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Abstract: Exosomes are extracellular vesicles ranging from 30 to 150 nm in diameter that contain
molecular constituents of their host cells. They are released from different types of cells ranging
from immune to tumor cells and play an important role in intercellular communication. Exosomes
can be manipulated by altering their host cells and can be loaded with products of interest such as
specific drugs, proteins, DNA and RNA species. Due to their small size and the unique composition
of their lipid bilayer, exosomes are capable of reaching different cell types where they alter the
pathophysiological conditions of the recipient cells. There is growing evidence that exosomes
are used as vehicles that can modulate the immune system and play an important role in cancer
progression. The cross communication between the tumors and the cells of the immune system has
gained attention in various immunotherapeutic approaches for several cancer types. In this review,
we discuss the exosome biogenesis, their role in inter-cellular communication, and their capacity to
modulate the immune system as a part of future cancer immunotherapeutic approaches and their
potential to serve as biomarkers of therapy response.
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1. Introduction

Exosomes are double-layered vesicles ranging from 30−150 nm [1–3] in diameter with a buoyant
density ranging from 1.13−1.19 g·mL−1. The lipid bilayer of exosomes matches the cells that release
them; the membrane layer of exosomes resembles with lipid profile such as cholesterol, sphingolipid,
and phospholipid content of the parental cell of origin [4]. The double-layered lipid membrane
loaded with peripheral and integral membrane proteins allows intercellular communication, and
regulates various signaling pathways that are crucial for both inter and intra-cellular communication [5].
They were first discovered in sheep reticulocytes, and later observed in almost all mammalian cells
analyzed, driving certain physiological responses in recipient cells [6]. Exosomes are formed by
the inward budding of the membrane of specific late endosomes to form multivesicular bodies
(MVBs). These MVBs fuse with plasma membranes to release their content outside the membrane [7].
Initially, exosomes were thought to function in cell waste management. However, it is now recognized
that exosomes are key components for cell-to-cell communication. During the last decade of the
20th century, exosomes were identified to play a role in the presentation of B lymphocyte antigens,
and later recognized to play a role in immune related functions [8]. During the early 21st century,
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several researchers reported the presence of various RNA species such as miRNA and mRNA within
the exosomes [3,4,9]. These were found to serve as messengers for intercellular communication,
and indicated to have a profound effect on target cells. Exosomes have also been reported to be
active during various physiophathological conditions such as tumor suppression/progression, tumor
immunity, and inflammation [10]. In this review, we discuss the role of exosomes, their biogenesis,
their role in tumor development and their applications in cancer immunotherapy.

The basic structure of exosome is described in Figure 1. According to Exocarta database (Version 5;
http://exocarta.org), till date, 41,860 proteins, 3408 mRNAs and 2838 miRNAs have been reported to
be present in exosomes derived from different cell types. The function of RNA present in the exosomes
is not well understood; however, it is thought to transmit signals to distant sites, thus promoting
and regulating the function of remote cells [11]. Exosomes circulating in the blood can interact with
platelets and endothelial cells, in vivo [12]. They can also affect the development of disease processes
such as cancer and autoimmune diseases [13,14].
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1.1. Exosome Biogenesis

Circulating vesicles in blood are often composed of exosomes and microvesicles, and are difficult
to isolate to maximum purity using current purification methods. Both exosomes and microvesicles
originate from within the cell, but their biogenesis pathways are somewhat distinct. Microvesicles
originate from the outward budding of the plasma membrane, whereas exosomes are formed by inward
budding of outer membrane [15–17]. The inward budding of plasma membrane is the origination of
early endosomes, which then, later mature into late endosomes. Some of these late endosomes then
become MVBs. Isolation of pure exosomes vs pure microvesicle is difficult, and the current methods
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only allow for separation of small extracellular vesicles from large/medium extracellular vesicles [5].
In contrast, microvesicles are simply formed by shedding of plasma membrane, or by exocytosis [18].

Collectively known as MVBs, they have two functions: (1) they can fuse with lysosomes and
become involved in degradation pathway or, (2) fuse with the cell membrane to release smaller vesicles
into the extracellular environment [16]. Late endosomes contain many small vesicles. The smaller
vesicles that are contained within the cells are referred to as intraluminal endosomal vesicles [16].
The small vesicles that are released to the extra-cellular environment are termed as exosomes (Figure 1),
containing many of the cellular contents from which they are formed. Though the exact mechanism
of biogenesis of exosomes is not fully understood, several recent reports suggest that the syndecan
heparin sulphate proteoglycans and syntenin regulate the formation of exosomes [19,20]. The release
of exosomes is regulated by Rab GTPase pathway [21,22]. The delivery and transfer of exosomes to
their recipient cells is regulated by “Endosomal Sorting Complexes Required for Transport” (ESCRTs),
Ca+2 channels and cellular pH levels [23–28]. Silencing of ALIX proteins also regulates the release
of exosomes [29]. The mechanism of cargo sorting is not fully understood, but it was reported that
the ESCRT-dependent endo-lysosomal pathway is important during exosomes biogenesis and cargo
sorting processes and, also involves the syndecan–syntenin–ALIX axis [20,21]. The released exosomes
are taken up by the recipient cells through receptor-mediated endocytosis or by the receptor-ligand
fusion process [30].

1.2. Exosomal Mediated Communication Between Cells

Several studies confirm that exosomes interact and communicate with recipient cells [9]. The exact
mechanism of their interaction with cells is mainly based on in vitro studies. Some mechanisms
that have been proposed are: (1) exosomes bind to the surface of a recipient cell through adhesion
molecules on exosomes; (2) fusion of vesicle after adhesion with plasma membrane; (3) receptor
mediated endocytosis, and (4) phagocytosis by internalizing the vesicles into endocytic compartments.
These interactions between target cells and exosomes can lead to transfer of membrane receptors,
growth factors bound on the surface of exosomes, delivery of specific proteins to target cells, and
transfer of genetic material [31].

A well-known mechanism of intercellular communication is through signaling molecules such
as proteins, which interact with the receptors present on the surface of the target cells. Exosomes can
transfer wide range of molecules such as proteins, RNA, DNA and lipids, which regulate various
pathways in recipient cells present at particular sites. Existence of both miRNA and mRNA within
exosomes, and the shuttling of these exosomes to recipient cells are believed to take part in cell
to cell communication [31]. Identification of DNA and RNA in exosomes that were isolated by
ultracentrifugation approach, but not confirmed by further purification steps such as differential
centrifugation needs further analysis [32,33]. Many studies revealed the presence of different
non-coding RNA species along with cellular RNA within exosomes targeted to the cell of interest [34].
The most enriched RNA within exosomes includes mRNA that shuttles via exosomes, small non-coding
RNA (Y-RNA), miRNA and transfer RNA (tRNA). Shuttling of these conserved short RNA species
is associated with the function of various genes involved in cellular regulation [34]. The amount of
miRNA released per exosome is different for different cells and tissues, and can range from low to
very high. For example, the amount is very low within the plasma, serum, seminal fluid, cerebrospinal
fluid and even some cells such as mast cells, dendritic cells and ovarian tumor cells [35]. The amount
of miRNA obtained from these exosomes is very low; however, they are highly specific towards
their targets and carry specific functions [36]. Communications between the donor and recipient cells
are presented in Figures 2 and 3. Figure 2 represents the formation and release of exosomes to the
extra-cellular environment, and Figure 3 represents the various interactions that the released exosomes
could cause within a host.
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1.3. Isolation and Characterization of Exosomes

The basic technique that has been widely used to purify exosomes is the ultracentrifugation
method; however, achieving maximum purity of the exosomes is a major hurdle due to
contaminating materials such as microvesicles, apoptotic debris or other impurities [4,37,38]. Although,
ultracentrifugation method is considered a gold standard, other methods used include density gradient
purification, affinity based purification and the precipitation method [39]. The basic purification steps
are performed by centrifugation at 230× g to remove cellular debris. Microvesicles are removed at
10,000× g and exosomes are pelleted and washed at 100,000× g [40,41]. Ultracentrifugation is laborious
and time-consuming but is effective in removing contaminants such as ribosomes or other protein
complexes [42,43]. In the density gradient purification method, exosomes are collected based on
buoyant density using discontinuous gradients of Opti-prep media or sucrose solution. The major
disadvantage of this technique is the loss of sample during the purification process.

Several manufacturers (Invitrogen, Qiagen, etc.) offer kits designed for isolation of exosomes by
precipitation methods. The advantage is that exosomes can be isolated by low speed centrifugation
process. The limitations include tedious downstream processing due to use of various columns for
further purification [44]. Exosomes isolated by affinity capture methods use the targeting antigens
(CD9, CD81 and Flotilin-1) present on the surface of exosomes for binding and purification. The
affinity purification procedure has been described in detail elsewhere [43,45,46]. The affinity based
purification method reduces the contamination of other materials and allows isolation of pure
exosome populations [46–48]. Table 1 presents the advantages and disadvantages of various exosome
purification methodologies.

The isolated exosomes can be characterized by Western blotting that identifies exosomal markers
such as TSG101, ALIX, Flotillin-1 and tetraspanins such as CD9, CD81, and CD63. Transmission
electron microscopy helps to identify the double-layered lipid membrane and their diameter.
NanoSight method measures the size and distribution of exosomes. Dynamic light scattering
instruments measure the size of exosomes and microvesicles by measuring the fluctuations of laser
light particles passing through the suspension of extracellular vesicles [49]. Tunable resistive pulse
sensing instrument performs the direct measurement of size and distribution of exosomes using the
qNano system [50].

Table 1. Exosome purification methods.

Methodology Advantages Disadvantages References

Ultracentrifugation Bulk purification of exosomes is
easy

Time consuming, contaminating
proteins [40,41,51]

Density gradient
centrifugation High purity exosome Loss of exosomes, skillful technique [7,52,53]

Ultrafiltration Good exosome yield and quick
isolation method Purity is less [54,55]

Immunoaffinity method Exosome enrichment based on
exosome standard markers

Biological property could be altered
due to alterations in markers on

exosomes
[45,56]

PEG isolation High yield PEG may affect downstream analysis [57,58]

2. Exosomes in Tumor Microenvironment and their Role in Immunosuppression

Exosomes are important components and regulators of the tumor microenvironment. It has
been shown that tumor cells have a higher propensity to secrete larger quantity of exosomes [59].
The contents of tumor exosomes include protein and RNA species, whose quality and diversity are
different to normal cell derived exosomes [60,61]. Involvement of exosomes in promoting tumor
progression has been investigated [62]. Studies have shown that tumor exosomes are involved in
communication between tumor and normal cells, and help promote tumor growth and invasion
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through MAPK/ERK signaling and miR-338/MACC1/MET pathways [63,64], leading to changes that
assist tumor progression. Exosomes released by tumor cells have also been found to educate adipocytes
by creating a suitable environment suitable for tumors, and help promote tumor progression [65].
A proteomic study of colorectal cancer cells harboring Kras mutation showed an enrichment of
KRAS, EGFR, and SRC family kinases in exosomes. These exosomes enhanced the invasiveness of
recipient cells, an implication of non-cell autonomous effects of mutant Kras mediated by exosomes [66].
Melo et al. reported that breast cancer associated exosomes contain pre-miRNAs, and the RNA-induced
silencing complex (RISC) related proteins Dicer, AGO2 and TRBP, which are essential during miRNA
biogenesis. This study demonstrated that the breast cancer cell secreted exosomes were able to
transform normal cells on a Dicer dependent manner [67]. Another study showed that MDA-231
breast cancer derived exosomes were able to prime the hepatic niche, which facilitated the seeding
of the cancer cells to the liver. Interestingly, the miRNA contents were significantly different in
the tumor derived exosomes, which includes a distinct set of miRNAs involved in epithelial cell
differentiation [68], and the exosomes from normal cells. A more recent study confirmed presence
of mRNA as well as miRNA inside B16F0 tumor cells derived exosomes by microarray, to further
examine the biological functions of exosomes. The authors treated cytotoxic T lymphocytes with B16F0
cells derived exosomes. They found 4 of the top 20 mRNAs expressed in B16F0 exosomes (Wsb2,
Fam168b, Cmtm4 and Ptpn14) were then upregulated in the recipient cells [69] after treatment with
exosomes, indicating that selected mRNAs are capable of shuttling between donor and recipient cells
through use of exosomes.

Tumor metastasis is a complex process, which requires the tumor cells to adapt and grow in a new
microenvironment. Rossi et al. in 2018 reviewed that exosomes derived from bone cells can increase
proliferation of cancer cells, and mediate communication between tumor and bone cells [70]. Exosomes
are able to migrate to a distant location and involve in metastasis process [71]. Indeed, evidence
showed that melanoma-derived exosomes were capable of promoting pre-metastatic niche formation
by transferring oncogene MET (mesenchymal to epithelial transition) to recipient cells. This study also
demonstrated that tumor exosomes exposure caused an upregulation of a distinct set of inflammatory
and ECM-related genes [71]. Exosomal TGFβ was also found to be correlated with lymphatic metastasis
in a gastric cancer study [72]. In addition to single exosomal protein factors, multiple miRNAs have
also been identified in promoting tumor metastasis. Xu et al. reported that lung adenocarcinoma
cell derived exosomal miR-21 facilitated osteoclastogenesis, which is correlated to tumor osteolytic
metastasis [73]. Another study by Yang et al. demonstrated that exosomal miR-423-5p promote cancer
cell growth and metastasis by repression of SUFU protein expression, which enhance the proliferation
and migration in recipient gastric cells [74]. Gong et al. reported miR-675 from metastatic osteosarcoma
promotes cell migration and invasion through regulation of CALN1 protein [75]. Exosomal miR-103
was shown to promote metastasis by directly targeting junction proteins VE-Cadherin, p120-catenin
and zonula occludens [76]. Exosomal miR23a from nasopharyngeal carcinoma was shown to promote
angiogenesis by repressing gene Tsga10 [77]. Redox homeostasis in the tumor microenvironment is
another factor that stimulates exosomes secretion from tumor cells. This study also demonstrated
that exosomes release from tumor cells in a hypoxic microenvironment facilitated angiogenesis and
metastasis [78]. Exosomal miR-135b was shown to enhance angiogenesis from hypoxic multiple
myeloma cells via the HIF-I signaling pathway [79].

Taken together, the tumor microenvironment corresponds to the interaction between tumor cells
and non-transformed surrounding tissue, mediated by cell-cell direct interaction or signaling molecules
in the extracellular matrix (ECM), which varies over space and time. Tumor derived exosomes were
capable of promoting a favorable microenvironment for tumor growth, allowing cancer cells to survive,
proliferate and disseminate [80]. Cancer exosomes also have the ability to accelerate angiogenesis by
providing necessary nutrients to the tumor microenvironment [81,82]. A recent study showed that
exosomes from tumor-associated fibroblasts were able to “smuggle” essential nutrients to tumor cells,
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made the tumor cells less oxygen-based energy dependent, and led to metabolic reprograming which
promoted tumor growth under nutrient stressed conditions [83].

Furthermore, exosomes can also condition the tumor microenvironment and interact with T cells
via antigen-presenting cells (APCs) to alter the immune responses within the tumor microenvironment.
External insult on the tumors with radiation results in change of quality and quantity of exosomes.
For example, Diamond et al. showed that tumor derived exosomes from irradiated tumors contain
dsDNA that induce stimulation of Interferon signaling in recipient cells [84]. However, there is
sufficient evidence that tumor-derived exosomes are forerunners of immune suppression. They
transport immunosuppressive molecules and factors that interfere with immune cells such as APCs
and program them to secrete immunosuppressive cytokines. They can directly or indirectly influence
the development, maturation, and antitumor properties of immune cells by carrying the cargo from
tumors at a distant site to a site of antigen presentation or the hub of immune cells, thus promoting the
pro-tumor agenda. A summary of different ways by which exosomes influence immune responses and
promote tumor development is depicted in Figure 3.

Exosomes can mediate immunosuppression through a number of mechanisms. They can deliver
tolerogenic signals to immune cells and can polarize immune cells such as DCs to tolerogenic DCs,
they can inhibit CD8, CD4 and NK cell proliferation, induce apoptosis of CD8 T cells, suppress NK cell
activity, polarize cancer associated fibroblasts and drive expansion of regulatory T cells and Myeloid
derived suppressor cells (MDSCs). These mechanisms are reviewed in detail by Whiteside [85].
Furthermore, exosomes can target immune therapies by above mechanisms and by binding and
sequestering tumor-reactive antibodies and thus radically decrease the anti-tumor effect [86]. The
following section does not address the negative effects of exosomes, but we focused on how exosomes
have been utilized in cancer immune therapies.

3. Exosomes in Cancer Immunotherapy

Cancer is one of the primary causes of death in many parts of the world, including the United
States [87]. First-line treatments such as chemotherapy and radiation therapy show limited efficacy
in certain malignancies, but may also lead to severe toxicity. Novel therapies, including immune
checkpoint inhibitors, anti-CTLA4 and anti-PD1/PDL1, have revolutionized the way these cancers
are treated. By re-invigorating the patients’ immune system, these potent therapies are capable of
using the body’s own immune cells, particularly the CD8+ T-cells, to mount an effective anti-tumor
response. Although the potential of these therapies is widely appreciated, there is significant room for
improvement. Immune checkpoint therapies are frequently ineffective, and there is also a possibility
for severe autoimmunity. Many tumors, due to genetic, biological and other factors make some
patients less likely to respond to these therapies. To overcome some of these obstacles, innovative
approaches are needed that are less toxic and provide more frequent and long-lasting responses. One
such treatment is the use of nanoparticles and specifically exosomes.

In recent years, many new antigen and drug delivery systems such as liposomes, niosomes, and
various metal-based nanoparticles have been developed that can directly or indirectly target tumors
with precision [88]. The main goal of the cancer immunotherapy is to stimulate the immunosuppressed
host to recognize and eradicate tumor cells. Nanoparticles can be manipulated to target dendritic
cells (DCs) and macrophages, thereby stimulating the immune system via the delivery of adjuvants
and antigens [89]. This provides the innate immune system access to a wide range of tumor antigens,
efficient antigen presentation, co-stimulation and hence effective activation of CD4 and CD8 T
cells. Although nanoparticles are widely used in many drug formulations, these nanoparticle-drug
formulations face unique challenges from both clinical and translational perspectives. The lack of
long-term safety and ineffective targeting of desired cell types are some of the issues challenging the
nanoparticle-based formulations [90]. Despite decades of exhaustive investigation, nanoparticles for
cancer immunotherapies face biological, technological, and study design related challenges in clinic
settings. However, research into a specific type of nanoparticles, exosomes, is yielding exciting results.
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A major advantage of exosomes is their size in the nano range (30–150 nm) and they are shed by
both normal and abnormal cells, and hence can be obtained from the host’s own cells. Almost all cells
types including T, B, tumor and dendritic cells secrete them [91]. This is valuable as the exosome cargo
can be modified and the particle destination altered by modifying the cells that secrete them, making
targeting easy and accurate. Due to specific exosome cargo and the variety of biological processes they
modulate, these particles can be exploited as drug, antigen and gene delivery systems, and they may
be of tremendous benefit in cancer immunotherapy. The major advantages of exosomes compared
to other nanoparticles are their extended circulating half-life, the fundamental ability to target cells,
biocompatibility, and minimum toxicity issues [92,93]. Thus, they appear to be an excellent choice for
cancer immunotherapy.

There are many diseases where exosomes have demonstrated efficacy in pre-clinical studies.
In Parkinson’s disease, exosomes were successfully employed to deliver catalase across the blood
brain barrier (BBB), resulting in an improvement in disease state [94]. Similar methodology can be
used to prepare exosomes that can effectively deliver drugs and immunotherapeutic agents across the
BBB in primary CNS malignancies (Glioma) or metastatic patients. Exosomes modified by altering
their cell surface were loaded with a variety of immunotherapeutic agents to target specific cell types.
The overexpression by chronic myeloid leukemia (CML) cells of the IL-3 receptor (IL3-R) compared to
normal immune cells was used for targeting [95]. Human embryonic kidney (HEK293T) cells were
modified to express fusion protein Lamp2b, an exosomal protein, and cytokine interleukin 3 (IL-3).
These exosomes were further loaded with imatinib or with breakpoint cluster region protein-Abelson
murine leukemia viral oncogene homolog 1 (BCR-ABL) siRNA that inhibited CML cells both in vitro
and in vivo. Similar approaches can be used in different tumor types, including melanoma that express
epidermal growth factor receptor (EGFR). The melanoma cells can be targeted by exosomes isolated
from cells that are made to express fusion proteins of VEGF and LAMP2b. Another approach is
using DC derived-exosomes to stimulate the immune system. These exosomes have been used as
functional vesicles that have MHC/peptide complexes at their surface. These are efficient formulations
that support promoting T cell-dependent anti-tumor activity [96]. However, in this Phase I trial, the
observed clinical regressions were T cell independent. Further analysis in mouse models revealed
that natural killer (NK) cells were responsible for the anti-tumor activity. These exosomes stimulated
IL-15Ra and NKG2D, an orphan receptor expressed by NK cells, inducing NK cell activation and
proliferation. Extending this finding to human studies, the DC exosomes expressed functional IL-15Ra
and NKG2D ligand, which permits proliferation, activation and IFN-γ secretion by NK cells. NK
cell activity was observed in 50% of the patients and hence provided the link between exosomes and
tumor regression.

Using DC derived exosomes, others have treated human breast adenocarcinoma cells
(SK-BR-3) [97]. They used these tumor cells to stimulate CD3+ T-cells that had previously been
exposed to SK-BR3 antigens. The T-cells cultured with tumor cells exposed to DC-exosomes
showed a significantly higher percentage of IFN-γ positive when compared to the cells exposed
to non-DC-Exo-treated tumor cells. These data demonstrate that the incorporation of DC-exosomes by
the tumor cells increased their ability to activate T-cells. Exosomes that originated from peptide-pulsed
DCs, induce immune response by antigen presentation to T-cells. This implies that DC-derived
exosomes have MHC-peptide complexes and co-stimulatory molecules on their membrane, thus
arming them with efficient antigen presentation potential [98]. Additionally, in another study, exosomes
derived from mouse cell lines expressing tumor antigen human mucin 1 (hMUC1), prompted an
effective immune response and anti-tumor activity against hMUC1-expressing tumor cell growth
in vivo [99].

Anti-tumor responses were observed in mesothelioma bearing mice that were administered
exosomes obtained from malignant mesothelioma cells [100]. The observed response was due to
tumor-derived antigens found in mesothelioma cells. Tumor-derived exosomes that contain both
MHC class I/II molecules, important molecules in immune activation, have been widely used
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with demonstrated efficacy [101]. In Lee et al. they established B16F1 murine melanoma cell
line (B16F1-CIITA) by transduction of the CIITA (Class II transactivator) gene. Exosomes from
this cell line contained elevated levels of MHC class II and melanoma antigen Tyrosinase related
protein (TRP)2. Incubation of these exosomes with DCs induced the expression of MHC class II
and CD86. In vitro assays showed enhanced proliferation and IL-2 secretion from splenocytes in
co-culture experiments with DCs. Compared to B16F1 derived exosomes, B16F1-CIITA-exosomes
induced increased mRNA levels of inflammatory cytokines such as TNF-α, IL-12 and chemokine
receptor CCR7. Furthermore, B16F1-CIITA-exosomes significantly inhibited tumor development in a
dose-dependent fashion. B16F1-CIITA-exosomes immunized mice exhibited higher levels of IgG2a
antibodies, IFN-γ and TRP2-specific CD8+ T cells. These data suggest that compared to parental
exosomes, the B16F1-CIITA-exosomes are more efficient in inducing anti-tumor immune responses,
suggesting a significant role of MHC class II tumor exosomes in cancer therapy. Thus, similar to
DCs, the DC-derived exosomes are enriched with receptors and molecules important for antigen
presentation and T-cell activation. These include molecules such as CD40, CD80, CD86, MHC class
I, II etc., facilitate activation of both the innate and adaptive immune responses, thus increasing the
quality of anti-tumor response [102,103].

The promising results demonstrated both in vitro and in preclinical models using exosomes, while
clinical trials have also revealed the potential of exosomes as immunotherapeutic agents. Targeting
cancer stem cells is considered to be one of the highest potential approaches for cancer treatment.
Metastatic melanoma patients in Phase I clinical trials were treated with exosomes obtained from
monocytic DCs of the same patients. The exosomes were loaded with MAGE tumor antigens and
MHC type I or type II depending on the MAGE peptide. Although conclusions about efficacy were not
made, the efficacy of exosome administration was established [104]. Another Phase I trial in non-small
cell lung cancer (NSCLC) patients showed immune activation upon exosome treatment and delay in
disease progression [105]. A single arm phase II trial of advanced NSCLC patients demonstrated that
IFN-γ plus class I and II loaded exosomes were capable of enhancing NK cell-mediated anti-tumor
immunity. Half of the participants experienced progression free survival for more than 4 months with
a median overall survival (OS) of 15 months [106]. In colorectal cancer, a Phase I clinical trial was done
using ascite-derived exosomes combined with GM-CSF treatment. The therapy showed a positive
response with induction of tumor-specific antitumor cytotoxic T lymphocyte response [107].

In conclusion, exosomes are biological vesicles with dimensions in nano range that can play an
important role in cancer immunotherapy. Their ability to transfer their cargo including proteins and
DNA/RNA to target cells is powerful and can be an efficient tool in immunotherapy. Depending on the
cells they originate from, exosomes can be immunostimulating or immunosuppressive, and therefore
can be effective tools for cancer immunotherapies or autoimmune diseases. Although exosomes are
promising tools for immunotherapy of cancer, in order to translate the findings into the clinical settings,
issues such as development of an optimal purification method, the choice of exosome donor cells, type
of loading procedure, and scale-up need to be addressed. Furthermore, the cost and time required to
purify exosomes for human use has to be reasonable to be used in the clinic. Therefore, there is a need
for development of an optimal isolation technique that can produce large amounts of exosomes at low
cost. For quick and efficient treatment, the technology to produce exosomes from any source can be
developed and used in the future.

4. Exosomes and Future Perspective in Disease

Due to their capacity of selective cell targeting, the potential for exosomes in the antigen, drug
delivery and immune therapies is immense. The purity of exosomes is still a challenge and even
very insignificant quantities of impurities such as protein aggregates and other DNA/RNA species
can alter their impact and the outcome. Further developments in drug/nucleic acid loading are
also necessary for improved therapeutic benefits from exosomes. Exosomes have started to garner
interest in the fields of cancer therapeutics, immunotherapy, cancer diagnostics, and biomarker
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development. There is a need for serological biomarkers that can be used as a predictive marker of
cancer immune therapies. Other techniques such as PET/CT that can lead to pseudo-progression
are expensive for patients and are not reliable for measuring immunological responses. Furthermore,
tumor micro-environmental changes cannot be accessed in real time with these techniques. Recently, it
has been shown that PD-L1 on circulating exosomes correlates with positive response and varies during
the course of the treatment [108]. Hence, to access these real time changes in tumor microenvironment
due to immune responses, tumor exosomes may be used as a reliable biomarker. Lastly, due to their
passive targeting, small size and their composition, they may be preferred over even nanoparticles.
However, there are limitations to their isolation/purification. There is an inadequate understanding
of their influence on the immune system, which needs further dissection. Refined and detailed
clinical and preclinical studies that can address these deficiencies will lead to new exosome-based
approaches that will transform cancer therapies and allow for the development of more individualized
predictive biomarkers.
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