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Abstract: The use of biomaterials as a replacement for thermoplastic polymers is an environmentally
sound strategy. In this work, hydrogels of cellulose isolated from wheat husk were modified by UV
irradiation (353 nm) to improve mechanical performance. The cellulose was dissolved with a solvent
system N,N-dimethylacetamide/lithium chloride (DMAc/LiCl). Infrared spectroscopy showed that
the peak height at 1016 cm−1, associated with the C–O bonds of the glycosidic ring, increases with
irradiation time. It was determined that the increase in this signal is related to photodegradation, the
product of a progressive increase in exposure to UV radiation. The viscoelastic behavior, determined
by dynamic mechanical analysis and rotational rheometry, was taken as the most important parameter
of this research, showing that the best results are recorded with 15 min of UV treatment. Therefore, at
this time or less, the chemical crosslinking is predominant over the photodegradation, producing an
increase in the modules, while with 20 min the photodegradation is such that the modules suffer a
significant reduction.

Keywords: cellulose; hydrogel; mechanical properties; photodegradation; UV radiation

1. Introduction

In response to the problems generated by the accumulation of plastics in the environ-
ment, modern requirements in materials science have stimulated the development of a
great variety of biobased materials, in which cellulose and its derivatives play a leading
role [1]. The most important reason for this is that cellulose is nature’s most abundant
renewable polymeric biomaterial. Furthermore, to access sources rich in cellulose, it is only
enough to resort to agro-industrial wastes, such as grain and seed crop residues.

The chemical and structural characteristics of cellulose are well known [2]. Due
to its complex inter- and extra-molecular interactions, cellulose molecules are tightly
bound through hydrogen bonds, being insoluble in conventional polar solvents such as
water, alcohols, and amines, making it difficult to process into the desired shape. For
decades, special solvent systems have been developed to dissolve cellulose so that it can
be processed. Examples of these are urea/sodium hydroxide [3,4], ionic liquids [5,6], or
N,N-dimethylacetamide (DMAc)/lithium chloride (LiCl) [7,8].

The DMAc/LiCl solvent system was first reported by McCormick [9]. The interac-
tion of this solvent system with cellulose has been the subject of study since then, and
although there is no total consensus, there are some interaction models [8,10,11]. The
system DMAc/LiCl dissolves cellulose efficiently, the regeneration product being a gel
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swollen with water or hydrogel. Cellulose and its derivatives in the hydrogel form are
very convenient since, in this state, these can be used in a wide variety of applications, e.g.,
controllable delivery [12], or medical applications [13].

A disadvantage of hydrogels, in general, is the poor mechanical strength [14]; therefore,
it is of great interest to improve said performance to expand their usable margin towards
applications that require more significant mechanical stress, such as in water treatment
membranes. Physical and chemical methods can modify the mechanical properties of
cellulose-based hydrogels. In the former, the physical interactions between the hydrophobic
moieties of the components and the hydrogen bonds produce the crosslinking and can be
considered a weak molecular association [15]. In the reinforcement by physical crosslinking,
the addition of a second polymer in solution is also included, which provides properties to
the hydrogel [16]. For the second method, crosslinking agents are used in order to react
with the functional groups [17,18]; nonetheless, they have the disadvantage of leaving toxic
reaction remnants, or sometimes the crosslinker is itself toxic [19].

Additionally, the treatment or curing of cellulose-based materials by high-energy
radiation (gamma rays, electron beam, or ultraviolet radiation) [20,21], has made it possible
to carry out chemical modifications due to crosslinking [22] and other kinds of reactions [23],
which have substantially improved their mechanical properties [24]. Therefore, it can be
mentioned, as advantages, that it does not use crosslinking agents, does not generate waste,
and it simultaneously produces sterilization during irradiation [25]. However, it has the
drawback that it can cause degradation if exposure is not carefully controlled [22].

In this work, we report for the first time, the curing of cellulose isolated from the
wheat husk in a solution of DMAc/LiCl, employing UV radiation (354 nm) to improve
hydrogel mechanical performance. The study is based on the viscoelastic behavior of the
hydrogel as a function of UV radiation time, analyzed by dynamic mechanical analysis and
rotational rheometry. The most critical changes in cellulose due to high energy radiation
are crosslinking and photochemical degradation. The techniques report these effects like
changes in the behavior of the modules. Wheat husk was selected as a source of cellulose
because it is a residue widely available throughout the world, to which little technological
development has been applied. The cellulose curing was performed before the regeneration
so that the cellulose molecules were in solution to improve crosslinking. It is worth noting
that for the curing of the hydrogels, no crosslinking agent or other polymer was used to
generate the 3D network as in other reported systems. Only cellulose and UV radiation, as
the trigger for the crosslinking, were used. The obtained hydrogels were also characterized
by infrared spectroscopy, thermogravimetry, and X-ray diffraction.

2. Materials and Methods
2.1. Materials

The cellulose was extracted from wheat husk supplied by a local producer in Chi-
huahua, Chih., Mexico. Acetic acid (Fermont, Monterrey, Nuevo León, México, 99%),
formic acid (J.T. Baker, Phillipsburg, NJ, USA, 88%), sodium hypochlorite solution (Merck,
Sigma-Aldrich, Saint Louis, MO, USA, 10–15%), hydrogen peroxide (Golden Bell, Orange,
CA, USA, 30%), N,N-dimethylacetamide (Merck, Sigma-Aldrich, Saint Louis, MO, USA,
>99%), and lithium chloride (Merck, Sigma-Aldrich, Saint Louis, MO, USA, >99%) were
used as received.

2.2. Cellulose Isolation

To isolate the wheat husk cellulose (WHC), in the first step, the organosolv method
was used [26], which is described as follows: a solution (1000 mL) of acetic acid (60 vol%),
formic acid (30 vol%), and water (10 vol%) was prepared. The solution was heated to 85 ◦C
and then 40 g of wheat husk, previously washed with distilled water to remove traces of
dust, was added to the reactor, maintaining heating and with gentle magnetic stirring for
4 h. Then, the reactor was allowed to cool to room temperature and the mixture vacuum
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filtered to recover the solid, which was washed with abundant distilled water to a neutral
pH. Finally, the solid was dried in an oven at 80 ◦C for 14 h.

In the next step, the cellulose was brought to a first bleaching treatment with a 13%
sodium hypochlorite (NaClO) solution. In addition, the ratio of cellulose to NaClO was
1:25 wt/vol (1 g: 25 mL). The system was kept under gentle magnetic stirring at room
temperature for 2 h. Afterward, the cellulose fiber was recovered by filtration and washed
with distilled water to a neutral pH. The fiber was recovered and dried in an oven at 80 ◦C
for 14 h.

In the third stage, a second bleaching treatment was performed, using a 35% hydrogen
peroxide, at cellulose to peroxide ratio 1:25 wt/vol. First, the peroxide solution was heated
to 90 ◦C; then, the pre-bleached cellulose fiber was added, and the system was kept under
gentle magnetic stirring for 2 h. Subsequently, the fiber was recovered by filtration and
submitted to washing with distilled water to a neutral pH. Finally, the cellulose was dried
in an oven at 80 ◦C for 14 h.

2.3. Cellulose Fiber Dissolution in DMAc/LiCl System

Cellulose dissolution was performed based on the reported methodology [27]. A total
of 100 mL of N,N-dimethylacetamide (DMAc) was heated at 120 ◦C for 60 min to evaporate
the absorbed water. Next, the solvent was allowed to cool to 60 ◦C, and then 8 g of
lithium chloride (LiCl) was added, maintaining gentle magnetic stirring until dissolution.
Subsequently, 2 g of dry cellulose was added, keeping the temperature and magnetic
stirring until fiber dissolution, which takes 6 days on average.

2.4. Cellulose Recovering and UV Curing

For cellulose curing with UV radiation and subsequent regeneration, the following
procedure was achieved: 4 mL of the cellulose solution was placed in a Petri dish; then, the
solution was exposed to a 365 nm wavelength UV radiation curing treatment using a lamp
(Model ENF-260C, Spectroline, Melville, NY, USA). The distance between the sample and
the UV lamp was constant (60 mm) so that all the samples were treated under the identical
conditions. Figure S1f illustrates the UV reactor system. The solution was irradiated for 5,
10, 15, and 20 min. After irradiation, the solutions were placed in closed containers with a
humid atmosphere for 12 h. Moisture plays the role of antisolvent to coagulate cellulose.
Finally, the hydrogels were subjected to a series of washes with distilled water to remove
residues from the solvent system. The cured hydrogels were kept in humid atmospheres
until evaluation.

2.5. Characterization

The characterization of the functional groups was carried out using a Fourier-transform
infrared spectrometer (GX-FTIR, PerkinElmer, Waltham, MA, USA). For this analysis, the
gel samples irradiated with UV light and the blank (untreated gel) were dehydrated in an
oven for 24 h at 60 ◦C. Spectra were obtained by reflectance with an ATR accessory (Atten-
uated Total Reflectance, PerkinElmer, Waltham, MA, USA); each spectrum corresponds to
the average of 30 scans with a resolution of 4 cm−1 in the range of 400 to 4000 cm−1.

For thermal stability analysis, dehydrated gels were employed. A thermal analyzer
(SDT Q600, TA Instruments, New Castle, DE, USA) with a sensitivity of 0.1 µg was used.
Measurements were performed with 10 mg of samples, heating from room temperature to
800 ◦C under an air atmosphere at a heating rate of 10 ◦C min−1.

Additionally, to study the effect of UV radiation and the reconstitution process on
the crystalline structure of cellulose, an X-ray diffractometer (X’Pert PRO RX04, Malvern
Panalytical, Almelo, Overijssel, The Netherlands) was used. For the analysis, the exper-
imental conditions were: scan range from 5 to 60◦, a step size of 0.0330 and 60 s for the
counting time.

For the analyses by rotational rheometry (viscoelasticity) and dynamic mechanical
analysis (stress–strain), the hydrogels treated with UV radiation and an untreated blank
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were used. For the former, hydrogel samples 10 mm in diameter and 1.5 mm in thickness
were analyzed, while for the second, samples of 25 mm × 5 mm × 1.5 mm (length, width,
thickness) were analyzed.

The viscoelasticity of the samples was accomplished by small-amplitude oscillatory
shear (SAOS) using a rotational rheometer (Physica MCR 501, Anton Paar, Graz, Styria,
Austria) employing the parallel plate geometry, with a plate diameter of 25 mm, a gap of
1 mm, and 25 ◦C. Strain sweeps were scanned to define the structural strength and the
linear viscoelastic regime of the samples. Dynamic frequency sweep tests were achieved
from 0.01 to 100 Hz and 0.1% strain, which is in the linear viscoelastic regime, to evaluate
the structure and the viscoelastic properties of a sample as a timescale function.

The stress–strain tests were performed in a dynamic mechanical analyzer (RSAIII,
TA Instruments), which has a transducer with a maximum applicable force capacity of
3.5 kg. In this equipment, a static deformation test was carried out in the tension mode,
applying a deformation speed of 0.001 mm s−1 at 25 ◦C. In addition, dynamic strain scans
were performed at a frequency of 1 Hz from an initial strain of 0.01% to a final strain of
1.0%. The strain increases were 0.02%, at 25 ◦C.

Morphology samples were obtained with a field emission scanning electron micro-
scope (FESEM JEOL JSM-7401F, JEOL, Akishima, Japan) at a magnification of 2500 and 10,000.

3. Results and Discussion

Figure 1a shows the infrared spectrum of cellulose fibers extracted from the wheat
husk (WHC) highlighting the absorption at 3309 cm−1 attributed to the stretching of the
OH group. The peaks at 2914 and 2848 cm−1 correspond to the asymmetric and symmetric
vibrations of the CH2 group, respectively. The signal at 1724 cm−1 (inset) attributed to the
carbonyl (C=O) of ester groups of the hemicelluloses and the remnant of the lignin that was
not completely extracted. Near this signal, a small absorption at 1641 cm−1 is observed,
which is commonly associated with absorbed water [28,29]. The signal at 1435 cm−1

assigned to the scissoring bending of the CH2 group is strong for crystalline cellulose I.
The absorption at 1155 cm−1 corresponds to the asymmetric vibration of the C–O–C bond
and the bending of the OH bond of the C-OH group. On the other hand, the signals at
1103, 1051, and 1016 cm−1 are associated, respectively, with the glucose ring’s asymmetric
stretching and stretching of the C-O bonds. In addition, the absorption at 895 cm−1 is
representative of the stretching of the β (1→ 4) glycosidic linkage (C–O–C). When this
band is sharp, it is related to cellulose II and amorphous cellulose. The absorptions reported
here appropriately coincide with other reports in the literature [30,31].

After the dissolution of the cellulose in the DMAc-LiCl solvent system and regener-
ation, some differences were observed. It is important to note that this cellulose sample
(0 min) was thoroughly washed with water to extract the DMAc-LiCl mixture, left dry, and
no UV radiation was applied; i.e., changes in the infrared spectrum correspond only to the
effect of regeneration. Thus, it is observed that the absorptions at 3309, 1724, 1435, and
1028 cm−1 described for WHC suffered displacements at 3338, 1608, 1417, and 1016 cm−1,
respectively. All indicated signals are related to oxygen-containing groups, which are
susceptible to hydrogen bonding. It is also appropriate to point out that the literature does
not indicate any chemical reaction of cellulose with the solvent system.

Consequently, the changes in the spectrum are not associated with chemical reactions
but only with hydrogen bonding modification during regeneration. However, it should
also be noted that the signals corresponding to the glycosidic ring asymmetric stretching
(1103 cm−1) and stretching of the C–O bonds (1051 cm−1) are not observed in 0 min, which
indicates that some interactions of the glycosidic ring are lost and are most likely related to
the cellulose crystalline structure that was lost in regeneration. The lack of these absorp-
tions has also been reported for cellulose regenerated from a recycled newspaper [32,33]
and other celluloses [34,35]. Therefore, the idea that the loss of crystallinity causes the
aforementioned effects is proposed.
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Figure 1. Infrared spectra of (a) cellulose fiber extracted from the wheat husk (WHC) and regenerated
cellulose (0 min), without exposure to UV radiation, from solution in the DMAc/LiCl solvent system
and (b) exposure time effect of UV radiation (0, 5, 10, 15, and 20 min) on regenerated cellulose from
solution in the DMAc/LiCl solvent system. * Only present in 0 min.

Furthermore, the signal at 1435 cm−1, indicative of crystalline cellulose (cellulose I) of
WHC, shifted to 1417 cm−1 in 0 min (no UV treatment), typical for amorphous cellulose II.
An equivalent displacement was reported by other authors, who analyzed the effect of
cellulose regeneration from different solvents; said shift was attributed to the loss of
crystallinity in 0 min [30] and the elimination of intramolecular hydrogen bonding [36].
This result is consistent with the X-ray analysis that will be discussed later.

Figure 1b shows the infrared spectra of dehydrated hydrogels treated with UV irradi-
ation. As noted, some significant differences are observed. As for the celluloses irradiated
at exposure times of 5, 10, 15, and 20 min, the progressive increase in the intensities of the
absorptions at 3338, 1608, and 1016 cm−1 are indicative of the effects launched by the UV
radiation. In particular, we consider that a combined effect (degradation-crosslinking) is
the cause of these results in such a way that the abundance of functional groups and bonds
involved with these absorptions increases with the irradiation time.

Although the mechanism of cellulose photooxidation has not been fully established,
in general, it has accepted the formation of peroxyl radicals due to treatment with UV
radiation, and these radicals the formation of hydroperoxide groups, which, through
constant UV irradiation and their high energy level, break homolytically to form highly
reactive hydroxyl groups, which initiate a dehydrogenation process in the cellulose chain,
increasing the respective signals of –OH groups, and C–O, C–H, and C–OH bonds [37].

It is worth noting that, in this work, the irradiation of the cellulose in solution has a
substantial effect that allows for the free passage of UV radiation towards all the molecules
in the bulk because the system is transparent. However, when cellulose is in the solid-
state, this does not occur, as reported by Yang and Freeman [38], who found that the
distribution of chemical species was not identical on the surface and in bulk in cotton
textile samples irradiated with UV light. Kaczmarek et al. [39] and Ołdak et al. [40]
reported, respectively, after 10 and 100 h exposure to UV radiation, no significant changes
in cellulose stability. Both groups attributed the photostability to the high purity of their
celluloses used; however, other studies have reported that the effect of radiation on the
surface and the bulk are different. Zapolskii [41] studied the photooxidation of cellulose
with UV radiation in the presence of air, irradiating the sample for 20 h with a quartz lamp,
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observing an increase in signal intensities in the infrared spectrum corresponding to the
stretching of C-O bonds and a reduction in the intensity of signals representative of the
vibrations of the C-O and C-C bonds of the glucose unit residues, which was attributed
to the breaking of the glycosidic bonds during the degradation process and the oxidation
of the primary alcohol groups due to the radiation action. On the other hand, Yang and
Freeman [38] obtained similar results when exposing cotton cellulose in fabric samples to a
UV radiation of 254 nm at room temperature, showing an increase in the carbonyl group
signals while increasing the radiation exposure time. The results showed that the main
photooxidation product in the samples was carboxylic acids [38]. In the present research,
the peak height of carbonyl groups in cellulose membrane samples is extremely weak,
which could be related to a much shorter time of exposure to UV radiation in comparison
to the mentioned works.

Kaczmarek et al. [39] reported that the photodegradation with UV radiation, at 254 nm
and 25 ◦C, on polypropylene/cellulose composites showed a greater improvement than
that which occurred in its pure component because the cellulose sample presented high
purity. It was observed that even in composites with low cellulose content (5–15%), the
photooxidation process led to the formation of carbonyl, hydroxyl, and hydroperoxide
groups. This was attributed to the increase in the amorphous part of the polypropylene
during the mixing process, which facilitates the access of oxygen to the polymer chains
and increased the flexibility of the macromolecules, resulting in a more efficient oxidation
process. Similarly, regenerated cellulose from waste has low crystallinity, allowing for the
stabilization of oxygen during the photooxidation process. In addition to the fact that it
carries impurities that contain chromophore groups capable of enhancing the photoox-
idation process causing the formation of and increase in the functional groups content.
Hence, the increase in signal intensities in a shorter time of exposure to UV radiation could
be explained.

3.1. Effect of UV Radiation on the Thermal Stability

Figure 2a shows the TGA traces of regenerated cellulose exposed to UV radiation
at different times. Thermograms show a three-step degradation process, where the first
drop corresponds to approximately 12–15% weight loss between 40 and 150 ◦C, associated
with the evaporation of traces of water or dehydration. The second drop corresponds to
a 55–60% loss in weight in a range of 200 to 300 ◦C, attributed to the decomposition of
the cellulose main chain [42]. The third transition, corresponding to a 25–30% weight loss,
in the range of 320 to 800 ◦C, is attributed to the presence of the remaining carbon [43].
It should be noted that from TGA traces, an essentially identical behavior was observed
in all the samples without any significant difference between them regardless of the UV
treatment time.

The DTG analysis, Figure 2b, in contrast, provided considerable evidence of the effect
of UV irradiation time. In particular, the peak between 250 and 350 ◦C does indicate
a significant difference for the treatments. It is observed that for 0 min, which was not
irradiated, the maximum peak indicates the highest thermal decomposition rate, presenting
the highest value (306 ◦C). However, with only 5 min of exposure, the peak decreased
by 28 ◦C, which indicates a significant loss of thermal stability, and that is associated
with a degradative process due to the effect of UV radiation. For the samples with longer
exposure times, a progressive increase in the peak was observed, until, at 20 min of exposure
(303 ◦C), the peak of 0 min was almost equalized. This behavior implies that after an initial
photooxidative degradation process, a chemical crosslinking mechanism is initiated that
compensates for the degradative effect and almost leads to the initial thermal stability.
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Figure 2. Effect of UV radiation time (0, 5, 10, 15, and 20 min) on the thermal stability of regenerated
cellulose. (a) TG and (b) DTG.

3.2. Crystallinity

To determine the effect of the exposure time of UV radiation on the crystallinity
of the dehydrated hydrogels, X-ray diffractometry was used. Figure 3 illustrates the
diffractograms of WHC and regenerated celluloses exposed to UV radiation (0, 5, 10,
15, and 20 min). As seen, the crystalline form of cellulose I of WHC (Figure 3a) shows
diffraction peaks at 2θ = 14.87◦, 16.40◦, 22.73◦, and 34.25◦ attributed to the planes (11′0),
(110), (200), and (004), respectively [44]. On the other hand, the UV-treated, regenerated
cellulose samples (Figure 3b) show amorphous signals at 2θ = 12.70◦ and 20.77◦ that are
observed in more detail at 10 and 15 min of irradiation, which is representative of the
amorphous structure of cellulose II, the signal at 2θ = 12.70◦ being characteristic of the
plane (101) [45]. It should be noted that the sample without UV treatment (0 min) shows
peaks corresponding to the amorphous region with weak intensity, which indicates a very
low crystallinity of the regenerated cellulose. These results coincide with the observed in
infrared spectroscopy, in which the displacement and absence of signals were related to
the loss of the cellulose crystalline structure. The loss of crystallinity in cellulose after the
regeneration process is normal, as evidenced by the extensive reported literature [32,34].

3.3. Rheology

Dynamic frequency sweep tests were performed to evaluate the structure and the
viscoelastic properties (storage modulus (G′) and loss modulus (G′′)) of the hydrogels as a
function of timescale and UV treatment.

A material is classified as a gel when the resulting G′ and G′′ are frequency indepen-
dent or they exhibited a weak frequency dependence. The curves of G′ and G′′ often occur
in the form of almost parallel straight lines throughout the entire frequency range, showing
only a slight slope. If the curves of G′ and G′′ present a slope less than 0.05, it is considered
that they are relatively frequency independent [46]. Furthermore, the relationship between
G′ and G′′ can be used to describe the “viscoelastic character” of a sample; i.e., if G′ > G′′,
the elastic behavior dominates the viscous one, but if G′′ > G′, the opposite is true [47].

As observed in Figure 4, the storage modulus (G′) was always higher than the loss
modulus (G′′), denoting that the solid-like behavior (elastic character) predominates over
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the liquid-like character. All of the hydrogels showed no crossing points and negligible
dependence of the frequency on the storage and loss moduli since G′ curves presented
slopes less than 0.05. There is a small decrease in the moduli, as the angular frequency
decrease points to the existence of relaxation processes, which can be induced by the release
of entrapped entanglements or the opening of ionic junction points. These phenomena are
not very pronounced, and the gels mainly exhibit rubber-elastic properties [48].
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Furthermore, the literature indicates that UV exposure time, up to a certain threshold,
leads to a higher number of functional crosslinks and enhances the viscoelastic properties
of the hydrogels. Longer exposure times allow for the photopolymerization reaction to
proceed to completion [49].

In the present study, samples of hydrogel were irradiated at different times. The
storage modulus (G′) of the hydrogels before and after exposure to UV light for 5, 10, 15,
and 20 min was analyzed. It was observed that the sample with no UV treatment presented
the lowest G′. Due to the increase in the exposure time to UV radiation, up to 15 min, the
hydrogel strength, G′, was promoted. A higher degree of crosslinking in the covalently
crosslinked polymeric network is obtained. The higher crosslinking degree caused the
closer distance between the chain segments and made the movement of molecular chains
more difficult, increasing the hydrogel stiffness [50]. Contrastingly, the G′ obtained with
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20 min of the UV treatment was lower than that obtained with 5 min, indicating that the
photocrosslinking effect on G′ decreases after 15 min of exposure to UV light. Photodegra-
dation or intramolecular cycles (chain loops) may be occurring beyond 15 min, producing
adverse effects in the hydrogel. It has been shown that the UV exposure time affects
the resultant hydrogel network defects, which has a pronounced effect on the hydrogel
modulus [51]. For example, chain entanglements cause an increase in crosslinking density
within the polymer network, which in turn results in a higher modulus [52]. Alternatively,
intramolecular cycles (chain loops) decrease crosslinking density, thus negatively affecting
hydrogel modulus [49]. Significant differences have also been observed for gelatin hydro-
gels modified with nanocellulose, in which the application of gamma radiation has shown
the generation of chemical crosslinking between the biopolymer molecules, reflected in G′

increments greater than 200% [53].

3.4. Stress-Strain Behavior

To accurately determine the mechanical properties of the hydrogels and to develop
morphological relationships, their linear viscoelastic region was determined by DMA,
employing a strain sweep test. Within this region, the material response is independent of
the deformation magnitude, and the material structure is maintained intact.

Figure 5a shows the relationship between the UV irradiation time and the storage
modulus (E′). The overall trend indicates that E′ is modified with irradiation time, which
has been attributed to the increase in the gel crosslinking density [54]. As noted, the
hydrogel irradiated for 15 min showed the best result, close to 190,000 Pa, and a linear
viscoelastic region that extends up to a deformation percentage of 0.32%. However, after
this value, the storage modulus experiments an increment, meaning that the material shows
a stiffening effect, which could be attributed to moisture loss. For this reason, it is difficult
to determine the limit of the linear viscoelastic region of the samples. Following this, the
10, 5, and 0 min samples showed storage moduli in the range of 30,000–60,000 Pa, while
the 20 min sample showed the lowest value. The loss modulus (E′′), Figure 5b, showed
the equivalent behavior as E′ respecting UV exposition time; however, E′ exhibited a more
major increase than E′′.
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As observed, E′ > E′′, which is representative of a reversible viscoelastic behavior
(characteristic of a gel or solid), and that, in this case, the elastic behavior dominates the
viscous one, showing rigidity in the samples.

The increasing tendency in resistance to deformation respecting UV treatment in the
hydrogel was related to the intermolecular interaction between adjacent cellulose chains,
resulting in a crosslinking process, as well as the formation of low-molecular-weight
polymeric radicals, which, as reported [55], take part in the photodegradation. A proposed
representative model of the process is shown in Figure 6.
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The photooxidation of cellulose and its derivatives has been studied for over a hundred
years, as pointed out by Hon in 1976 [56]. Previous studies have emphasized the presence
of oxygen as an essential condition in the photooxidation mechanism since it plays a vital
role in the formation of free radicals. According to these models, there are a variety of labile
points of photooxidation reactions, which include glycosidic bonds, OH groups, and H,
from which free radicals are formed. The products of photooxidation, due to the effect of
electronic rearrangement in the glucose ring, range from the breakdown of the glycosidic
group, the formation of carbonyl groups, to the ring-opening. Figure S1 illustrates the
micrographs treated with UV radiation (5, 10, 15, and 20 min) and without radiation (0 min).
Compared with the 0 min, there are changes in the morphology of the samples, suggesting
that UV treatment not only causes degradation, but also structural differences. For example,
the sample at 15 min, clearly shows layers in one direction, suggesting that this time of
radiation causes a packing of layers coinciding with the results of the mechanical property.
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On the contrary, at 20 min, no defined structure is shown, and therefore decrements in the
modules were observed.

4. Conclusions

The effect of UV irradiation time on cellulose hydrogels was studied. Cellulose was
isolated from the wheat husk and dissolved in N,N-dimethylacetamide/LiCl solvent. The
different characterization techniques showed significant effects as a function of irradiation
time, which was associated with crosslinking reactions. Notable differences were also
determined in regenerated cellulose regarding isolated cellulose, mainly in the loss of
crystallinity (cellulose I phase). According to DMA, with 15 min of UV treatment, E′

showed the best mechanical performance (200,000 Pa), compared to 0 min (33,000 Pa) and
20 min (20,000 Pa) UV treatment, showing a difference of 6 and 10 times, respectively.
For the first case, the difference was associated with chemical crosslinking, while for the
latter, the decrease was attributed to photodegradation. It should be noted that rotational
rheometry showed an equivalent behavior. Finally, it can be concluded that UV radiation
treatment demonstrated to be an efficient method to improve the mechanical properties of
cellulose hydrogels. In this study, 15 min of UV treatment provided the best results; up
to this point, the chemical crosslinking produces the greatest contribution to the hydrogel
mechanical properties, while at a longer time, the photochemical degradation predominates,
causing the opposite effect.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13142342/s1, Figure S1: FESEM Micrographs and reactor diagram for cellulose curing.
(a) 0 min; (b) 5min; (c) 10 min; (d) 15 min; (e) 20 min; and (f) reactor consisting of a UV lamp, camera
obscura and sample holder.
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