition

matrix R(Xi,Xj) gives the probability of a transition from Xi to Xj .

Formally, the transition matrix R is defined as:

R(Xi,Xj) ~
def X

r[reac(Xi ,Xj )

fr(kr,Xi)

where fr is a stochastic rate function and kr is a vector of all numerical

parameters occurring in fr such as a stochastic rate constant kr,

stoichiometry exponents, Hill coefficients etc.

In the case of mass action kinetics, the stochastic rate function

has the simple form of a polynomial of reacting species

populations. That is fr(kr,Xi)~kr
:Cr,i where

Cr,i ~
def P

N

l~1

Xi,l

ul

� �
corresponds to the population dependent

term such that Xi,l is the lth component of the state Xi and ul is the

stoichiometric coefficient of the reactant Ll in reaction r.

However, sometimes the mass action kinetics is not sufficient,

especially, when the reactions are not elementary but rather form

an abstraction of several reactions with unknown precise topology

(e.g., gene transcription) or if including all elementary reactions

would cause the analysis to be computationally infeasible. In such

cases, the dynamics is typically approximated by Hill functions

[38], a quasi-steady-state approximation [39] of the law of mass

conservation. For the sake of simplicity, we will further assume

that for each reaction r the vector kr is one-dimensional and thus

kr~kr, the proposed methods can however be directly used also

Figure 8. Results of robustness analysis for hypothesis 2. Hypothesis (2) requires stabilisation of E2F1 in the high concentration mode (Bw7).
A CSL formula with cumulative reward operator is employed. Each of the curves represents the evaluation function over cA degradation obtained for
a particular setting of cB. The horizontal axis shows the perturbation of pRB degradation rate and the vertical axis shows the probability of the
hypothesis to be satisfied. In the upper left corner, robustness values are shown for each of the curves. The values are displayed with the absolute
error quantifying the precision of the approximate method. For comparison, the values are computed also on piece-wise affine approximations of the
evaluation function. It can be seen that the robustness values change rapidly with different settings of cB . This observation goes with the fact that
with faster degradation of E2F1 there is a lower probability that the positively self-regulated protein is locked in the stable mode of no production. In
particular, the high stable mode is preferred for lower values of cB. The increase of the value with increasing cA is due to the weakening effect of
inhibition by pRB.
doi:10.1371/journal.pone.0094553.g008
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for multi-dimensional vectors of constants. To comply with the

standard CTMC notation, states Xi[S will be henceforward

denoted as si.

The probability of a transition from state si to sj occurring

within t time units is 1{e{R(si ,sj ) , if such a transition cannot occur

then R(si,sj)~0. The time before any transition from si occurs is

exponentially distributed with an overall exit rate E(si) defined as

E(si)~
P

sj[S R(si,sj). A path v of CTMC C is a non-empty

sequence v~s0,t0,s1,t1 . . . where Vi,j§0: R(si,sj)w0 and ti[R§0

is the amount of time spent in the state si for all i§0. For all s[S

we denote by PathC(s) the set of all paths of C starting in state s.

There exists the unique probability measure on PathC(s) defined,

e.g., in [40]. Intuitively, any subset of PathC(s) has a unique

probability that can be effectively computed. For the CTMC C the

transient state distribution pC,s,t gives for all states s’[S the

transient probability pC,s,t(s’) defined as the probability, of being in

state s’ at the finite time t, having started in the state s.

Perturbations
In our approach we have focused on the behaviour-oriented

approach to the robustness of stochastic systems and thus we will

now define a set of perturbed stochastic systems and their CTMCs.

Let each stochastic rate constant kr have a value interval ½k\
r ,kr �

with minimal and maximal bounds expressing an uncertainty range or

variance of its value. A perturbation space P induced by a set of

stochastic rate constants kr is defined as the Cartesian product of

the individual value intervals P~P
M

r~1 ½k\
r ,kr �. A single

perturbation point p[P is an M-tuple holding a single value of each

rate constant, i.e., p~(k1p
, . . . ,kMp

).

A stochastic system Mp with its stochastic rate constants set to

the point p[P is represented by a CTMC Cp~(S,s0,Rp), where

the transition matrix Rp is defined as:

Rp(si,sj) ~
def X

r[reac(si ,sj )

fr(krp ,si)

A set of parameterised CTMCs induced by the perturbation space

P is defined as C~fCpDp[Pg.
Additionally, we consider the perturbation of initial conditions

of the stochastic system that are represented by different initial

states of the corresponding CTMC. In this case we extend the

perturbation space such that a single perturbation point

p[Pe~I|P where I(S is an M+1-tuple holding a single value

of an initial state and a single value of each rate constant, i.e.,

p~(sp,k1p
, . . . ,kMp

) and CTMC Cp~(S,sp,Rp).

Functionality
To be able to automatically analyse a system’s function A under

scrutiny there must be a formal way of expressing A. A function of

a system in the biological sense is any intuitively understandable

behaviour such as response, homoeostasis, reproduction, respira-

tion, or growth. It can be a high level concept such as chemotaxis

as well as a low level one, e.g., reaching a state with a given

number of molecules of a specific species.

The inspected function can usually be described by a property

that is understood as an abstraction of a system’s behaviour

expressed in some temporal logic and given as a formula of that

Figure 9. Landscape visualisation for hypothesis (2) and several selected initial states. The landscape visualisation of hypothesis (2)
(stabilisation of E2F1 in the high concentration mode Bw7) is shown for several selected initial states of the whole state space. A CSL formula with
cumulative reward operator is employed. Each of the curves represents the evaluation function over cA degradation obtained for a particular initial
state and cB set to 0.05. The legend shows the amount of individual species in particular initial states and the robustness of the hypothesis is given
together with the absolute error. The results obtained by piece-wise affine approximation are also shown. It can be seen that the hypothesis is only
negligibly sensitive to initial conditions. Especially, only states with zero initial concentration of E2F1 cause E2F1 to attain low molecular numbers,
thus lowering the robustness of the hypothesis. The grey vertical line shows the small perturbation in cA which is further explored in detail in
Figure 10.
doi:10.1371/journal.pone.0094553.g009
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logic. Unlike the intuitive concept of a biological function

mentioned above, a property may be formally verified over a

formal model of a system and proven to hold or to be violated.

Since the concept of robustness builds on the notion of a function

that can be measured, we focus on a quantitative logic for

stochastic systems. We use continuous stochastic logic (CSL) [6,41]

extended with reward operators [7]. In our framework we focus

only on the bounded time fragment of CSL that allows us to speak only

about behaviour within a finite time horizon. For most cases of

biochemical stochastic systems, such as intracellular reaction

cascades or multi-cellular signalling, the bounded time restriction

is adequate since a typical behaviour is recognisable within finite

time intervals [42].

Formal syntax and semantics of the bounded time fragment of

CSL with rewards are briefly presented in Text S1 (Section I).

Intuitively, a CSL formula consists of temporal operators allowing to

reason about path propositions qualified in terms of time, and

probabilistic operators allowing to quantify required probability

thresholds for particular path propositions. Reward operators

introduce cost functions that enable to express properties such as

the probability of a system being in the specified set of states over a

time interval or the probability that a particular reaction has

occurred. Generally, reward operators allow to express properties

specifying the expected value of an expression defined using the

cost functions.

There exist biologically relevant properties that cannot be

directly expressed using reward operators. As an example we

can mention the property that is analysed in the second case

study, i.e., degree of the population noise given by a mean

quadratic deviation (mqd) of the population probability distribu-

tion of a species at a given time. Reward operators cannot be

used in this case since they require a priori known cost

functions. Therefore, we employ a class of post-processing

functions to further broaden the scope of behaviour that can

be formally captured. The key idea is to replace a cost function

by a post-processing function that aggregates the transient state

distribution at the given finite time. A formal concept of CSL

with post-processing functions is also presented in Text S1.

To demonstrate that the bounded time fragment of CSL with

rewards and post-processing functions can adequately capture

relevant biological behaviour and thus can be successfully used in

the robustness analysis of stochastic biochemical systems, we list

several formalisations of such behaviours:

N Stochastic reachability. §0:8½ ½5,10�(A§3)� expresses the

qualitative property ‘‘The probability that the population of A

reaches 3 between 5 and 10 time units is at least 80%’’.

Another example of a stochastic reachability property is shown

in Figure 2.

N Stochastic stability. ~?½ ½0,5�(A§1 ^ Aƒ3)� represents

the quantitative property ‘‘What is the probability that the

Figure 10. Analysis of hypothesis (2) for all initial states. Hypothesis (2) (stabilisation of E2F1 in the high concentration mode Bw7) is
computed and visualised for all initial states in the considered perturbation space (cA,cB)[½0:10168,0:10555�|½0:05�. Because we assume at most a
single molecule of DNA in the system, state variables denoting genes and gene-protein complexes have a binary domain. There are only two
variables having a larger domain (0–10), in particular, these are the proteins pRB and E2F1 . Therefore each of the (binary) combinations is visualised
for the entire domain of A and B in a separate box. The colour intensity of each box in the grid shows the upper bound of the cumulative reward
evaluated for the respective initial state. It can be seen that the hypothesis is mostly insensitive to the selection of initial states. Only the initial zero
level of E2F1 (B, bB, aB) causes a decrease of the resulting value. States selected in Figure 9 are highlighted in red.
doi:10.1371/journal.pone.0094553.g010
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population of A remains between 1 and 3 during the first

5 time units?’’

N Stochastic temporal ordering of events. v0:2½(Aƒ

2) ½2,3�
§0:95½(2vAƒ5) ½0,10�(Aw5)�� expresses the qua-

litative stochastic version of the following temporal pattern:

‘‘Species A is initially kept below 2 until it reaches 5 and finally

exceeds 5.’’ The formula quantifies both the time constrains of the

events and the probability that the events occur. It expresses that

’’The probability that the system has the following probabilistic

temporal pattern is less than 20%: the population of A is initially

kept below 2 until the system between 2 and 3 time units

reaches the states satisfying the subformula §0:95½(2vAƒ

5) ½0,10�(Aw5)��. ‘‘The subformula specifies the states where

’’The probability that the population of A remains greater than 2

and less or equal 5 until it exceeds 5 within 10 time units, is

greater than 95%.’’

N Cumulative reward property. ~?½ ƒ100�, where

Vs[S: r(s)~1 iff 0ƒAƒ3 in s, captures the quantitative

property ‘‘What is the overall time spent in states with

population of A between 0 and 3 within the first 100 time

units’’, which can also be understood as ‘‘What is the

probability of the system being in a state with population of

A between 0 and 3 within the first 100 time units’’.

N Noise as mean quadratic deviation. Ev10½I~100�, where

the post-processing function is defined as Post(p)~P
s[S Ds(A){mean(p,A)D2:p(s), s(A) gives the population of

A in state s and mean(p,A) is the mean of the distribution p
defined as mean(p,A)~

P
s[S s(A):p(s). This qualitative

property states that ‘‘The mean quadratic deviation of the

distribution of species A at time instant t~100 must be less

than 10’’.

We say that a formula W has qualitative semantics if the topmost

operator of W specifies a threshold *r (e.g., a qualitative property

Pv0:2½. . .�), and quantitative semantics, if the threshold is not

specified (e.g., quantitative property P~?½. . .�). For a given

CTMC C and a CSL formula W with the qualitative semantic,

the result of the model-checking procedure has the form of a boolean

yes/no answer. If W has the qualitative semantics, the result has

the form of a numerical value corresponding to the probability,

the expected reward, or the post-processing function. As we will

show the quantitative semantics is more suitable for robustness

analysis.

An example including a simple one-dimensional model with two

reactions (production and degradation), its CTMC representation,

and a quantitative CSL formula, is depicted in Figure 2. The

perturbation space of the model is given by the interval of the

production rate. Figure 2 also depicts three transient distributions

for three different values of the production rate and the resulting

probabilities for the formula.

Robustness Degree
Let us recall the general definition of robustness as given by

Kitano [2] to make more explicit its possible intepretations and

also to show how we propose to use it in the context of stochastic

systems.

RMA,P~

ð
P

y(p)DMA (p)dp

DMA (p)~
0 p[B5P

fA(p)=fA(0) p[P\B

(

Functionality Evaluation
Kitano proposed that the evaluation function DMA (p), stating

how much the functionality A is preserved in perturbation p,

should be defined using a subspace B of all perturbations, where

the system’s function is completely missing and the remaining P\B
where the function’s viability is somehow altered. This definition is

Figure 11. Model of a two-component signalling pathway. (A)
Basic topology of the two-component signalling pathway. (B) Modified
topology of the two-component signalling pathway, additionally,
histidine kinase H catalyses dephosporylation of the response regulator
R. (C) Reactions specifying the biochemical model of the two
considered topologies of the two-component signalling pathway.
Phosphorylation of the first component H catalysed by the input signal
S and phosphorylation of the second component R are shared by both
topologies, the only difference is in the second component’s
dephophorylation. Additionally, we consider unregulated proteosynth-
esis/degradation reactions for both topology variants. Reaction
topology in (A) and (B) was created using CellDesigner [54].
doi:10.1371/journal.pone.0094553.g011
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meaningful, e.g., in cases where the perturbation would lead to a

system not having the considered function at all (speed of

reproduction of a dead cell) or in cases where a plain measurement

would provide a function’s value, though in reality the system

would lack the function (inside temperature during homoeostasis

experiment in conditions when an organism loses thermal control

and has temperature of the environment). These examples have in

common that the information about a system lacking its function is

provided from outside because if it could be deducible from the

system’s state alone, it could be incorporated into the evaluation

function DMA (p) itself.

For perturbations p[P\B where the system maintains its

function at least partially, Kitano proposes to express the

evaluation function DMA (p)~fA(p)=fA(0) relatively to the

ground (unperturbed) state fA(0). This is meaningful, e.g., for

naturally living systems where the ground state is measurable

and is considered as an optimal performance state. Such a

definition enables the comparison of some common property of

different species. For example, the reproduction rate for a

mouse and a sequoia tree with respect to perturbations of their

environment. If a mouse has 20 offsprings per year in the base

temperature and 22 offsprings for a 2 Kelvin rise, then the

evaluation function DMA (z2K)~22=20~1:1. While if a

sequoia has 1000 seedlings in the ground temperature

and 1200 for the 2 Kelvin rise then DMA (z2K)~

1200=1000~1:2.

The relativistic nature of Kitano’s definition allows to compare

robustness of otherwise incomparable organisms. In our example,

the sequoia is more robust to the single perturbation of

temperature by z2K than the considered species of mice.

On the other hand, in cases when no ground state is given, the

absolute value can provide more adequate measure of robustness.

In the next section we propose several different definitions of

robustness in stochastic systems providing both the absolute and the

relative interpretations.

Robustness in Stochastic Systems
Consider a stochastic system described by a CTMC

C~ S,s0,R,Lð Þ, perturbation space P and CSL formula W
formalising the system’s function A. Notice that the CTMC

Cp~(S,s0,Rp) represents the system with stochastic rate constants

set to the point p[P. In cases where the perturbation space P is

extended by initial conditions (i.e., a single perturbation point

p~(sp,k1p
, . . . ,kMp

)[Pe), the corresponding CTMC is defined as

Cp~(S,sp,Rp).

Let Eval(Cp,W) be an auxiliary function (formally defined in

Section III in Text S1 ) that returns the numerical value

representing the quantitative model-checking result for the

CTMC Cp and the formula W. It means, that the possible

threshold *r (where *[f§,w,ƒ,wg) in the top most operator

of W is ignored (i.e., it is treated as ~?). Given these specifications

the evaluation function DCW can be restated in several different

ways:

DCW(p)~
0 p[B5P _ Eval(Cp,W) 6*r

1 p[P\B ^ Eval(Cp,W)*r

�
ð1aÞ

DCW(p)~

0 p[B5P
Eval(Cp,W)

r
p[P\B ^ *[f§,wg

r
Eval(Cp,W)

p[P\B ^ *[fƒ,vg

8><
>: ð1bÞ

DCW(p)~
0 p[B5P

Eval(Cp,W) p[P\B

�
ð1cÞ

DCW(p)~
0 p[B5P

DEval(Cp,W){X D2 p[P\B

�
ð1dÞ

where X~agrfEval(Cp,W)DCp[Pg and agr[fmin,max,avgg. The

degree of robustness, further denoted as RCW,P, can be now defined

as the integral of the evaluation function DCW over the perturbation

space P:

Figure 12. Influence of state space truncation to mean quadratic deviation of a distribution. A simple birth death model is considered to
show the influence of different settings of the state space truncation on the measured noise evaluated in the form of a mean quadratic deviation
(mqd) of the state space distribution. The model has a single species X and two reactions 1 ?

sig(0:3,n)
X ,X ?

0:01
1 which stabilise the population around

an average of 30. For different values of the sigmoid coefficient n we can see different mqd values, the larger the n the smaller the noise. If X is
restricted to 25ƒXƒ35 the overall noise is smaller since the probability mass cannot spread to states placed further from the mean. In a less
restricted version with populations between 20 and 40 the noise is about 2:5| larger. If the sigmoid regulation is weak and the regulation is strong
then the difference in the amount of noise is less than 20%.
doi:10.1371/journal.pone.0094553.g012
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RCW,P ~
def
ð

P

y(p)DCW(p)dp

where y(p) is the probability of the perturbation p[P.

The first two definitions are possible for specifications where

the topmost operator of the formula W includes the threshold r.

In the first definition (1a) the evaluation function DCW(p) returns

a qualitative result, therefore robustness RCW,P specifies the

measure of all perturbations in P for which the property holds

in a strictly boolean sense – it is the fraction of P where the

property is valid. This definition can be used, e.g., in the

property W~P§0:8½F½0,5�(Xw300)�, which specifies that in 80%
of cases the population of X increases above 300 within 5

seconds. For this property and a model with a parameter

k[½0,10� the robustness gives us the fraction of the parametric

interval ½0,10� for which the model satisfies W.

Figure 13. Influence of genetic regulation on noise in model 1 and 2. In the upper part, the Rp noise in model 1 is computed over
perturbations of both sigmoid production constants nH and nR in ½3:0,4:0�|½3:0,4:0�. The upper and lower bounds on noise (mean quadratic
deviation of the resulting probability distribution projected onto populations of Rp) are recomputed into the form average + error, the average
values are shown on the left and errors are shown on the right. The densely subdivided subspaces around the value 3:1 are due to conservative over/
under approximations in the computation of the probability distribution in states where inflow and outflow of the probability mass is not strictly a
monotonous function over the given perturbation interval, thus the error is locally increased and the subspaces must be further divided to obtain the
required precision. In the lower part, the Rp noise in model 2 is computed. By comparing both results we can make two observations: a) Model 1 has
an overall lower noise and also the computation error, given the same level of refinement. b) In model 1 the results are symmetrical with respect to
perturbations in nH and nR, with nH having a slightly larger influence, but in model 2 the results are not symmetrical and nR has a larger influence.
However, we considered the difference negligible and combined both parameters into a single sigmoid production constant n.
doi:10.1371/journal.pone.0094553.g013
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In the second definition (1b) the evaluation function DCW(p)

returns the quantitative value that is relative to threshold r.

Therefore, robustness can be interpreted as the average relative

validity of the property over P. If r corresponds to the validity of W
in conditions considered natural for the inspected system M (i.e.,

to the unperturbed state) then this interpretation complies with the

original definition of Kitano. Let us consider the same property

WA and the same parametric space k[½0,10�. If for all values of k

the model has a 60% change that its behaviour will lead to a

population of X larger than 300 within 5 seconds than its

robustness is 0.6/0.8 = 0.75. If the probability is different in each k

then robustness gives us the average value with which our

expectations will be met.

The third definition (1c) is possible for specifications using the

quantitative semantics of formula W. Here robustness gives the

mean validity over all P, regardless of any probability threshold r.

This interpretation is convenient when there are no a priori

assumptions about the system’s expected behaviour.

Finally, to express the fact that the system behaviour

remains the same (with respect to the evaluation function)

across the space of perturbations, we introduce the fourth

definition (1d). It uses an aggregation function to compute a

mean value and expresses the variance from the mean. This

definition enables us to compare models which have the same

numerical values of robustness in the sense of definition (1c)

but which achieve the average value with very different

landscapes of evaluation function.

While the last three definitions require precise computation of

the probability value in every p[P, the first definition is amenable

to approximate solutions. In this case it suffices to ensure that the

probability is larger or smaller than r. In many cases it can be

achieved without computing the precise value and thus statistical

model checking techniques can be used efficiently. In both case

studies, we use definition (1c), since we do not consider any ground

unperturbed state. We assume B to be an empty set and expect the

lack of functionality A to be fully expressible in terms of the

property W.

Robustness Analysis Procedure
Having the definition of the evaluation function DCW we can

describe an effective method for computation of the robustness

degree RCW,P. Let us first consider the case where the perturbation

space P does not contain different initial states.

The evaluation of DCW(p) includes the computation of

Eval(Cp,W), i.e., the solution of standard CSL model checking

problem. Since the problem can be rather complex even for a

single perturbation point p, an explicit computation of the integral

over the whole space of perturbations is infeasible. Therefore, we

consider an approximation of the evaluation function DCW using the

upper bound DC
W,P, and the lower bound DCW,P,\ with respect to P

defined as:

Figure 14. Comparison of models by Rp noise robustness. Robustness Rp noise in both models has been computed with respect to
perturbations of signal S over five selected intervals of the input signal S[½2,3�|½6,7�|½10,11�|½14,15�|½19,20� and for three distinct levels of the
intrinsic noise in signalling component dynamics represented by sigmoid coefficient n[ 0:1,4:0,10:0f g. Perturbations were not computed over the
whole interval (S,n)[½2,20�|½0:1,10:0� due to high computational demands. From the computed values of individual refined subspaces as well as the
aggregated robustness values for each input signal interval we can see that for lower values of signal S (up-to 10), Model 2 embodies lower output
response noise than Model 1 (spontaneous dephosphorylation). While the output response noise in Model 1 tends to converge to values between 8
and 10, Model 2 exhibits a permanent (almost linear) increase in the output response noise over most of the studied portion of the perturbation
space. A super-linear increase of the noise is observed for strong input signals. Another interesting aspect is that, with increasing levels of gene
regulation given by sigmoid coefficient n, the overall noise in Rp decreases over the whole interval of signal values for Model 1 and most of the
interval for Model 2. However, there is an anomaly in Model 2 in the high signal region [19.0, 20.0], where with decreasing noise in R and H (see
Figure 15) the noise in Rp increases.
doi:10.1371/journal.pone.0094553.g014
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DCW,P, §max DCW(p)Dp[P
� �

DCW,P,\ƒmin DCW(p)Dp[P
� �

ð2Þ

This approximation is in most cases too course and thus we

use a finite decomposition of the perturbation space P into

perturbation subspaces P~P1| . . .|Pn. This approach

allows to effectively compute the upper bound RCW,P, and

lower bound RCW,P,\ of the robustness degree RCW,P in the

following way:

Figure 15. Noise in populations or H and R in both models. Noise in H (A) and R (B) in both models has been computed with respect to
perturbations of signal S over five selected intervals S[½2,3�|½6,7�|½10,11�|½14,15�|½19,20� and for three distinct levels of inherent production
noise represented by sigmoid coefficient n[ 0:1,4:0,10:0f g. We can see that in all cases, with increasing regulation by n, the intrinsic noise in the
dynamics of each of the signalling components decreases.
doi:10.1371/journal.pone.0094553.g015
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RCW,P, ~
Xn

i~1

jPij
jPj

:DCW,Pi,
RCW,P,\~

Xn

i~1

jPij
jPj

:DCW,P,\

RCW,P^
1

2
RCW,P, zRCW,P,\

� �
+ErrCW,P

ErrCW,P ~
1

2
RCW,P, {RCW,P,\

� �
ð3Þ

Let us now consider the case in which the perturbation space is

extended with initial states, i.e., Pe~I|P where I(S and P is

non-singular. For this case the integral defining robustness is

actually a finite sum of integrals:

RCW,Pe ~
def X

s[

1

D D

ð
p[P

DCW((s,p))dp~
1

D D

X
s[

RCW,fsg|P ð4Þ

Equations 3 and 4 valid only for a uniform distribution of the

perturbation probability y(p) over the whole space of perturba-

tions P and Pe, respectively. However, our approach can be

straightforwardly modified for non-uniform distributions.

Using (4), the robustness computation for perturbations

containing a single initial state can be easily extended to

perturbations containing different initial states. In Text S1 (Section

III) we show that for properties specified without post-processing

function the global model checking procedure (utilised in the

robustness computation) returns results for an arbitrary set of

initial states I(S with the same time complexity as for a single

state.

As we can see, the key step in our approach is to compute the

values DCW,P, and DCW,P,\ for the given CTMC C, the formula W

and the perturbation space P. In our framework we extend our

previous method called min-max approximation [8], thus allowing to

effectively approximate the evaluation function DCW(p). Intuitively,

for a formula W the min-max approximation computes the upper

and lower bounds of the function Eval(Cp,W) with respect to all

perturbation points p[P. Afterwards, these bounds are used to

obtain the values DCW,P, and DCW,P,\ such that Equation 2 is

satisfied.

Similarly as the standard CSL model-checking methods [40,43],

the min-max approximation reduces the model-checking problem

of a set of parameterised CTMCs to the computation of the upper

and lower bounds of a transient probability distribution in a finite

time. Remark that this reduction can be used only for the time

bounded fragment of CSL, which is our case. The key idea of the

min-max approximation is to replace the uniformisation (the

standard technique for transient analysis) by a novel technique

called parameterised uniformisation [8].

Parameterised Uniformisation and Min-Max
Approximation

The parameterised uniformisation is a novel modification of the

standard uniformisation [40], a widely used technique for transient

analysis of CTMCs (see Section II in Text S1 for more details). For

the given set of parameterised CTMCs C~fCpDp[Pg, the initial

state s0[S and time t[R§0, the parameterised uniformisation

returns vectors pC,s0,t and pC,s0,t
\ , such that for each state s’[S the

following holds:

p
C,s0,t

(s’)§maxfpCp ,s0,t(s’)DCp[Cg ^ p
C,s0,t

\ (s’)

ƒminfpCp,s0,t(s’)DCp[Cg

where pCp ,s0,t denotes the transient state distribution of CTMC Cp

Figure 16. High signal region in Model 2. A magnification of the high signal region in Model 2, where increasing levels of regulation by the
sigmoid coefficient n leads to a paradoxical increase of output response noise instead of a decrease. Even though the inaccuracy is large we consider
the trend to be strong and thus real.
doi:10.1371/journal.pone.0094553.g016
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in the time t. The key idea of the modification is to compute for

each state s’ the local maximum (minimum) of pCp,s,t(s’) over all

Cp[C with respect the current computation step of pCp ,s,t. It means

that only the maximal (minimal) values of predecessors of s’ from

the preceding step are considered. To obtain the local maximum

(minimum) of pCp,s,t(s’) we define a function returning for the

perturbation point p~(k1p , . . . ,kMp ) the difference of probability

mass inflow and outflow to/from state s. In [8] we have shown that

if all reactions are described by mass action kinetics the function is

monotonic with respect to any single perturbed stochastic rate

parameter kip . This allows us to efficiently identify p[P that

maximises (minimises) the value pCp,s,t(s’) and thus to obtain the

vectors p
C,s0,t

and p
C,s0,t

\ .

For more complex rate functions than those resulting from mass

action kinetics, the corresponding function does not have to be in

general monotonic over kip for all states s. This makes the

computation of local extremes more intricate, though still

tractable. In Text S1 (Section V) we describe a novel extension

of the parametric uniformisation allowing to analyse models with

more complex rate functions.

The aforementioned parameterised uniformisation can be

straightforwardly employed also for backward transient analysis

that is used for the global model checking procedure. For the given

set of states A and time t we can efficiently compute the vectors

tC,A,t and tC,A,t
\ such that for each state s[S the following holds:

tC,A,t(s)§maxftCp,A,t(s)DCp[Cg ^ tC,A,t
\ (s)

ƒminftCp,A,t(s)DCp[Cg

where tCp,A,t(s) denotes the probability that the set A is reached

from s at time t in the CTMC Cp.

The min-max approximation employs the results of the

parameterised uniformisation (i.e., the vectors pC,s0,t, pC,s0,t
\ tC,A,t

and tC,A,t
\ ) to approximate the largest set of states satisfying W, and the

smallest set of states satisfying W with respect to the space of

perturbations P. It computes the approximation SatC(W) and

Sat\C (W) such that

SatC(W))
[
Cp[C

SatCp (W) ^ Sat\C (W)(
\
Cp[C

SatCp (W),

where s[SatCp (W) iff s satisfies the formula W in CTMC Cp. To

obtain such approximations we extended the standard satisfaction

relation for CSL logic [8]. The sets SatC(W) and Sat\C (W) are

further used to compute the values DCW,P, and DCW,P,\. For more

details about the min-max approximation see Text S1 (Section IV)

and [8].

For a general class of post-processing functions the results of the

parameterised uniformisation cannot be directly used to compute

the values of DCW,P, and DCW,P,\ that would satisfy Equation 5,

since there is no guarantee about the projective properties of the

functions. Therefore, in Text S1 (Section V) we show how the

min-max approximation method can be extended for the post-

processing function defined as the mean quadratic deviation of a

probability distribution. This extension allows us to quantify and

analyse the noise in different variants of signalling pathways that

are studied in the second case study.

Accuracy of Min-Max Approximation and Perturbation
Space Decomposition

Our approach introduces an overall error, denoted as ErrCW,P,

given as

ErrCW,P~DCW,P, {DCW,P,\

The overall error is composed of two parts: 1) the inaccuracy

related to the min-max approximation of the evaluation function,

called approximation error and 2) the inaccuracy related to the

parameterised uniformisation, called uniformisation error. The

approximation error is given as

maxfDCW(p)Dp[Pg{minfDCW(p)Dp[Pg

The unformisation error is caused by the fact that the

parameterised uniformisation in general does not correspond to

standard uniformisation for any CTMC Cp[C. The reason is that

we consider a behaviour of a parameterised CTMC that has no

equivalent counterpart in any particular Cp. First, the parameters

(minimising/maximising the inspected value) are determined

locally and thus independently for each state. Second, the

parameters are determined independently for each computational

step. The uniformisation error is given as

(DCW,P, {maxfDCW(p)Dp[Pg)z(minfDCW(p)Dp[Pg{DCW,P,\):

Naturally, the overall error is equal to the sum of both errors.

Figure 3 illustrates both types of errors, where the approximation

and unification errors are depicted as the yellow and purple

rectangles, respectively.

We are not able to effectively distinguish the proportion of the

approximation error and the unification error nor to reduce the

unification error as such. Therefore, we employ a finite

decomposition of P into perturbation subspaces in order to refine

the min-max approximation of the evaluation function DCW over

the perturbation space P. Our aim is to effectively reduce the

overall error ErrCW,P to a user-specified absolute error bound, denoted

as P, such

that P~P1| . . .|Pn and each partial result satisfies the overall

error bound, i.e., V j : 1ƒjƒn : ErrCW,Pj
ƒ . Therefore, the

overall error equals to

ErrCW,P~
Xn

j~1

DPj D
DPD

DCW,Pj , {DCW,Pj ,\

� �
ƒ

Xn

j~1

DPj D
DPD

~ :

Figure 3 illustrates such a decomposition and demonstrates

convergence of the overall error ErrCW,P to 0, provided that the

evaluation function DCW over P is continuous. If the function is not

continuous and the discontinuity causes that the absolute error

bound cannot be achieved, a supplementary termination criterion

is applied. We provide a detail description of our decomposition

strategy with respect to the user specified absolute error bound in

Text S1 (Section VI).

The accuracy of the approximation can be further improved

using the piece-wise linear approximation (PLA). This concept is

illustrated in Figure 4. Since the spaces Pi and Piz1 have a
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common point p (in a general n dimensional perturbation space 2n

subspaces intersect in a single point p), we can use this to obtain a

more precise range of values for the value of the property W in p as

DCW,p, ~max DCW,Pi ,
Dp[Pi

n o
and DCW,p,\

~min DCW,Pi ,\Dp[Pi

n o
:

Under the assumption that the value of a property does not

change rapidly over sufficiently small subspaces Pi, the resulting

upper and lower bound can be computed from linear interpolation

of grid points p. The decision in which cases is such an assumption

acceptable is up to user, since there is in general no efficient way of

resolving this situation. In such a case the overall piece-wise linear

approximation will usually have a higher precision albeit without

the guarantee of upper and lower bounds.

Implementation
We delivered a prototype implementation of the framework for

the robustness analysis on top of the tool PRISM 4.0 [44]. This

tool provides an appropriate modelling and specification language.

Our implementation builds on the sparse engine that uses data

structures based on sparse matrices. They provide suitable

representation of models for time-efficient numerical computation.

In the case that a large number of perturbation subspaces is

required to obtain the desired accuracy of the approximation, the

sequential computation can be extremely time consuming.

However, our framework allows very efficient parallelisation,

since the computation of particular subspaces is independent and

thus can be executed in parallel. Therefore, the robustness analysis

can be significantly accelerated using high-performance parallel

hardware architectures.

Results

Gene Regulation of Mammalian Cell Cycle
We have applied the robustness analysis to the gene regulation

model published in [45], the regulatory network is shown in

Figure 5 (left). The model explains regulation of a transition

between early phases of the mammalian cell cycle. In particular, it

targets the transition from the control G1-phase to S-phase (the

synthesis phase). G1-phase makes an important checkpoint

controlled by a bistable regulatory circuit based on an interplay of

the retinoblastoma protein pRB, denoted by A (the so-called

tumour suppressor, HumanCyc:HS06650) and the retinoblasto-

ma-binding transcription factor E2F1, denoted by B (a central

regulator of a large set of human genes, HumanCyc:HS02261). In

high concentration levels, the E2F1 protein activates the G1/S
transition mechanism. On the other hand, a low concentration of

E2F1 prevents committing to S-phase.

Positive autoregulation of B causes bi-stability of its concentra-

tion depending on the parameters. Of special interest is the

degradation rate of A, cA. In [9] it is shown that for increasing cA

the low stable mode of B switches to the high stable mode. When

mitogenic stimulation increases under conditions of active growth,

rapid phosphorylation of A starts and makes the degradation of

unphosphorylated A stronger (the degradation rate cA increases).

This causes B to lock in the high stable mode implying the cell

cycle commits to S-phase. Since mitogenic stimulation influences

the degradation rate of A, our goal is to study the population

distribution around the low and high steady state and to explore

the effect of cA by means of the evaluation function.

It is necessary to note that the original ODE model in [9] has

been formalised by means of Hill kinetics representing the

cooperative action of transcription factor molecules. Since Hill

kinetics cannot be directly transferred to stochastic modelling

[46,47], we have reformulated the model in the framework of

stochastic mass action kinetics [5]. The resulting reactions are

shown in Figure 5 (right). Since the detailed knowledge of

elementary chemical reactions occurring in the process of

transcription and translation is incomplete, we use the simplified

form as suggested in [4]. In the minimalist setting, the

reformulation requires addition of rate parameters describing the

transcription factor-gene promoter interaction while neglecting

cooperativeness of transcription factors activity. Our parameter-

isation is based on time-scale orders known for the individual

processes [48] (parameters considered in s{1). Moreover, we

assume the numbers of A and B are bounded by 10 molecules.

Correctness of the upper bounds for A and B was validated by

observing a thousand independent stochastic simulations. We

consider minimal population number distinguishing the two stable

modes. All other species are bounded by the initial number of

DNA molecules (genes a and b), which is conserved and set to 1.

The corresponding CTMC has 1078 states and 5919 transitions.

We consider two hypotheses: (1) stabilisation in the low mode

with Bv3, (2) stabilisation in the high mode with Bw7. Both

hypotheses are expressed within the time horizon of 1000 seconds,

reflecting the time scale of gene regulation response. According to

[9], we consider the perturbation space cA[½0:005,0:5�. For both

hypotheses we consider three different settings of cB: cB~0:05,

cB~0:10, and cB~0:15.

We employ two alternative CSL formulations to express the

hypothesis (1). First, we express the property of being inside the

given bound during the time interval I~½500,1000� using the

globally operator: P~?½GI (Bv3)�. The interval starts from 500

seconds in order to avoid the initial fluctuation region and let the

system stabilise. The resulting landscape visualisation is depicted in

Figure 6, together with the robustness values computed for

individual cases. Since the stochastic noise causes molecules to

repeatedly escape the requested bound, the resulting probability is

significantly lower than expected. Namely, in the case cB~0:05,

the resulting probability is close to 0 for almost all considered

parameter values implying very small robustness. Increasing the B

degradation rate causes an observable increase in robustness.

In order to prevent fluctuations from affecting the result, we use

a cumulative reward property to capture the fraction of time the

system has the required number of molecules within the time

interval ½0,1000�: R~?½Cƒt�(Bv3), where t~1000 and

R~?½Cƒt�(B*X ) denotes that state reward r is defined such

that Vs[S: r(s)~1 iff B*X in s. The resulting landscape

visualisation is shown in Figure 7. Here the effect on the increase

of robustness value with respect to increasing cB is significantly

stronger.

After normalising the robustness values, we can observe that the

model is significantly more robust with respect to the cumulative

reward-based formulation of the hypothesis. This goes with the

fact that the reward property neglects the frequent fluctuations in

the given time horizon.

When focusing on the phenomenon of bistability, we can

conclude that the most significant variance in the molecule

population with respect to the two stable modes is observed in the

range cA~½0:15,0:3� with cB~0:10. Here the distribution of the

behaviour targeting the low and high mode is diversified nearly

uniformly (especially for cA~0:2). Note that in this case there is a

significant amount of behaviour (around 40%) not converging to

either of the two modes.
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To encode the hypothesis 2 we employ the reward-based

formulation: R~?½Cƒt�(Bw7). The time interval is set to be the

same as in the previous case (t~1000). The resulting landscape

visualisations for individual settings of cB are depicted in Figure 8.

It can be observed that the effect of cB is now inverse, which goes

with the fact that higher rate of E2F1 degradation causes the rapid

dynamics of the protein and decreases the amenability of the cell

to commit to S-phase (by making the hypothesis 1 more robust

than hypothesis 2).

An interesting observation resulting from the analysis is that the

selection of the initial state has only a negligible impact on the

result. This is exploited in Figure 9 where we have selected 11

states uniformly distributed throughout the state space. Although

low initial numbers of B slightly decrease robustness of hypothesis

(2), the difference is not very big.

More detailed insight can be inferred from Figure 10, where the

evaluation of hypothesis (2) is exploited for a small perturbation of

cA with respect to the entire initial state space. The considered

perturbation is highlighted in Figure 9 by the grey vertical line.

The colour intensity of the grid shows the upper bound of the

cumulative reward evaluated for the respective initial state. It can

be seen that the hypothesis is in most cases insensitive to the

selection of initial states. Only the initial zero level of B causes a

decrease of the resulting value. Moreover, this happens (naturally)

just in two kinds of states: (i) no molecule of B is bound to any of

the genes, i.e., the self-activation of b is inactive and the expression

of b occurs in the spontaneous mode having a low rate 0.05; (ii) a

molecule of A is bound to b thus imposing the inhibition on b and

causing the same scenario.

Robustness of Two-Component Signalling Systems
Response

Signalling pathways make the main interface between cells and

their environment. Their main role is to monitor biochemical

conditions outside the cell and to transfer this information into the

internal logical circuits (gene regulation) of the cell. Since signal

processing is carried out by several dedicated protein complexes

(signalling components), it is naturally amenable to intrinsic noise

in these protein populations caused by stochasticity of transcrip-

tion/translation processes. Robust input-output signal mapping is

crucial for cell functionality. Many models and experimental

studies have been conducted attempting to explain mechanisms of

robust signal processing in procaryotic cells, e.g., [49,50].

In order to construct robust signalling circuits in synthetically

modified procaryotic cells, Steuer et al. [10] has suggested and

analysed a modification of a well-studied two-component signal-

ling pathway that is insensitive to signalling components concen-

tration fluctuations. The study was conducted using a simplified

model consisting of the two signalling components each considered

in both phosphorylated and unphosphorylated forms. The first

component, the histidine kinase H, is a membrane-bound receptor

phosphorylated by an external signalling ligand S. In its

phosphorylated form Hp, the histidine kinase transfers the

phospho-group onto the second component – the response

regulator R. That way it activates the response regulator by

transforming it into the phosphorylated form Rp, which is

diffusible and functions as the internal signal for the cell. The

basic topology of the pathway is depicted in Figure 11A. The

modification suggested by Steuer et al. is depicted in Figure 11B.

The difference is in the addition of catalytic activation of Rp

dephosphorylation by the unphosphorylated histidine kinase H. In

[10] it has been rigorously proven that under the deterministic

setting this modification leads to globally robust steady-state

response of the signalling pathway, which is not achievable with

the basic topology.

We reformulate the model in the stochastic setting and employ

our method to provide detailed analysis of the input-output signal

response under fluctuations in population of both signalling

components. In contrast to [10], where the average steady-state

population is analysed with respect to fluctuations in signalling

components, our analysis refines the steady population in terms of

distributions. That way we obtain for a stable input signal a

detailed view of distribution of the output response. In particular,

instead of studying the effect of perturbations on the average

population, we see how perturbations affect the distribution, i.e.,

the variance (fluctuation) in the output response. That way the

stochastic framework gives a more detailed insight into the input-

output signal response mechanism.

The biochemical model of both topology variants is given in

Figure 11C. The input signal S is considered to be fixed and

therefore it makes a constant parameter of the model. The

signalling components in both phosphorylated and unphosphory-

lated forms make the model variables H, Hp, R, and Rp.

Depending on which topology is chosen, the original determin-

istic model [10] exhibits different relationships between the steady-

state concentrations of the input signal S and the output signal Rp:

Rp steady{state in model 1 Rp steady{state in model 2

½Rp�~ k1

k31
½S�½H� ½Rp�~ k1

k32
½S�

In particular, it can be seen that the steady-state concentration

of the output signal [Rp] in model 1 is affected not only by the

input signal S but also by the number of unphosphorylated

receptors H, which can be interpreted in such a way that the

concentration of the signalling components should be kept stable

in order to obtain a robust output. This is, however, not an issue in

model 2 where Rp depends only on S. Since the steady-state

analysis has been carried out under the deterministic setting

additionally imposing assumptions of conserved total amounts of

H+Hp and R+Rp, it is appropriate only for high molecular

populations.

The question we want to answer is ‘‘Is there a difference in the

way the two models handle noise (fluctuations) for low molecular

numbers of signalling components?’’ In such conditions, popula-

tions of H+Hp and R+Rp cannot be considered conserved, since

the proteins are subject to degradation and production. Produc-

tion of proteins from genes, as well as degradation, is inherently

noisy as demonstrated in the previous case study. Different levels

of noise can be affected by, e.g., regulatory feedback loops or

varying numbers of gene copies. Even for a noiseless output signal

S these internal fluctuations of protein concentrations transfer

noise to Rp. We formalise our question in terms of the CSL

property E~?½I~t�, which asks for the value of a post-processing

function in a future time t, where the post-processing function is

defined as the mean quadratic deviation of the distribution of Rp.

For the model to have low numbers of molecules exhibiting

stochastic fluctuations and to enable responses to varying levels of

S, we have chosen kp~0:3 molecules {1 and kd~0:01s{1, which

leads to an average total population of 30 molecules for both

HzHp and RzRp. To make the analysis straightforward we

assume the same speed of degradation of phosphorylated and

unphosphorylated variants of each protein.
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To reduce the size of the state space we have truncated total

populations to 25ƒHzHpƒ35 and 25ƒRzRpƒ35, which

leads to 116281 states in total. The initial state is considered with

populations s0~(H~30,Hp~0,R~30,Rp~0). The state space

reduction has a significant impact on the measured absolute values

of noise but conserves general trends as is shown in Figure 12.

In order to control fluctuations in protein production we extend

our model with two populations of genes, one for H and one for R,

respectively, and for each of the genes we introduce an

autoregulatory negative feedback loop via binding the proteins

to their corresponding genes. That way we restrict the protein

production. By modifying the number of gene copies in the cell

and the rate of protein-gene binding, we are able to regulate the

overall noise in the transcription. This approach, however,

significantly increases the state space size because it introduces

new variables representing genes and protein-gene complexes. To

make the analysis feasible, we abstract from details of the

underlying autoregulatory mechanism and model it using a

sigmoid production function, which mimics the desired behaviour

accordingly. Using numerical analysis, we have verified that such

an approximation can be employed in the stochastic framework.

The function is defined in the following way:

1 ?
sig(kp,n)

X sig(kp,n)~
2

1z X
30

	 
n
:kp

where n is the so-called Hill coefficient controlling the steepness of

the sigmoid (caused by cooperativity of transcription factors in

protein-gene interactions) and kP is the maximal production rate.

We use this approach for modelling the production of both species

H and R by sigmoid coefficients denoted nH and nR, respectively.

The sigmoid function regulates the population by enabling

production when it is below average and repressing it when the

population is above the average. Larger n is leads to steeper

sigmoid functions, which leads to stronger regulation and lower

noise. The case n = 0 corresponds to an unregulated model and

when increased to n = 20 it corresponds to over 10 copies of each

gene in the fully modelled feedback loop mechanism. The effect of

different levels of sigmoid regulation to noise can be seen in a

simplified birth death model in Figure 12.

To see the long-term effects of intrinsic noise we decided to

examine the system in the situation when the output response is

stabilised. Since the min-max approximation method cannot be

employed with steady-state computation, transient analysis in a

suitable time horizon has been performed instead. To estimate the

closest time t when the system’s behaviour can be observed as

stable, we have computed values of output response noise for the

unregulated variant of the model (n = 0) using standard numerical

steady state numerical analysis (we employed the tool PRISM [44])

and compare it to probability distributions obtained by transient

analysis in t~20, t~50 and t~100 seconds. Consequently, we

have compared the probability distribution in the steady state with

the probability distribution in t~100 seconds. The results clearly

show that the difference in distributions is negligible and the

transient distribution can be considered stable after t~100.

To further speed up the computation, we have precomputed the

distribution of H and R in the time horizon t~100 without

enabling phosphorylation reactions. This has led to a significant

reduction to 121 states. Starting with the achieved probability

distribution, we have subsequently computed the transient analysis

with enabled phosphorylation reactions in the next 5 seconds. The

rationale behind is that the protein production and degradation

are two orders of magnitude slower than phosphorylation.

Therefore, the total populations of H and R dictate the time at

which the system is nearly stable and thus the next 5 seconds are

sufficient for the fast-scale phosphorylation to stabilise the fractions
H
Hp

and R
Rp

.

To compute the noise (variance) in Rp we employ the mean

quadratic deviation post-processing function for state space distribu-

tions. Our goal is to compare the levels of Rp noise in both models

for different levels of the output signal S and for different values of

intrinsic noise appearing in protein production (controlled by

sigmoid coefficients and nR). After computing lower and upper

bounds of the state space distributions, we have computed the

lower and upper bounds of the post-processing function using the

algorithm informally introduced in Section Parameterised Uni-

formisation. Consequently, we obtain robustness values for the

output response Rp over the respective perturbation subspaces in

the form average + error. Finally, we define the perturbation space

of the interest. In particular, for the signal we choose the value

interval S[½2:0,20:0� and for sigmoid coefficients

nH ,nR[½0:1,10:0�.
Since the full computation over the 3-dimensional perturbation

space has turned out to be intractable, we have to find a way to

reduce its dimension. To this end, we focus on a subspace

S~15:0,(nH ,nR)[½3:0,4:0�|½3:0,4:0� where both models have

symmetric sensitivity to both sigmoid production coefficients

nH ,nR. This symmetry allows us to merge nH ,nR into a single

coefficient n. Results of this experiment are visualised in Figure 13,

where it can be seen that in Model 1 the influence of nH and nR is

almost perfectly symmetrical with nH being slightly more

influential. In Model 2 the influence is evidently stronger in nR

but the response seems to be symmetrical enough to justify the

sigmoid coefficients merging. An interesting property of the

parameterised uniformization and the perturbation space decom-

position algorithm can be seen in Figure 13, where the

decomposition of the perturbation spaces around both sigmoid

coefficients set to 3:1 is very dense. This is due to the non-linearity

of the sigmoid production functions, which leads to the non-

monotonicity of probability inflow/outflow differences in states

during parameterised uniformisation (see Section Methods). In

order to preserve the conservativeness of estimates we have to

locally over/under approximate these inflow/outflow rates thus

gaining an increase of error. To obtain the desired level of

accuracy, we dynamically refine all those subspaces where this has

occurred.

Finally, we inspect selected subintervals of the perturbation

space given by five exclusive intervals of the input signal value

domain, S[½2,3�|½6,7�|½10,11�|½14,15�|½19,20�, and three

distinct levels of production noise represented by sigmoid

coefficient n[ 0:1,4:0,10:0f g. The results of this main experiment

can be seen in Figure 14 and Figure 15. The trends that can be

seen in Figure 14 are that for lower signals up to S = 10. Model 2

has encountered lower noise in Rp than Model 1 but in the higher

signal region it is outperformed by Model 1, which quickly

converges to values between 8 and 10. However, Rp noise

produced in Model 2 linearly increases with increasing value of the

input signal S. For most of the inspected subspaces a stronger

regulation of H and R production by the sigmoid coefficient n leads

to a reduction of Rp noise. An exception to this observation can be

seen in Model 2 at the signal interval ½19:0,20:0� where this trend

is inverted. To show that this is an emergent behaviour arising

from non-trivial interaction between phosphorylation and dephos-

phorylation reactions not present in the production and degrada-

tion of components H and R, their respective influences are

displayed in Figure 15. There we can see that in Model 1 both H

and R follow an initial increase of noise with increasing S but then

the noise stabilises. This leads us to a hypothesis that the regulation
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of noise in signalling components dynamics loses its influence as

signal S increases. This is however due to the fact that more S leads

to faster phosphorylation of H, which effectively reduces the

population of H thus also reducing its absolute noise. In the case of

Model 2 the situation is different since we can observe a

permanent increase of noise in both H and R populations. The

inversion of noise with increased regulation seen in Figure 14 and

magnified in Figure 16 has not yet been explained satisfactorily.

Discussion

In this paper we proposed a novel framework for robustness

analysis of stochastic biochemical systems. It allows us to quantify

and analyse how the validity of a hypothesis formulated as a

temporal property depends on the perturbations of stochastic

kinetic parameters and initial populations. The framework extends

the quantitative model checking techniques and numerical

methods for CTMCs and adapts them to the needs of stochastic

modelling in biology. Therefore, in contrast to statistical

techniques such as Monte Carlo simulation, parameter sampling

and adaptive grid refinement (recently used in [28]), our

framework is customisable with respect to the required precision

of computation. This is obtained by providing the lower and upper

bounds of the results that allow us to rigorously focus on a

considered perturbation space of interest and to provide detailed

analysis of the evaluation function.

It is worth noting that the evaluation function can be

discontinuous or may change its value rapidly on a very small

perturbation interval in situations when the given CSL formula

contains nested probability operators. In particular, this leads

inevitably to the formulation of a hypothesis requiring a detailed

temporal program [51] of the biological system (e.g., temporal

ordering of events). This makes another reason why we need to

guarantee the approximated shape of the evaluation function.

Case studies have demonstrated that the framework can be

successfully applied to the robustness analysis of nontrivial

biochemical systems. They have shown how to use CSL to specify

properties targeting transient behaviour under fluctuations. From

the first case study we can conclude that the reward-based

formulation of stability properties is more appropriate for

distinguishing the individual parameter settings under

the requested range of uncertainty than the formulation using

the globally operator. The inspected biological hypothesis in the

second case study cannot be directly formulated using CSL with

rewards. Therefore, we have employed post-processing functions

to express and study the mean quadratic deviation of the molecule

population distribution of the signal response regulator protein.

The time complexity of our framework in practice depends

mainly on the size of the state space, the number of reaction steps

that have to be considered, and the number of perturbation sets

that have to be analysed to provide the desired precision. The size

of the state space is given by the number of species and their

populations. The framework is suitable for low populations and is

relevant especially in the case of gene regulation. In the first case

study we have considered only a single molecule of DNA and thus

the state space of resulting CTMC was manageable. In the second

case study we have abstracted the feedback loop mechanism using

a sigmoid production function to reduce the state space and to

make the analysis feasible. If such an abstraction cannot be used,

our framework can be effectively combined with general state

space reduction methods for CTMCs, e.g., finite projection

techniques [11,12], dynamic state space truncation [13], and

aggregation methods [52]. The number of reaction steps can be

reduced using separation of fast and slow reactions as demon-

strated in the second case study or using adaptive uniformisation

[13,53].

In the first case study several hundreds of perturbation subsets

had to be analysed and the overall robustness analysis took a few

hours. However, in the second case study several thousands of

perturbation subsets where required to achieve reasonable

precision. In order to speedup the computation we analysed the

subsets in parallel using a high-performance multi-core worksta-

tion were the analysis took several hours. To further improve the

accuracy of the robustness analysis without decreasing the

performance, we have employed a piece-wise linear approxima-

tion. It allows us to obtain more precise results without increasing

the number of perturbation sets, yet it does not guarantee

conservative error bounds.

The presented method as employed in the first case study gives

us a tool for exact analysis of bistability from the global point of

view (with respect to all initial conditions, the considered time

bound, and the given range of parameters). It can be considered as

an analogy to bifurcation analysis known from the ODE world.

When comparing our approach with the bifurcation analysis

performed in [9], our approach provides a detailed mesoscopic

insight into the analysed phenomenon. Instead of identifying just

the points where the population diverges, we obtain the precise

knowledge of how the population is distributed around the two

stable states. Especially, the method shows that reachability of the

cancer-inducing high stable mode of the retinoblastoma-binding

transcription factor is almost always possible despite the initial

state of the regulatory system. An exhaustive analysis is performed

with uncertainty in the degradation parameters of the two most

important cell-cycle regulating proteins. However, if the degrada-

tion of the tumour suppressor protein is sufficiently high, there is

always a possibility allowing the population to switch into the safe

low stable mode. Moreover, the robustness of having the

possibility to avoid the cell malfunction is positively affected by

increasing the retinoblastoma-binding transcription factor degra-

dation. In contrast to [9], the switching mechanism is described at

the single cell level, which allows to quantify the portion of

population amenable to malfunction and thus can provide a

preliminary guide to further analysis, targeting elimination of the

undesired behaviour.

The second case study shows new insights into the phenomenon

of noise in two-component signalling pathways appearing in

procaryotic organisms. The previous study [10] conducted in the

framework of deterministic models targeted global robustness of

steady state concentrations of output signalling components by

means of analytically finding the invariant perturbation space. The

result has shown that a synthetic pathway topology, including

additional catalysis of signal response regulator by histidine kinase,

leads to globally robust input-output signal mapping with respect

to fluctuations in signalling components concentration. On the

other hand, the basic topology without histidine-modulated

dephosphorylation does not fulfil global robustness. Since signal-

ling pathways are understood to be amenable to intrinsic noise due

to relatively low molecule populations of signalling proteins

(typically hundreds of molecules), the respective stochasticity

might affect the input-output signal response. To this end, we

have reformulated the model in the stochastic framework and

instead of studying the effect of perturbations on the average

population, we study in detail how perturbations affect the

distribution, i.e., the variance (fluctuation) in the output response.

Our study shows that both pathway topologies result in

fluctuations of the output response, but robustness of input-output

mapping varies in both models with increasing the level of the

(constant) input signal. For low input signals the synthetic topology
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gives response with smaller variance in the output, whereas for

high input signals the output variance rapidly increases. Therefore

the basic topology seems to be more suitable for processing strong

signals while the synthetic topology is more appropriate for low

level signals. Our study has also shown that both topologies are

quite robust with respect to scaling the noise in signalling

components dynamics.

Although the results presented in Figures 14 and 15 do not

cover full ranges of the signal and the gene regulation, they allow

us to capture the important trends in the behaviour of both

topologies. The computation over the full ranges would signifi-

cantly increase the computational demands. However, our aim

was not to provide the result for the full range but rather to

rigorously analyse the robustness for different levels of the signal

and the gene regulation. Currently, we focus on an extension of

our framework employing statistical techniques. This extension

has the potential to efficiently scan multidimensional parameter

spaces and to identify interesting subspaces that can be analysed in

detail using the framework.
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synthesis by parallel model checking. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics 9: 693–705.

37. Chen B, Chen P (2008) Robust engineered circuit design principles for stochastic
biochemical networks with parameter uncertainties and disturbances. Biomed-

ical Circuits and Systems, IEEE Transactions on 2: 114–132.

38. Hill AV (1910) The possible effects of the aggregation of the molecules of

hamoglobin on its dissociation curves. The Journal of Physiology 40: iv–vii.

39. Madsen C, Myers C, Roehner N, Winstead C, Zhang Z (2012) Utilizing

stochastic model checking to analyze genetic circuits. In: Computational

Intelligence in Bioinformatics and Computational Biology. IEEE Computer
Society, 379–386. doi:10.1109/CIBCB.2012.6217255.

40. Kwiatkowska M, Norman G, Parker D (2007) Stochastic model checking. In:
Formal Methods for Performance Evaluation, Springer, volume 4486 of LNCS.

220–270. doi:10.1007/978-3-540-72522-0 6.

41. Baier C, Haverkort B, Hermanns H, Katoen J (2003) Model-checking

algorithms for continuous-time Markov chains. IEEE Transactions on Software
Engineering 29: 524–541.

Robustness Analysis of Stochastic Systems

PLOS ONE | www.plosone.org 22 April 2014 | Volume 9 | Issue 4 | e94553

of formal methods employed in the framework for robustness

analysis of stochastic biochemical systems.

A detailed description



42. Kwiatkowska MZ, Norman G, Parker D (2008) Using Probabilistic Model

Checking in Systems Biology. SIGMETRICS Performance Evaluation Review

35: 14–21.

43. Baier C, Haverkort B, Hermanns H, Katoen JP (2000) Model Checking

Continuous-Time Markov Chains by Transient Analysis. In: Computer Aided

Verification, Springer, volume 1855 of LNCS. 358–372. doi:10.1007/10722167

28.

44. Kwiatkowska M, Norman G, Parker D (2011) PRISM 4.0: Verification of

probabilistic real-time systems. In: Computer Aided Verification. Springer,

volume 6806 of LNCS, 585–591.

45. Kel AE, Deineko I, Kel-Margoulis OV, Wingender E, Ratner V (2000)

Modeling of gene regulatory network of cell cycle control. role of e2f feedback

loops. In: German Conference on Bioinformatics’00. 107–114.

46. Garai A, Waclaw B, Nagel H, Meyer-Ortmanns H (2012) Stochastic description

of a bistable frustrated unit. Journal of Statistical Mechanics: Theory and

Experiment 2012: P01009.

47. Sanft K, Gillespie D, Petzold L (2011) Legitimacy of the stochastic michaelis-

menten approximation. Systems Biology, IET 5: 58–69.

48. Yang E, van Nimwegen E, Zavolan M, Rajewsky N, Schroeder Mk, et al. (2003)

Decay Rates of Human mRNAs: Correlation With Functional Characteristics
and Sequence Attributes. Genome Research 13: 1863–1872.

49. Batchelor E, Goulian M (2003) Robustness and the cycle of phosphorylation and

dephosphorylation in a two-component regulatory system. Proceedings of the
National Academy of Sciences 100: 691–696.

50. Shinar G, Milo R, Martnez MR, Alon U (2007) Inputoutput robustness in
simple bacterial signaling systems. Proceedings of the National Academy of

Sciences 104: 19931–19935.

51. Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, et al. (2004) Just-in-
time transcription program in metabolic pathways. Nature Genetics 36: 486–

491.
52. Zhang J, Watson LT, Cao Y (2009) Adaptive aggregation method for the

chemical master equation. International Journal of Computational Biology and
Drug Design 2: 134–148.

53. van Moorsel APA, Sanders WH (1994) Adaptive uniformization. ORSA

Communications in Statistics: Stochastic Models, vol 10, no3 : 619–648.
54. Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) Celldesigner: a

process diagram editor for gene-regulatory and biochemical networks.
BIOSILICO 1: 159–162.

Robustness Analysis of Stochastic Systems

PLOS ONE | www.plosone.org 23 April 2014 | Volume 9 | Issue 4 | e94553


