
International  Journal  of

Environmental Research

and Public Health

Article

VOC Removal Performance of a Joint Process
Coupling Biofiltration and Membrane-Filtration
Treating Food Industry Waste Gas
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Abstract: This study aimed to assess the efficiency of removal of volatile organic compounds (VOCs)
from process gases from a food industry plant in East Poland, producing high-quality animal (goose,
duck, and pig) and vegetable fats, using a two-stage method which is a combination of biological
purification and membrane-separation. The research, conducted on the semi-technical scale, compared
the effects of traditional and two-stage biofiltration carried out under the same process conditions. The
concentrations of VOCs in process gases were measured by means of a multi-gas detector. Additionally
the temperature and humidity of gases were determined by a thermoanemometer under filter bed,
following the EU and Polish National Standard Methods Two different types of filling materials (the
mix of stumpwood chips and bark, and the mix of stumpwood chips, bark, and compost) and two
types of membranes (three-layer semi-permeable membrane fabrics were used, with differences in air
permeability and water tightness) were analyzed. During all processes basic operational parameters,
the biofilters were controlled, including surface load, volumetric load, duration of gas contact with the
filling layer, flow rate, and pressure drops (in the biofilter and on the membrane). The analyzed gases
were characterized by very high variability of VOC concentrations (ranging from 350 ppb to 11,170 ppb).
The effectiveness of VOC removal (REvoc) was calculated by comparing the analytical results of raw
and purified gases. The effectiveness of VOC removal with the application of traditional biofiltration
during the experiment varied between 82% to 97% and was related to different parameters of the filling
materials (mainly specific surface and moisture), reaching lower value for the mix of stumpwood
chips and bark filling. The obtained results showed that the application of membrane improved
the efficiency of biofiltration in all the analysed cases from 7% to 9%. The highest effectiveness was
obtained using the filter bed in the form of stumpwood chips, bark, and compost in connection with
the more permeable membrane. It was maintained between 96% to 99%, reaching an average value
of 98%. The selection of the membrane should be determined by its permeability and the values of
flow resistance.

Keywords: biofiltration; membrane; filter bed; volatile organic compounds (VOCs); efficiency; food
industry

1. Introduction

Odor nuisance and the emission of contaminants to the atmosphere from technological processes
are issues related to the protection of the environment and human life [1,2]. The emission of volatile
organic compounds (VOCs) is one of the main problems related to air pollution in selected branches of
the industry, among others, in the chemical, textile, metallurgic, and food industries [3–5]. In some
regions, food processing and animal breeding have been identified as the primary sources of VOC
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emission [6,7]. Modern research has also addressed the problem of VOC emission related to the
preparation of food, particularly meat, in the processes of boiling and frying in large industrial
plants [8,9]. According to literature reports, the broadly defined food sector, covering both the production
and processing of food, particularly that related to the processing of animal products, constitutes an
important source of VOC emission. Therefore, it requires the application of relevant technological and
legislative solutions for protection of the quality of the atmosphere by limiting VOC emission from
technological processes, including “end-of-pipe” solutions [4,10,11].

For many years, limiting VOC emission in industrial installations has been conducted with the
application of biological processes, incorporating bioreactors. Analyses of the operating costs show
that biological methods are still a very competitive alternative to physical and chemical methods [12].
Biological purification of gases covers the parallel performance of two stages of purification: Sorption
of contaminants and their biological decomposition. Contact of gas with the layer of filter bed
covered with moist biofilm leads to sorption of contaminants with their further decomposition by
microorganisms [13]. The most frequently applied solutions of biological purification include classic
biofilters (horizontal and vertical), bioscrubbers, biological filter beds, and membrane filters [13,14].
The range of technologies for biological purification of industrial gases is continuously expanding.
In addition to the parameters directly related to purification efficiency, the economic and operation
conditions related to efficient full industrial scale applications are of high importance. Among others,
such factors include energy consumption, quantity of post-process waste products, and resistance
to atmospheric conditions [15,16]. The most commonly applied solutions for biological purification
of gases still include traditional horizontal biofilters which, in accordance with the guidelines of the
European Commission (e.g., in the scope of limiting the odor nuisance and emission of VOCs), are
included in the solutions of the Best Available Techniques (BAT) [17–20]. The literature review shows
that although the process of biological gas purification by biofiltration may achieve high removal levels
of contaminants, including VOCs, research on the improvement of the efficiency of the method is still
required. This is due to the fact that process efficiency varies between 60 to 95% in comparison to
thermal oxidation (efficiency 95–99%), catalytic oxidation (efficiency 90–98%), absorption (efficiency
90–98%), or membrane separation (efficiency 90–99%) [21]. Nevertheless, traditional biofiltration has
many advantages, including low investment and operational costs and no cumbersome waste, and is
successfully applied on the technical scale [22,23]. These benefits justify investigation of improvement of
the latter methods. The literature review indicates that in the treatment of waste and odorant gases since
the end of 2010, there has been an increasing trend in developing bioreactor configurations (including
those combined with physical methods) [23,24] to improve the efficiency of removing pollutants from
process gases (also VOCs), including those from the food industry [25–27]. The literature also clearly
indicates that research conducted on the laboratory scale does not take into account all the operational
aspects that appear on the industrial scale. Consequently, research on the removal effectiveness of VOCs
and abatement of other nuisances in the biofiltration process requires studies on the semi-technical and
technical scales. Results obtained in the laboratory, due to the fully controlled conditions affecting the
purification process, show higher biofiltration effectiveness than those from research conducted in field
conditions. This results from many external and operational factors that may affect the operation of
these devices on the full technical scale, such as the influence of atmospheric conditions (temperature,
humidity) and temporally variable technological-operational parameters (gas flow rate, contact time
with the filling media, biofilter load, dynamic changes in concentration of contaminants in process
gases, etc.) [23,28–30].

The research described in this paper involves the analysis and assessment of the modified
biofiltration process effectiveness in removal of VOCs from the food industry processes. The research
employed a pilot two-stage biofilter combining traditional biofiltration and purification on a membrane
filter. During the literature review, no research was found which included a combination of traditional
biofiltration and purification on a membrane filter. An additional factor investigated during the research
was application of two different filling materials, as well as two types of membranes constituting
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the second stage of gas purification. The subject of the research was twofold: The verification of the
effectiveness of two-stage VOC removal from food industry process gases on the semi-technical scale,
and the dependencies between the technical parameters and the efficiency of the employed biofilter.
Therefore, examination of the technological parameters of the applied filling media was carried out,
along with strict control of the operational parameters of the analyzed biofilters (compared to the
reference values reported in the literature). The research described in this paper combines two gas
purification methods, resulting in the possibility of increasing the effectiveness of VOC removal, and at
the same time improving the first stage of purification through the application of the second stage.
Moreover, conducting research on the semi-technical scale increases the credibility of the obtained
results and constitutes an important contribution in the search for more efficient methods of purification
of food industry gases.

2. Materials and Methods

2.1. Semi-Technical Scale Biofilter

The object of the study is a pilot biofilter allowing use of two purification methods: Traditional
(single-stage) biofiltration with the application of an open biofilter, and integrated (two-stage)
biofiltration with the second stage of purification in the form of a membrane fabric covering the surface
of the device. The examined pilot biofilter was applied on the semi-technical scale, being connected to
an installation for the extraction of process gases from a food industry plant located in Eastern Poland
which produces high-quality animal (goose, duck, and pig) and vegetable fats.

Animal fat processing involves a series of purifying steps followed by modification into more
usable products. The major steps are: Settling and degumming (removal of animal or plant proteins,
carbohydrate residues, phosphatides, and water), neutralization/refining with alkali (of nonglyceride
fatty materials by washing the oils with strong alkaline water solutions), bleaching, deodorization,
fractionation (partial crystallization of a fat or oil at a specific temperature), and hydrogenation (direct
addition of hydrogen to double bonds of fatty acids, to modify vast quantities of fats and oils).

The analyzed biofilter (Figure 1) is equipped with a fan, scrubber, automatic regulation of gas
flow, instrumentation for measurement of gas flow, temperature, and humidity with data logger
downstream the biofilter, systems for distribution of process gases and leachate drainage, membrane
mounting system (including sealing), and a sliding shelf, enabling sample collection. The footprint of
the active part of the studied biofilter has dimensions of 1.32 m × 3.00 m.Int. J. Environ. Res. Public Health 2019, 16, x 4 of 15 
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Figure 1. Single-stage (a) and two-stage biofiltration (b).

2.2. Experimental Design

2.2.1. Experimental Design

The experiment was implemented in six phases, presented in Table 1. The studied device was
filled with two types of materials: A mix of stumpwood chips and bark (CB), and a mix of stumpwood
chips, bark, and compost (CBC). The thickness of the filter bed 1.1÷1.2 m. The detailed characteristics
of the filling materials are described in Section 2.4. For both filling variants, research on single-stage
(traditional) and two-stage biofiltration was conducted. Two membrane fabrics (MI and MII) were
subsequently used for the second stage of gas purification and their parameters are presented in
Section 2.5. The experimental first phase covered research on the effectiveness of traditional biofiltration
with the application of CB filling, and then research on the effectiveness of two-stage biofiltration
after subsequent covering of the filling with membranes MI and MII. The analogous procedure was
performed for CBC filling. The conditioning duration of the filling material was approximately three
weeks each time.

Table 1. Comparison of measurement series in particular phases of the experiment.

Filterbed Membrane
Type

Numbers of
Measurement Series

Identification of
Experiment Phase

mix of stumpwood chips
and bark (CB)

- 1–4 CB
MI 5–7 CB + MI
MII 8–10 CB + MII

mix of stumpwood chips,
bark and compost (CBC)

- 11–14 CBC
MI 15–17 CBC + MI
MII 18–20 CBC + MII

2.2.2. Measurement Points and Number of Measurement Series, Samples, and Measurements

During the period May 1, 2018 to July 24, 2019, 20 measurement series were carried out. The number
of measurement series resulted from the fact that the experiment was conducted on a semi-technical
scale under the authentic operating conditions of the industrial plant. During each measurement series,
samples of raw and purified process gases were collected. Raw gases were collected at the inlet to
the biofilter (three repetitions in each measurement series) using an intake connector. Purified gases
were sampled from 10 points on the surface of the biofilter (three repetitions from each measurement
point in each measurement series). Figure 2 shows the locations of the sampling points. Samples
of purified gases (from the surface of the biofilter) were collected with the application of a shield
eliminating the effect of external conditions, i.e., a glass funnel positioned on the surface of the filling
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layer inside a metal or plastic cover. The gas sampling pipe was connected to the screened glass funnel.
The described gas sampling method ensured isolation and representativeness of the samples.
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The effectiveness of VOC removal was calculated by comparing the analytical results of raw and
purified gases (11). The results were expressed as removal efficiency of VOCs (REvoc). REvoc was
calculated as follows:

REvoc (%) = (Cinput − Cutput)/Cinput × 100,

where Cinput corresponds to the ppb concentration of VOCs in the raw gases, and Coutput corresponds
to the ppb concentration of the purified gases.

Moreover, during the single-stage biofiltration measurement series (series 1–4 and 11–14), samples
of the biofilter material filling were collected. During each of the measurement series, samples of the
filling were collected from three points in the biofilter (Figure 2). At each sampling point, the filling
material was collected from the entire vertical cross-section of the filter bed and averaged. From each
averaged sample, a sample for laboratory analysis was prepared. Examination of physiochemical
indicators (pH, moisture, specific surface, hydraulic diameter) was repeated three times.

2.3. Analytical Methods

The concentrations of VOCs in raw and purified process gases were measured by multi-gas detector
MultiRAE (Rae Systems) with sensors based on various measurement principles (electrochemical and
catalytic, infrared, photoionization sensor (PID)) with 10 ppb limit of detection and range from 0 to
20,000 ppb.

The temperature and humidity of gases were measured by means of a thermoanemometer TA440
(Airflow Instruments) with limits of detection for temperature (0.1 ◦C) and humidity (0.1%).

Total moisture, content of organic substances, pH, and grain size composition (by means of sieves
with openings: 0.071; 0.1; 0.25; 0.5; 1.0; 2.0; 10.0; 25.0 mm) of the filter bed were determined following
the relevant European Union and Polish National Standard Methods [31–35].

Measurements of the specific surface of the filling material were performed in accordance with
the method of nitrogen sorption at a liquid nitrogen temperature using a Micromeritics ASAP2020
instrument with detection limits 0.01 m2

·g−1.
The gas flow rate through the biofilter was recorded by the integrated control and measurement

instrumentation. The surface and volumetric load of the biofilter, as well as contact time of gases with
the filter medium, were calculated using the gas flow rate, active surface of the biofilter, and filter
bed thickness.

The flow resistance in the experiment was determined as the difference of pressure before and
after the biofilter (or membrane) using a differential pressure gauge.
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2.4. Filling Material (Filter Bed)

Two types of materials were used for the filling of the analyzed biofilter: A mix of stumpwood
chips with a grain diameter of 20–80 mm (50%) and pine bark (50%)–denoted as CB–and a mix of
stumpwood chips with pine bark (50% in total, in a 1:1 ratio) with green waste compost (50%)–denoted
as CBC (Figure 3). The thickness of the filter bed was 1.1–1.2 m.
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2.5. Membrane Fabrics–Second Stage of Purification

The second stage of purification in the studied integrated biofilter employed three-layer
semi-permeable membrane fabrics. Their external and internal layers were made of polystyrene,
and the middle functional layer was an ePTFE membrane. The membrane, denoted as MI, is
characterized by an average air permeability of 17.8 mm·s−1 and average watertightness of 199 cm H2O.
The membrane, denoted as MII, is characterized by an average air permeability of 3.90 mm·s−1 and
average watertightness of >2000 cm H2O.

The required surface of the applied membrane fabrics was calculated based of their permeabilities
and surface loads of the biofilter in order to enable unimpeded flow of processed gases in the
experimental conditions.

3. Results and Discussion

3.1. Raw Gases Characteristics

The analyzed gases were characterized by very high variability of concentrations of leading
contaminants—VOCs (range from 350 ppb to 11,170 ppb), resulting from the conditions in animal and
vegetable fats processing technology. The fluctuations were recorded both in each measurement series
and during the whole research cycle. The concentration of organic pollutants in the raw gases did not
exceed 1%.

Despite the differentiation mentioned above (especially observed during measurement series
no. 8–10 and 17), the proposed configurations of the experiment can be compared because the raw
gases came from the same source at all times during the experiment. Their characteristics indicated
the possibility of biological purification, and all parameters of the tested biofilter were in the ranges
indicated as optimal for the purification process. The differentiation resulted mainly from the technical
scale of the experiment and the real industrial conditions (properties of the raw gases). The remaining
gas parameters, such as temperature and humidity, were practically unchanged during the course of
the study. Figure 4 presents fluctuations of VOC concentrations throughout the research cycle.
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the arithmetic average.

The correctness of the basic parameters of the analyzed process gases was confirmed by the
possibility of their purification with the application of biological methods. The humidity of the purified
gases was maintained close to saturation level and averaged 98.1% (SD ± 3.7%). The range of readings
varied from 88.0 to 99.9%. The gas temperature did not exceed 33.2 ◦C, averaging 22.5 ◦C (SD ± 6.1 ◦C).
The range of readings was 10.1 ÷ 33.2 ◦C. In accordance with the operational requirements for biofilters,
the inlet gases were humidified to reach saturation state and their temperature remained in the range
0 ◦C–40 ◦C [10,16]. The VOC concentrations in raw gases did not exceed levels specified in the literature
as limiting the effectiveness of the process (>5000 ppm) [23].

3.2. Biofiltration Process Parameters

The majority of the operational parameters of the examined pilot biofilter were within the ranges
reported in the literature as correct (Table 2).

During all phases of the experiment, control of the flow rate and pressure drops in the biofilter
were also carried out. The results are presented in Table 3. The use of membranes as the next stage
of purification did not significantly affect the value of flow resistance. The MI membrane caused a
pressure drop in the range from 59 to 64 Pa. For the MII membrane, these values were in the range
from 28 to 63 Pa.
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Table 2. Comparison of the basic operational parameters of the studied pilot biofilter.

Operational Parameters CB * CBC * CB +MI * CBC +MI * CB +MII * CBC +MII * Recommended Values

Surface load
m3
·m−2

·h−1
average value ± SD 96.5 ± 6.1 81.3 ± 21.7 97.1 ± 4.2 99.4 ± 1.0 97.8 ± 1.0 100.7 ± 1.1 45 ÷ 150 [36,37]

range 87.4 ÷ 100.5 62.4 ÷ 100.5 92.4 ÷ 100.3 98.7 ÷ 100.5 97.0 ÷ 99.0 99.5 ÷ 101.5

Volumetric load
m3 m−3

·h−1
average value ± SD 84.0 ± 5.3 70.7 ± 18.9 84.5 ± 3.6 86.5 ± 0.8 85.1 ± 0.9 87.6 ± 0.9 5 ÷ 500 [38]

range 76.0 ÷ 87.4 54.2 ÷ 87.4 80.4 ÷ 87.2 85.9 ÷ 87.4 84.3 ÷ 86.1 86.5 ÷ 88.3

Duration of gas contact with
the filling layer (s)

average value ± SD 43 ± 3 54 ± 14 43 ± 2 42 ± 1 42 ± 1 42 ± 1 30 ÷ 60 [1,38]
range 41 ÷ 47 41 ÷ 66 41 ÷ 45 41 ÷ 42 41 ÷ 43 41 ÷ 43

Filter bed thickness (m) range 1.1 ÷ 1.2 1.1 ÷ 1.2 1.1 ÷ 1.2 1.1 ÷ 1.2 1.1 ÷ 1.2 1.1 ÷ 1.2 1 ÷ 1.5 [1,38,39]

* Values of parameters for each experimental phase are the arithmetic average of four measurement series (for CB and CBC) and three measurement series (for other phases of experiment).
In all measurement series three parallel measurements were conducted.

Table 3. Hydraulic parameters of the studied pilot biofilter.

Hydraulic Parameters of the Studied Pilot Biofilter CB * CBC * CB +MI * CBC +MI * CB +MII * CBC +MII *

flow rate m3
·h−1 average value ± SD 382 ± 24 322 ± 86 385 ± 16 394 ± 4 387 ± 4 399 ± 4

pressure drops in biofilter (Pa) average value ± SD 379 ± 13 596 ± 84 536 ± 129 683 ± 54 469 ± 12 617 ± 48

pressure drops on the membrane (Pa) average value ± SD - - 64 ± 25 59 ± 2 28 ± 25 63 ± 6

* There were four measurement series for CB and CBC and three measurement series for other phases of the experiment.
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3.3. Effectiveness of VOC Removal–Influence of the Filterbed (Single-Stage Biofiltration)

The efficiency of VOC removal with the application of traditional (single-stage) biofiltration during
the experiment varied between 82% to 97% on average, reaching the lower value for the CB filling
(86%) and higher value for the CBC filling (90%). Table 4 shows VOC concentrations in the raw and
purified gases during subsequent measurement series of single-stage biofiltration. Figure 5 presents
the variability of the contaminant removal effectiveness with the application of both filling materials.

Table 4. VOC concentrations in raw and purified gases during single-stage purification with the
application of two types of fillings–for each measurement series.

Experiment
Phase

Number of
Measurement Series

VOC in Raw Gases (ppb) VOC in Purified Gases (ppb)

Average Value ± SD Range Average Value ± SD Range

CB

1 1130 ± 207 940 ÷ 1350 180 ± 9 170 ÷ 200
2 1250 ± 190 1060 ÷ 1440 118 ± 9 110 ÷ 130
3 950 ± 90 860 ÷ 1040 122 ± 8 110 ÷ 130
4 1220 ± 310 910 ÷ 1530 220 ± 11 210 ÷ 230

Mean 1138 ± 135 950 ÷ 1250 160 ± 49 118 ÷ 220

CBC

11 2500± 390 2110 ÷ 2890 66 ± 8 50 ÷ 80
12 1970 ± 190 1780 ÷ 2160 87 ± 7 80 ÷ 100
13 1500 ± 230 1270 ÷ 1730 269 ± 7 260 ÷ 280
14 980 ± 200 780 ÷ 1180 146 ± 10 130 ÷ 160

Mean 1738 ± 650 980 ÷ 2500 142 ± 91 66 ÷ 269
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biofiltration for both fillings.

The variability of VOC removal effectiveness during single-stage biofiltration is related to different
parameters of the applied filling materials. In spite of differences, the parameters are within the optimum
ranges reported in the literature for the biofiltration process [22,38]. Figure 6 depicts mean values of the
characteristic parameters for both fillings used in the study and mean VOC removal effectiveness.

The effectiveness of VOC removal was affected to the greatest extent by differences in the values
of specific surface (and the related hydraulic diameter) and moisture content of both fillings. The mean
value of specific surface of the CB filling was at a level of 0.55 m2

·g−1 and was three times lower than
for the CBC filling (1.67 m2

·g−1). The mean value of the hydraulic diameter of the CB material was
37.1 mm and was approximately five times higher than the hydraulic diameter of the CBC filling
(8.7 mm). Higher efficiency of biofiltration was observed at a larger specific surface (accompanied by a
smaller hydraulic diameter). The analysis of mean values of the moisture content of the filling material
showed higher effectiveness of the process at lower moisture content and still remained within the
optimum range for biofiltration. According to the literature, the moisture content should be below
90% [21], as moisture intake clogs the pores. Table 5 presents basic technical parameters of the filling
materials used in the research, compared with optimal values from the literature.
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Table 5. Technical parameters of the biofilter filling materials–values for each measurement series and
mean values.

Filter Bed CB * CBC * Recommended Values

Moisture
(%)

min 60,6 42.7
30–60 [14,37,38]max 66,3 50.5

mean ± SD 63.4 ± 2.9 46.8 ± 3.4

pH
min 6.75 7.27

6–9 [13,37,40]max 6.79 7.7
mean ± SD 6.77 ± 0.02 7.44 ± 0.03

Total organic matter
(% d.m.)

min 84.97 40.61
>40 [25,41]max 87.53 47.79

mean ± SD 85.97 ± 1.10 44.96 ± 3.30

Specific surface
m2
·g−1

min 0.37 1.53
1–100 ** [39,40]max 0.67 1.8

mean ± SD 0.55 ± 0.13 1.67 ± 0.11

Hydraulic diameter
(mm)

min 34.8 6.7
>4 [25,41]max 39.6 9.9

mean ± SD 37.1 ± 2.0 8.7 ± 1.4

* Values of parameters for each measurement series are the arithmetic average of three parallel measurements.
** Range for different filling materials used in biofiltration.

3.4. Effectiveness of VOC Removal–Influence of Membranes (Two-Stage/Integrated Biofiltration)

The effectiveness of VOC removal by the two-stage biofiltration varied from 88% to >99%,
depending on the type of the filling materials and membrane fabrics. Table 6 shows VOC concentrations
in raw and purified gases during subsequent measurement series of two-stage biofiltration. Figure 7
presents the variability of the contaminant removal in relation to the phase of integrated biofiltration
(for both types of fillings and membranes).
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Table 6. VOC concentrations in raw and purified gases during subsequent phases of two-stage
biofiltration–for each measurement series.

Experiment
Phase

Number of
Measurement Series

VOC in Raw Gases (ppb) VOC in Purified Gases (ppb)

Average Value ± SD Range Average Value ± SD Range

CB + MI

5 1400 ± 270 1130 ÷ 1670 125 ± 8 110 ÷ 140
6 1170 ± 448 670 ÷ 1535 12 ± 4 10 ÷ 20
7 480 ± 130 350 ÷ 610 24 ± 5 20 ÷ 30

mean ± SD 1017 ± 479 480 ÷ 1400 54 ± 62 12 ÷ 125

CB + MII

8 9400 ± 1770 7630 ÷
11170 1220 ± 11 1210 ÷ 1240

9 7700 ± 1200 6500 ÷ 8900 283 ± 9 270 ÷ 300
10 4700 ± 600 4100 ÷ 5300 23 ± 5 20 ÷ 30

mean ± SD 7267 ± 2380 4700 ÷ 9400 509 ± 630 23 ÷ 1220

CBC + MI

15 990 ± 170 820 ÷ 1160 10 ± 0 -
16 3300 ± 1180 2120 ÷ 4480 147 ± 8 140 ÷ 160
17 7680 ± 1690 5990 ÷ 9370 127 ± 8 110 ÷ 140

mean ± SD 3990 ± 3398 990 ÷ 7680 95 ± 74 10 ÷ 147

CBC + MII

18 1660 ± 170 1490 ÷ 1830 50 ± 5 40 ÷ 60
19 1680 ± 160 1520 ÷ 1840 20 ± 7 10 ÷ 30
20 1580 ± 710 860 ÷ 2280 80 ± 7 70 ÷ 90

mean ± SD 1640 ± 53 1580 ÷ 1680 50 ± 30 20 ÷ 80
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4. Conclusions

The experimental results presented here provide a new and important contribution in the search
for more efficient methods for biological purification of gases. Such exploration is particularly needed,
as the variable concentrations in raw gases create difficulties in both the purification and control of the
process. Specifically, the following conclusions can be drawn:

• The application of membrane fabrics as the second stage of purification improved the effectiveness
of biofiltration in all the analyzed cases from 7% to 9%.

• In the case of combining both types of membranes (MI and MII) with CBC filling, the effectiveness
of VOC removal was more stable than in the case of integrated biofiltration with the application
of CB filling.

• The most effective solution for the VOC removal from process gases proved to be an integrated
filter with a filter bed in the form of stumpwood chips with bark and compost (CBC), supplemented
with the more permeable membrane (MI). The biofiltration effectiveness was maintained between
96% to 99%, reaching an average value of 98%.

• The analyzed pilot integrated biofilter is an innovative solution in which the membrane constituting
the cover of the biofilter bed is not only the second stage of purification by itself, but also contributes
to the improvement of the first stage processes. Use of the membrane covering the biofilter allows
better control of the processes, among others facilitating the maintenance of correct (not too high)
humidity content in the biofilter layer. This is extremely important for the process effectiveness–the
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conducted research showed that the moisture level has a significant effect on the biofiltration
efficiency. The effectiveness of VOC removal was higher at lower moisture values and remained
within the optimal range.

• The effectiveness of VOC removal varied depending on the applied filling materials. In the case of
single-stage biofiltration, the mix of stumpwood chips, bark, and compost proved more beneficial.

• The selection of the filling material in both cases of single-stage and integrated biofiltration
should be governed by the parameters important for the biofiltration process–with particular
consideration of the specific surface, which plays a substantial role in the sorption process.

• The selection of the membrane fabric, constituting the second stage of purification, should be
determined by its permeability (allowing purification of the specified stream of process gases)
and the flow resistance values, to eliminate the risk of gas leaks without purification.

• The research was conducted on the semi-technical scale, so it constitutes an important source of
credible results.

• Further research on the membranes studied in this paper should be carried out to establish their
effect on the flow resistance values and on the filling material changes, resulting from covering
with membrane fabrics.

• Further research is carried out in the optimal variant (CBC + MI) identified in the article on the
integrated biofilter in full technical scale.
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