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Cannabinoids, including cannabis derived phytocannabinoids and endogenous
cannabinoids (endocannabinoids), are typically considered anti-inflammatory. One
such endocannabinoid is N-arachidonoylethanolamine (anandamide, AEA), which is
metabolized by fatty acid amide hydrolase (FAAH). In humans, there is a loss of
function single nucleotide polymorphism (SNP) in the FAAH gene (C385A, rs324420),
that leads to increases in the levels of AEA. Using a mouse model with this SNP,
we investigated how this SNP affects inflammation in a model of inflammatory bowel
disease. We administered 2,4,6-trinitrobenzene sulfonic acid (TNBS) intracolonically, to
adult male FAAH SNP mice and examined colonic macroscopic tissue damage and
myeloperoxidase activity, as well as levels of plasma and amygdalar cytokines and
chemokines 3 days after administration, at the peak of colitis. We found that mice
possessing the loss of function alleles (AC and AA), displayed no differences in colonic
damage or myeloperoxidase activity compared to mice with wild type alleles (CC). In
contrast, in plasma, colitis-induced increases in interleukin (IL)-2, leukemia inhibitory
factor (LIF), monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF)
were reduced in animals with an A allele. A similar pattern was observed in the amygdala
for granulocyte colony stimulating factor (G-CSF) and MCP-1. In the amygdala, the
mutant A allele led to lower levels of IL-1α, IL-9, macrophage inflammatory protein (MIP)-
1β, and MIP-2 independent of colitis—providing additional understanding of how FAAH
may serve as a regulator of inflammatory responses in the brain. Together, these data
provide insights into how FAAH regulates inflammatory processes in disease.
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INTRODUCTION

Cannabinoids typically confer anti-inflammatory effects
and provide protection against peripheral inflammatory
illnesses, such as inflammatory bowel diseases (IBD)
(Picardo et al., 2019; Osafo et al., 2021). Phytocannabinoids,
such as 19-tetrahydrocannabinol, derived from the
Cannabis sativa plant, exert their biological effects through
interactions with the endocannabinoid (eCB) system. The
eCB system is composed of the lipid signaling molecules,
N-arachidonoylethanolamine/anandamide (AEA) and
2-arachidonylglycerol (2-AG); their respective primary
biosynthetic [N-acylphospitidyl ethanolamine-phospholipase
D (NAPE-PLD) for AEA and diacylglycerol lipase (DAGL) for
2-AG] and metabolizing enzymes [fatty acid amide hydrolase
(FAAH) for AEA and monoacylglycerol lipase (MAGL) for 2-
AG]; and two receptors, CB1 and CB2 (Katona and Freund, 2012).
While both cannabinoid receptors are expressed on immune cells
(Munro et al., 1993) and largely act to suppress inflammatory
processes, CB2 is the receptor primarily responsible for the
regulation of immune function while CB1 is the primary receptor
in the brain. The specific mechanisms by which eCBs exert
their anti-inflammatory effects include the inhibition of cell
proliferation and migration, as well as through suppression of
cytokine production (Parolaro, 1999; Nagarkatti et al., 2009).

Numerous studies show that elevating eCB signaling in
chronic inflammatory diseases, such as IBD, is protective
(Massa et al., 2004; Engel et al., 2008; Marques et al., 2008;
Storr et al., 2010). Mice with genetic deletions of cannabinoid
receptors have increased susceptibility to IBD (Massa et al.,
2004; Storr et al., 2008a,b, 2009; Engel et al., 2010) and
collagen-induced arthritis (Kinsey et al., 2011). Alternately,
pharmacological inhibition or genetic deletion of FAAH,
pharmacological inhibition of MAGL or activation of CB1
improves chemically induced colitis in rodents (Massa et al.,
2004; Alhouayek et al., 2011; Fichna et al., 2014; Sałaga et al.,
2014; Sasso et al., 2015; Shamran et al., 2017). Furthermore,
in neurological inflammatory conditions, including excitotoxic
injury (Marsicano et al., 2003), experimental autoimmune
encephalitis (EAE) (Walter and Stella, 2004; Rossi et al., 2010;
Pryce and Baker, 2012), neurodegenerative diseases (Rossi et al.,
2010; Sánchez and García-Merino, 2012; Vázquez et al., 2015),
head injury (Panikashvili et al., 2006; Tchantchou et al., 2014),
aging (Marchalant et al., 2008), and ischemia (Hayakawa et al.,
2008), there are neuroprotective effects of eCBs, primarily
through reducing the expression of proinflammatory cytokines.

Inhibiting the degradation of AEA through the administration
of FAAH inhibitors is typically anti-inflammatory. FAAH
inhibitors or genetic deletion of Faah results in decreased
responses to lipopolysaccharide (LPS) administration (Naidu
et al., 2007) and reduced inflammation in a carrageenan model
of acute inflammation (Holt et al., 2005), both via a CB2 receptor
dependent mechanism. Increasing AEA signaling in vivo or
in vitro, reduces levels of proinflammatory cytokines and other
inflammatory mediators, such as nitric oxide, and increases
anti-inflammatory cytokines (Puffenbarger et al., 2000; Chang
et al., 2001; Facchinetti et al., 2003; Ortega-Gutiérrez et al., 2005;

Tham et al., 2007; Correa et al., 2009, 2010). This also occurs
within the central nervous system, where FAAH inhibition
reduces the expression of LPS-induced proinflammatory
cytokines in the hypothalamus (Kerr et al., 2012).

The amygdala is a brain region that is influenced by
inflammation, with different inflammatory stimuli [i.e., rodent
models of bacterial infection, systemic cytokine administration or
disease models for multiple sclerosis (MS), colitis and arthritis]
elevating excitatory neurotransmission within subnuclei of the
amygdala, such as the basolateral nucleus (BLA), which is
related to associated increases in anxiety-like behavior (Han and
Neugebauer, 2004; Porcher et al., 2004; Welch et al., 2005; Chen
et al., 2013; Jain et al., 2015; Acharjee et al., 2018; Li et al., 2018;
Munshi and Rosenkranz, 2018; Zheng et al., 2021). Furthermore,
elevated indices of amygdala activation are also observed in
patients with gastrointestinal diseases, including, irritable bowel
syndrome, and IBD (Naliboff and Mayer, 2006; Labus et al.,
2009, 2013; Agostini et al., 2011; Fukudo and Kanazawa, 2011;
Hubbard et al., 2011; Tillisch et al., 2011; Bao et al., 2015;
Icenhour et al., 2015; Weaver et al., 2016; Fan et al., 2019). We
previously showed in a rodent colitis model that the amygdalar
eCB system is altered, and that these changes contribute to
anxiety-like behavior in rats (Vecchiarelli et al., 2021). Given that
FAAH inhibition ameliorates colitis-induced anxiety, and has the
ability to suppress inflammatory processes, it remains possible
that one mechanism by which elevated AEA signaling in the
amygdala could reduce inflammation-associated anxiety is via the
suppression of inflammatory cytokines.

Recently, a knock-in mouse model was developed for
the common human single nucleotide polymorphism (SNP)
mutation in FAAH (C385A; rs324420) (Dincheva et al., 2015).
Individuals with this SNP have FAAH in which a conserved (C)
proline (AA129) is substituted with a (A) threonine, which makes
FAAH more susceptible to proteolytic degradation (Dincheva
et al., 2015). In A allele carriers, there are reduced FAAH
protein levels and activity, as well as an increase in AEA levels
(Dincheva et al., 2015; Mayo et al., 2020). There is little known
about the effect of this SNP on inflammatory processes. Given
that inhibiting FAAH is anti-inflammatory, these FAAH C385A
SNP mice represent an ideal model system to investigate the
effects of elevating AEA on gut inflammation, peripheral and
amygdala inflammatory levels in a manner that may shed light
on disease vulnerability for humans who possess this SNP. Based
on the established role of AEA signaling, inflammation and
disease, we hypothesize that reduced FAAH activity (as seen in
A carriers) will improve gut inflammation and reduce circulating
and amygdalar cytokines.

MATERIALS AND METHODS

Animals
These studies utilized young adult (7–9 week old), male FAAH
C385A mice (Dincheva et al., 2015). These mice were derived
from the line previously generated (Dincheva et al., 2015) and
back crossed on a C57/Bl6J strain for over twenty generations.
Mice were maintained in a specified pathogen free facility and
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obtained from in-house breeding, which crossed heterozygous
males and heterozygous females. This breeding resulted in the
following genotypes, all of which were utilized: wild type (CC),
heterozygous (AC), and homozygous (AA) for the mutation.
Genotyping was performed at the Hotchkiss Brain Institute
Molecular Core Facility. Both the AC and AA groups exhibit
reduced FAAH activity and increased AEA levels (Dincheva
et al., 2015; Mayo et al., 2020). A carriers (i.e., AC and AA
groups), as in human studies (Hariri et al., 2009; Dincheva et al.,
2015; Gärtner et al., 2019; Lazary et al., 2019), were collapsed
(collectively referred to as A, whereas CC are referred to as C)
for analysis, as the magnitude of FAAH activity and AEA level
changes are similar in both the AA and AC groups (Dincheva
et al., 2015). Mice were kept on an 12:12 h light-dark cycle
and had ad libitum access to food and water. All experiments
were performed during the light phase. All experiments were
approved by the Health Sciences Animal Care Committee of the
University of Calgary and followed guidelines from the Canadian
Council on Animal Care.

Colitis Induction
Under brief isoflurane anesthesia, mice received an intrarectal
bolus (approximately 3 cm proximal to the anus) of 2,4,6-
trinitrobenzene sulfonic acid (TNBS) [Millipore Sigma,
Darmstadt, Germany, #92822; 4 mg; 50% (vol/vol) in
ethanol/water], via a plastic cannula. Control animals received
the same volume of saline. Body weight was monitored daily.
Analysis took place 3 days after TNBS administration, when
inflammatory responses peak (Elson et al., 1996).

Macroscopic Tissue Damage
Colons were removed and washed with ice-cold physiological
saline (0.9%) and cut open longitudinally and macroscopically
scored blindly for damage and inflammation. These scores were
based on the presence or absence of adhesions and diarrhea
and the degree of ulceration similar to those previously reported
(Riazi et al., 2008; Vecchiarelli et al., 2021).

Myeloperoxidase Activity
Following macroscopic tissue damage assessment, a sample of
colon was excised, snap frozen, and stored at −80◦C for later
use in a myeloperoxidase (MPO) activity assay, as previously
described (Sigalet et al., 2010; Vecchiarelli et al., 2021). Briefly,
samples were homogenized in hexadecyltrimethylammonium
bromide (HTAB; Sigma-Aldrich, Darmstadt, Germany, #H5882)
in potassium phosphate buffer, homogenized using a 5 mm
stainless-steel bead (Qiagen, Hilden, Germany, #69989) and
TissueLyser LT bead homogenizer (Qiagen) for 10 min at 5 Hz
and centrifuged for 10 min at 15871× g at 4◦C. Supernatant was
added to hydrogen peroxide and o-dianisidine dihydrochloride
in a 96 well-plate. Absorbance was measured at 450 nm, three
times over 1 min (SpectraMax M Plate Reader, Molecular
Devices, San Jose, CA, United States). MPO was expressed in
milliunits per gram of wet tissue, 1 unit being the quantity of
enzyme able to convert 1 µmol of H2O2 to water in 1 min at room
temperature. Units of MPO activity per minute were calculated

from a standard curve using purified peroxidase enzyme (Sigma-
Aldrich, #M6908).

Cytokine/Chemokine Multiplex Assay
(Plasma and Amygdala)
As previously described (Vecchiarelli et al., 2016), plasma
was separated from trunk blood following collection by
centrifugation for 20 min at 10,000 × g at 4◦C. Plasma was
aliquoted and stored at−80◦C. Amygdalae were micro-dissected
(Gray et al., 2015; Vecchiarelli et al., 2016, 2021) and stored
at −80◦C prior to processing for cytokine ELISAs. Samples
were placed in 10 µL/mg of homogenization buffer [150 mM
sodium chloride, 2.5 mm magnesium chloride, 5 mg/500 mL
aprotinin and cOmpleteTM protease inhibitors (Millipore
Sigma, #11836145001)]. Tissue homogenization occurred
with mechanical disruption using a 5 mm stainless steel bead
and TissueLyser LT bead homogenizer for 2 min at 50 Hz.
Homogenized samples were run through a 0.22 µm spin filter
tube (Millipore Sigma, #UFC30GVNB) for 4 min at 12,000 g
at 4◦C. Total protein quantification was assayed using a Pierce
bicinchoninic acid (BCA) assay according to the manufacturer’s
protocol (Thermo Fisher Scientific, Waltham, MA, United States,
#23225). Samples were diluted to a final protein concentration of
500 µg/mL.

Eotaxin [C-C motif chemokine ligand (CCL)11], granulocyte
colony stimulating factor (G-CSF), granulocyte monocyte colony
stimulating factor (GM-CSF), interferon (IFN)γ, interleukin
(IL)-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10,
IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17A, IFNγ inducible
protein (IP)-10 (C-X-C motif chemokine ligand 10; CXCL10),
KC (CXCL1), leukemia inhibitory factor (LIF), LPS-induced
CXC (LIX), monocyte chemoattractant protein (MCP)-1 (CCL2),
macrophage colony stimulating factor (M-CSF), monokine
induced by IFNγ (MIG), monocyte inflammatory protein (MIP)-
1α (CCL3), MIP-1β (CCL4), MIP-2 (CXCL2), regulated on
activation normal T cell expressed and secreted (RANTES;
CCL5), TNF, and vascular endothelial growth factor (VEGF) were
assayed using a Millipore Milliplex Mouse 32-Plex Cytokine- and
Chemokine-Array (Millipore Sigma, #MCYTMAG-70K-PX32)
by Eve Technologies (Calgary, AB, Canada). The dotted line in
each graph in the results represented the limit of detection for
each assay and if values were not detected, the minimum standard
was utilized instead.

Statistics
Statistics were carried out using Prism v9 (GraphPad, San Diego,
CA, United States, RRID:SCR_002798). Outliers were removed
using the ROUT method (Motulsky and Brown, 2006), set to a 1%
threshold, in the software, as previously described (Vecchiarelli
et al., 2016). All data were comparisons between two independent
variables, therefore two-way analysis of variance (ANOVA)s
were performed. For all ANOVA analyses, interactions and
main effects were reported, and relevant comparisons were
performed using Fisher’s Least Significant Difference (LSD) tests.
F-values and p-values are reported in Supplementary Table 1.
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FIGURE 1 | Colitis is not altered by FAAH genotype. Colitis significantly
increased (A) macroscopic tissue damage and (B) MPO activity, but there was
no effect of genotype, or interaction between the genotype and colitis.
n = 6–16/group. ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001, main effect of colitis.
Saline = left pair, black bars with circles. TNBS = right pair, orange bars with
squares. In each pair, the left bar is the C allele group (CC genotype) and the
right bar is the A allele group (AC/AA genotypes).

Data are presented as mean ± standard error of the mean
(SEM). p < 0.05 was considered statistically significant and
p < 0.1 was noted.

RESULTS

The Fatty Acid Amide Hydrolase Single
Nucleotide Polymorphism Had No
Impact on Macroscopic Damage or Gut
Inflammation
Colitis was associated with an increased macroscopic tissue
damage (Figure 1A), but this was unaffected by the genotype
of the mice. Similarly, increased MPO activity was observed
in mice with colitis (Figure 1B), but again there was no
effect of genotype.

Genetic Variants of Fatty Acid Amide
Hydrolase Influenced Colitis-Induced
Alterations in Circulating Cytokines and
Chemokines
Both colitis and genotype influenced plasma cytokine levels
(Figure 2). For IL-2 and LIF (Figures 2A,B), inflammation-
induced increases were reversed with an A genotype, whereas
for MCP-1 and TNF (Figures 2C,D), colitis-induced increases
were attenuated with an A genotype. For RANTES (Figure 2E),
in the colitic mice, animals with an A allele had higher levels
than the C allele. For IL-1α, LIX and M-CSF (Figures 2F–H),
both colitis and possessing an A allele led to reductions, however,
there was no interaction or additive effects between the two
conditions. G-CSF, GM-CSF, IL-6, IL-15, IP-10, KC, MIP-1α,
and MIP-1β (Figures 2I–P) levels were increased in animals
with colitis. Conversely, MIG and MIP-2 (Figures 2Q,R) levels
were decreased in animals with colitis. There were no significant
changes in in Eotaxin, IFNγ, IL-1β, IL-3, IL-4, IL-5, IL-7, IL-
9, IL-10, IL-12p40, 1L-12p70, IL-13, IL-17A, and VEGF levels
(Figures 2S–AF) from either colitis or the FAAH SNP.

Genetic Variants of Fatty Acid Amide
Hydrolase Influenced Colitis-Induced
Changes in Amygdalar Cytokines and
Chemokines
There were effects of both colitis and the FAAH SNP on amygdala
cytokine and chemokine levels (Figure 3). There was a reversal of
colitis-induced changes in amygdala levels of G-CSF and MCP-
1 with an A allele (Figures 3A,B). IL-5 levels (Figure 3C) were
lower in the amygdala of animals possessing an A allele following
colitis than either the A allele saline group or the C allele
colitis group. Colitis increased amygdalar levels of Eotaxin, IL-13
and KC (Figures 3D–F); whereas levels of IL-12p70 and VEGF
(Figures 3G,H) were reduced in animals with colitis. Possessing
an A allele led to decreased levels of IL-1α, IL-9, MIP-1β, and
MIP-2 (Figures 3I–L). There were no significant changes in the
amygdala in levels of GM-CSF, IFNγ, IL-1β, IL-2, IL-3, IL-4, IL-
6, IL-7, IL-10, IL-12p40, IL-15, IL-17A, IP-10, LIF, M-CSF, MIG,
MIP-1α, RANTES, and TNFα (Figures 3M–AE). There were no
detectable levels of LIX in the amygdala (data not shown).

DISCUSSION

The role of the common SNP of FAAH in inflammatory diseases
is not well understood. We examined how genetic variants of
FAAH could influence the peripheral and neuroinflammatory
response in colitis in a recently developed mouse model
expressing the human SNP of FAAH (Dincheva et al., 2015).
Three days after the induction of colitis corresponds to the
peak of inflammation (Elson et al., 1996), and thus we chose
to examine this time point. We found that there was no effect
of genotype on macroscopic tissue damage or MPO activity
in the inflamed colon. Interestingly, however, genetic reduction
of FAAH activity significantly attenuated or fully reversed
inflammation-induced increases of plasma IL-2, LIF, MCP-1,
and TNF; as well as amygdala G-CSF and MCP-1 levels. FAAH
reduction in the amygdala leads to reduced IL-1α, IL-9, MIP-1β,
and MIP-2 levels.

Many of the colitis-induced cytokines that we found to be
influenced by the FAAH SNP (e.g., IL-2, LIF, MCP-1, and TNF),
have been found to be regulated by FAAH inhibition in other
studies. FAAH inhibition or boosting AEA levels inhibits IL-2
(Rockwell and Kaminski, 2004; Kaplan et al., 2005; Rockwell et al.,
2008; Cencioni et al., 2010; Patsenker et al., 2015; Zajkowska et al.,
2020), inhibits LIF release (Maccarrone et al., 2001; Maccarrone
and Wenger, 2005), and reduces MCP-1 levels (Nakajima et al.,
2006; Özdemir et al., 2014; Rivera et al., 2018; Selvaraj et al.,
2019; Zhang et al., 2020; Hermes et al., 2021). There are many
reports showing that FAAH inhibition or increases in AEA levels
reduces TNF levels (Nakajima et al., 2006; Bátkai et al., 2007;
Naidu et al., 2007; Tham et al., 2007; Roche et al., 2008; Rettori
et al., 2012; Nader et al., 2014; Özdemir et al., 2014; Patsenker
et al., 2015; Petrosino et al., 2018; Rivera et al., 2018; Selvaraj
et al., 2019; Shang et al., 2020). Following a wide range of
inflammatory stimuli, FAAH inhibition or increasing AEA levels
also leads to a reduction in IFNγ, IL-1β, IL-6, IL-8, among others
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FIGURE 2 | FAAH SNP altered colitis-induced changes in plasma cytokines and chemokines. Having an A allele mitigated colitis-induced increases in (A) IL-2,
(B) LIF, (C) MCP-1, and (D) TNF and reductions in (E) RANTES. Both possessing an A allele or colitis reduced levels of (F) IL-1α, (G) LIX, and (H) M-CSF, but there
was not an additive effect of both conditions. Colitis increased levels of (I) G-CSF, (J) GM-CSF, (K) IL-6, (L) IL-15, (M) IP-10, (N) KC, (O) MIP-1α and (P) MIP-1β and
reduced levels of (Q) MIG and (R) MIP-2. There were no significant changes in (S) Eotaxin, (T) IFNγ, (U) IL-1β, (V) IL-3, (W) IL-4, (X) IL-5, (Y) IL-7, (Z) IL-9, (AA)
IL-10, (AB) IL-12p40, (AC) IL-12p70, (AD) IL-13, (AE) IL-17A, and (AF) VEGF. n = 4–16/group. Fp < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001,
saline vs. TNBS of same genotype. ˆp < 0.1, �p < 0.05, ��p < 0.01, ���p < 0.001, C vs. A of same condition (saline or TNBS). #p < 0.1, ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001 main effect of colitis (lines) or genxotype (symbols above bars). Saline = left pair, black bars with circles. TNBS = right
pair, orange bars with squares. In each pair, the left bar is the C allele group (CC genotype) and the right bar is the A allele group (AC/AA genotypes). Dotted lines
indicate minimal detection threshold for the analyte and was included in graphs where values were below threshold or the threshold value was used.
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FIGURE 3 | FAAH SNP altered colitis-induced changes in amygdala cytokines and chemokines. Having an A allele mitigated colitis induced increases in (A) G-CSF,
(B) MCP-1, and (C) IL-5. Colitis increased levels (D) Eotaxin, (E) IL-13, and (F) KC and reduced levels of (G) IL-12p70 and (H) VEGF. Possessing an A allele led to
lower levels of (I) IL-1α, (J) IL-9, (K) MIP-1β, and (L) MIP-2. There were no significant changes in (M) GM-CSF, (N) INFγ, (O) IL-1β, (P) IL-2, (Q) IL-3, (R) IL-4,
(S) IL-6, (T) IL-7, (U) IL-10, (V) IL-12p40, (W) IL-15, (X) IL-17A, (Y) IP-10, (Z) LIF, (AA) M-CSF, (AB) MIG, (AC) MIP-1α, (AD) RANTES, and (AE) TNF.
n = 5–16/group. *p < 0.05, **p < 0.01, saline vs. TNBS of same genotype. �p < 0.05, ��p < 0.01, ���p < 0.001, C vs. A of same condition (saline or TNBS).
#p < 0.1, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗∗p < 0.0001 main effect of colitis (lines) or genotype (symbols above bars). Saline = left pair, black bars with circles.
TNBS = right pair, orange bars with squares. In each pair, the left bar is the C allele group (CC genotype) and the right bar is the A allele group (AC/AA genotypes).
Dotted lines indicate minimal detection threshold for the analyte and was included in graphs where values were below threshold or the threshold value was used.
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(Nakajima et al., 2006; Rettori et al., 2012; Özdemir et al., 2014;
Patsenker et al., 2015; Chiurchiù et al., 2016; Petrosino et al., 2018;
Rivera et al., 2018; Selvaraj et al., 2019; Zhang et al., 2020). This
is, to the best of our knowledge, the first report of FAAH/AEA’s
influence on G-CSF levels. Our work is consistent with these
previous reports and is the first to report an immunomodulatory
effect of this SNP, which reduces FAAH activity, including in
the context of central cytokine changes in a model of peripheral
inflammatory disease. However, it is unclear why reducing FAAH
activity does not attenuate colitis-induced increases in IL-6, given
what others have shown. We only measure one time point,
and it is possible that without a time course analysis, we are
missing subtle dynamics as to the effects of both colitis, FAAH
genotype and their combination on cytokine expression levels,
both peripherally and centrally.

Intriguingly, our results show no changes in colonic
macroscopic tissue damage and MPO activity, but do show
the ability of the FAAH SNP to attenuate some changes in
plasma cytokines/chemokines. Therefore, it seems unlikely that
the attenuation of some plasma cytokines altered with colitis in
mice with an A SNP is due to changes in their production in
the colon. As such, it seems likely that the elevated levels of
anandamide seen in this FAAH SNP may act distal to the colon,
likely directly on immune cells in the circulation or resident in the
brain, to dampen the release of immunomodulatory cytokines.

Given that we have previously demonstrated that elevations
of FAAH within the amygdala following the induction of colitis
were associated with the development of anxiety (Vecchiarelli
et al., 2021), which in peripheral inflammatory contexts is known
to be driven by inflammatory cytokines within the amygdala
proper (Chen et al., 2013), these data also suggest that a potential
mechanism by which elevated AEA signaling may be able to
dampen inflammation-associated anxiety is via a suppression of
inflammatory cytokine levels within the amygdala.

FAAH reductions ameliorate colitis-induced increases in
circulating IL-2, LIF, MCP-1, and TNF, which implies that FAAH
activity 3 days after TNBS administration may contribute to T cell
differentiation, proliferation and migration, as well as monocyte
trafficking in this model, perhaps by altering levels of AEA. Faah
expression has been shown to be increased in the proximal colon
in this model of inflammation (Storr et al., 2008a), indicating that
colitis may alter FAAH at this time point, thus suggesting that the
loss of function FAAH SNP we are exploring in the current study
may confer some immunomodulatory benefit by reducing the
impacts of this upregulation of FAAH. We also see that at baseline
FAAH activity indirectly regulates other inflammatory molecules
in the amygdala, particularly IL-9, MIP-1β, and MIP-2, which
stimulate mast cells and neutrophils (Ren et al., 2010; Rojas-
Zuleta and Sanchez, 2017), as well as IL-1α, contributing to our
understanding of AEA as a potential modulator of inflammatory
responses. To the best of our knowledge, we are the first to
demonstrate that FAAH inhibition regulates IL-1α, IL-9, MIP-1β,
and MIP-2 levels.

These effects on cytokine levels are perhaps not only due
to alterations in the levels of AEA caused by the FAAH SNP.
FAAH hydrolyzes other fatty acid ethanolamides including

palmitoylethanolamide (PEA) and oleoylethanolamide (OEA),
which have anti-inflammatory effects (Pontis et al., 2016). OEA
inhibits MCP-1 levels (Montecucco et al., 2015; Antón et al.,
2017; Zhao et al., 2018) and also reduces TNF levels (Sayd et al.,
2014; Chen et al., 2015; Xu et al., 2016; Antón et al., 2017).
PEA reduces MCP-1 levels (D’Aloia et al., 2021; Fusco et al.,
2021) and TNF levels (Costa et al., 2008; De Filippis et al.,
2009; Hoareau et al., 2009; Cerrato et al., 2010; Di Paola et al.,
2012, 2016; Sayd et al., 2014; Impellizzeri et al., 2015; Rahimi
et al., 2015; Orefice et al., 2016; Britti et al., 2017; Gugliandolo
et al., 2017; D’amico et al., 2019; Puglia et al., 2020; Ardizzone
et al., 2021; D’Aloia et al., 2021). PEA reduces inflammation in
human colonic tissue (from patients with IBD, colon cancer and
appendicitis), including levels of IL-6, IL-8, IL-17A, MCP-1, and
GM-CSF (Couch et al., 2017). There are no reported effects of
PEA or OEA on IL-2, LIF, or G-CSF, although this does not rule
out any effects in our model in these cytokines being attributed
to either PEA or OEA. Given that PEA and OEA are not only
metabolized by FAAH, but also have immunomodulatory effects,
it is possible that the effects we observed are not limited to AEA
and the endocannabinoid system, but are a concerted network
effect produced by the elevations of all of these fatty acid amides
acting in tandem.

In the human literature, there are very few reports
examining the relationship between the FAAH SNP (C385A)
and inflammatory diseases. In one study, in MS patients who
received IFNγ (resulting in a condition called flu-like syndrome),
possessing the A allele of this SNP did not alter any of
the syndrome symptoms measured, including general malaise,
muscle pain, chills, weakness and the need to take non-steroidal
anti-inflammatory drugs (Buttari et al., 2017). Additionally, one
report investigated this SNP in relation to IBD (Storr et al., 2009).
They find that there are no differences in the frequency, and
thus potentially, susceptibility, of this genotype among controls,
or patients with ulcerative colitis or Crohn’s disease (for which
TNBS administration is a model) (Storr et al., 2009). They
do show, however, that in patients with Crohn’s disease, being
homozygous for the A allele leads to a more severe phenotype,
including fistulas and extra-intestinal manifestations (Storr et al.,
2009). In ulcerative colitis patients, being homozygous for the A
allele is associated with an earlier disease onset (Storr et al., 2009).
Interestingly, patients with type two diabetes carrying an A allele
(C385A) have higher TNF levels (de Luis et al., 2010), indicating
for some diseases, this allele may not always confer protective
effects. Inflammation can increase AEA levels (Liu et al., 2003;
Doenni et al., 2016; Grill et al., 2019), and therefore, it is possible
that in the context of a reduction in FAAH activity, as seen in
this genotype, there is even more AEA. Greater AEA and other
mediators may act on the transient receptor potential vanilloid
type 1 (TRPV1) or other receptors to drive inflammation or
inflammatory damage. While we did not see any exacerbation
of the primary disease pathology itself by the FAAH SNP, we
did look at an early time point to align with the peak of the
acute phase of colitis, so it remains possible that this SNP could
have deleterious effects on the disease progression under more
long-term or chronic conditions.
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In summary, in mice with acute colitis, increased plasma
and amygdala cytokine levels are regulated by the activity of
FAAH. Reductions in FAAH activity are able to reverse some
of the peripheral and central inflammatory changes, particularly
in those that drive monocyte and CD4+ T cell activation and
migration. Since there were no effects of the genotype on colitis,
these effects are likely mediated by the actions of elevated
AEA (or other fatty acid amides) signaling to circulating or
resident immune cells. Our data will inform future approaches
to the personalized treatment of individuals with FAAH SNPs
and may contribute to an understanding of disease outcome
and progression, potentially providing treatment insights for
these individuals.
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