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SUMMARY

Asymptomatic infection is a big challenge in curbing the spread of COVID-19.
However, its identification and pathogenesis elucidation remain issues. Here,
by performing comprehensive lipidomic characterization of serum samples
from 89 asymptomatic COVID-19 patients and 178 healthy controls, we screened
out a panel of 15 key lipids that could accurately identify asymptomatic patients
using a new ensemble learning model based on stacking strategy with a voting
algorithm. This strategy provided a high accuracy of 96.0% with only 3.6% false
positive rate and 4.8% false negative rate. More importantly, the unique lipid
metabolic dysregulationwas revealed, especially the enhanced synthesis ofmem-
brane phospholipids, altered sphingolipids homeostasis, and differential fatty
acids metabolic pattern, implicating the specific host immune, inflammatory,
and antiviral responses in asymptomatic COVID-19. This study provides a
potential prediagnostic method for asymptomatic COVID-19 and molecular clues
for the pathogenesis and therapy of this disease.

INTRODUCTION

The coronavirus disease 2019 (COVID-19) is a newly emerged pandemic caused by severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2). The rapid spread of COVID-19 around the world presents an un-

precedented threat to global public health. According to the data from the World Health Organization,

by the time of 5th April, 2021, 131,020,967 cases have been confirmed worldwide, including 2,850,521

deaths. Although vaccination is ongoing, the shortage of vaccines and emergence of SARS-CoV-2 variants

will make this disease threatening over a considerable period of time. A recent study estimated the B.1.1.7

SARS-CoV-2 variant is 43%–90% more transmissible than preexisting variants and predicted a higher num-

ber of coronavirus deaths across England in 2021 than those in 2020 (Davies et al., 2021).

Most patients confirmed with COVID-19 had different degrees of respiratory illness, ranging from mild to

critical, with symptoms such as fever, cough, expectoration, and respiratory distress (Wang et al., 2020).

However, there are a special group of patients who were diagnosed positive of SARS-CoV-2 nucleic acid

by real-time polymerase chain reaction (RT-PCR) test but exhibited no typical clinical symptoms (Hu

et al., 2020). The proportion of asymptomatic infections is hard to be precisely known, but appear to reach

51.7% for cases on board the Diamond Princess Cruise ship in Japan (Mizumoto et al., 2020). It has

been known that these asymptomatic individuals are not inferior to spread the virus (Bai et al., 2020).

Nevertheless, the lack of clinical oversight of these silent spreaders makes it more difficult for the preven-

tion and control of the epidemic.

RT-PCR can detect the virus RNA in COVID-19 patients directly and is now widely used around the world,

but its performance was usually compromised by the moderate sensitivity (~70%) and it needs repeat

testing (Ai et al., 2020; Surkova et al., 2020; Watson et al., 2020). The false negative may lead to the omission

of true SARS-CoV-2 carriers, especially the asymptomatic COVID-19 patients. Therefore, other techniques

that could provide rapid and reliable diagnosis are still needed. Furthermore, the current treatment of

COVID-19 remains empirical and the deep understanding of the pathogenesis of the disease is urgent.

Host cell lipids play important roles in the entire life cycle of the virus, from virus entry, virus replication, to

virus release (Abu-Farha et al., 2020; Dadhich and Kapoor, 2020). Viruses are known to reprogram the lipid

metabolism of host cells to support self-proliferation upon infection. Compounds targeting lipid
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Table 1. Demographics and baseline characteristics of asymptomatic COVID-19

Variables Asymptomatic (n = 89) Healthy (n = 178)

Sex - no. (%)

Male 47 (52.8%) 94 (52.8%)

Female 42 (47.2%) 84 (47.2%)

Age, years

Range 19–88 19–91

Mean G SD 45 G 13 45 G 13

Median (IQR) 43 (36–53) 43 (35–52)

Seropositive for antibodies against SARS-CoV-2 - no. (%)

IgM 16 (18.0%) 0

IgG 83 (93.3%) 0

no. (%), number (percentage); SD, standard deviation; IQR, interquartile range.

See also Table S1.
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metabolism have shown potential as antivirals for viruses including SARS-CoV-2 (Abu-Farha et al., 2020;

Silvas et al., 2020). Several studies have been carried out to investigate the lipid alterations upon SARS-

CoV-2 infection (Schwarz et al., 2020; Song et al., 2020; Thomas et al., 2020a; Wu et al., 2020). However,

these studies are mostly focused on symptomatic patients. So far, to the best of our knowledge, the

comparative study of lipidomic signature between the asymptomatic COVID-19 and healthy people has

not been realized.

In this study, we hypothesized that SARS-CoV-2 infection would induce characteristic lipidomic alterations

in the serum of asymptomatic patients. These molecular changes may contribute to the discrimination and

deep understanding of asymptomatic COVID-19. To test this hypothesis, we performed mass-spectrom-

etry (MS)-based lipidomic profiling of serum samples from 89 asymptomatic COVID-19 patients and 178

healthy controls. A total of 432 lipids including 19 subclasses were identified and relatively quantified.

We used machine learning to process the MS data and discovered a panel of 15 distinct serum lipids

that could effectively distinguish asymptomatic COVID-19 patients from healthy controls. A new ensemble

learning model consisting of random forest (RF) and support vector machine (SVM) was developed, which

provided a high mean accuracy of 96.0% with only 3.6% false positive rate and 4.8% false negative rate in 20

repeated nested fivefold cross-validation models. In addition, distinct molecular changes in several impor-

tant lipid classes were identified in asymptomatic COVID-19, which indicated the unique and dysregulated

lipid metabolism, especially the enhanced synthesis of membrane phospholipids, the altered sphingoli-

pids homeostasis, and differential metabolic pattern of fatty acids (FAs). These molecular alterations

providedmechanistic insights of asymptomatic COVID-19 and implicated the specific host immune, inflam-

matory, and antiviral responses during the virus invasion process in asymptomatic COVID-19.
RESULTS

Clinical characteristics and lipidomic profiling of asymptomatic COVID-19 serum

We procured a cohort of 267 subjects including 89 asymptomatic COVID-19 patients and age- and sex-

matched healthy controls (n = 178). The demographic characteristics and laboratory findings of these par-

ticipants are shown in Table 1 and Table S1. In the asymptomatic group, 18.0% (16/89) tested seropositive

for IgM, while 93.3% (83/89) appeared to be seropositive for IgG. IgM is produced in the early stage of

SARS-CoV-2 infection, while IgG is likely to exist for a longer period (Xu et al., 2020). The high positive

rate for IgG and relatively low positive rate for IgM may indicate that most patients were in the middle

or late stages of infection.

We used MS-based untargeted lipidomics approach to analyze the serum samples. Peaks with relative

standard deviations (RSDs) < 30% across quality control samples after subtraction of background noise

were further processed for structure confirmation. A total of 432 lipids including 19 subclasses were finally

identified and relatively quantified (Tables S2 and S3). Specifically, the median RSD value for the identified

lipids in quality control (QC) samples was 6.7% (Figure S1A), indicating good stability and reproducibility of
2 iScience 24, 102974, September 24, 2021
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Figure 1. Scheme for construction of lipid panel to distinguish asymptomatic COVID-19 patients from healthy controls

The top 60 important lipids were picked out according to their average importance in 100 repeated random forest models. These lipids were divided into 12

sets according to their belonging subclasses. An initial panel consisting of 12 lipids was generated by first randomly selecting one lipid from the top 3

important lipids in each set to form a series of panels and then picking out the panel with the highest classification accuracy of 20 repeated fivefold nested

cross-validation in random forest models. Add each of the remaining lipids to the initial panel respectively, and retain the lipid that lead to the highest

increase in accuracy to form a new panel. Repeat this step until the resulting accuracy was no longer improved by adding a new lipid. A final panel consisting

of 15 lipids was generated at last with an accuracy of 0.954G 0.029, much higher than the randomly selected 15 lipids from the starting pool (0.678–0.898 over

1,000 times).

See also Table S4.
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the lipidomic analysis procedure. Besides, plots of QC samples were found to be well gathered in principal

component analysis (PCA) plots based on the omics data, while no obvious separation was observed

between asymptomatic COVID-19 and healthy controls (Figure S1B).

To investigate whether the sample size is enough for meaningful discrimination based on our MS data, we

performed power analysis (a universal method to derive the optimal sample size by estimating statistical

power in a hypothesis test) on a data set of randomly selected 90 samples (30 of asymptomatic

patients and 60 of healthy controls, MS ID: 1–90 in Table S1) using 51 differentially expressed lipids

(| log2 (asymptomatic/healthy) | > 0.25, adjusted p value <0.01) in MetaboAnalyst (http://www.

metaboanalyst.ca/). The minimum number of samples resulted to be 264 (88/176, asymptomatic

patients/healthy controls) with predicted power ~0.8 at a false discovery rate (FDR) of 0.1, which can be

a sufficient confidence level to conclude the statistical meaningful results (Xia et al., 2015) (Figure S2).

A discovered panel of 15 serum lipids effectively distinguished asymptomatic COVID-19

patients from healthy controls

Viruses are known to induce profound molecular changes of host lipidomes (Ketter and Randall, 2019;

Strating and van Kuppeveld, 2017). We hypothesized that the characteristic changes in serum lipids can

be used as a signature of viral infection. However, the presence of 432 lipid peaks would be challenging

for clinical application. Considering the feasibility of detection, we first screened the lipid pool to find

out the lipids that were crucial for classification (Figure 1). We build a RF machine learning model (Liaw

and Wiener, 2002) using the lipidomics data from all participants (Table S3). The importance (mean

decrease in accuracy) for each lipid was calculated by averaging its importance values in 100 repeated

RF models (Table S4).

The top 60 important lipids were then picked out and classified into 12 sets according to their belonging

subclasses. Based on the hypothesis that each subclass of lipids has special biological functions, we

randomly selected one lipid from the top 3 important lipids in every subclass to form a panel consisting

of 12 individual lipids (if the number of lipids in a subclass is less than 3, all the lipids were used for selec-

tion). To avoid over-fitting by a particular composition of training and test data set and reduce bias of the

resulting error rate, the performance of the resulting panel was evaluated by the average accuracy of 20

rounds of fivefold nested cross-validation in RFmodels (Krstajic et al., 2014). After all possible combinations

were investigated, the panel with the highest accuracy was selected. In order to investigate whether there

are any substances that are important for classification in the remaining lipids, we further added each of the

remaining lipids to the panel, and the lipid that led to the highest increase in accuracy was retained to form

a new panel. The step was repeated until the resulting accuracy was no longer improved by adding a new

lipid. At last, a final panel consisting of 15 lipids was generated with an accuracy of 0.954G 0.029. For com-

parison, we also generated a series of panels consisting of 15 lipids randomly selected from the starting

pool for 1,000 times. The resulting classifiers showed much lower rates of classification correctness with ac-

curacies ranging from 0.678 to 0.898 (Figure 1). In order to further confirm the effectiveness of this feature

selection strategy, we performed OPLS-DA analysis to discriminate the asymptomatic COVID-19 from the

healthy group. The results (Figure S3) showed that the Orthogonal Projections to Latent Structures

Discriminant Analysis (OPLS-DA) model could efficiently separate the asymptomatic group from the

healthy one by using all 432 identified lipids. It presented R2Y and Q2 values equal to 0.846 (p < 0.01)

and 0.718 (p < 0.01), respectively, after validation by permutation test. The asymptomatic COVID-19 could

also be discriminated from the healthy group with OPLS-DA analysis by using the 15 selected lipids. The

R2Y and Q2 values could reach 0.672 (p < 0.01) and 0.642 (p < 0.01), respectively. These results confirmed

the effectiveness of the identified lipid biomarker panel in our study.
4 iScience 24, 102974, September 24, 2021
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Figure 2. Changes (Z-scored log 2-scaled peak area value) of the 15 selected lipids in the serum of asymptomatic COVID-19 patients

Two-sided Wilcoxon rank-sum test was performed for comparing groups, and adjusted p values were calculated by Benjamini and Hochberg correction.

See also Table S6.
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Among these lipids (Figure 2), lysophospholipids including lysophosphatidylserine (LPS) 18:1, lysophos-

phatidic acid (LPA) 18:1 and LPA 18:0, lysophosphatidylcholine (LPC) 22:1, and lysophosphatidylinositol

(LPI) 18:1 were generally decreased in asymptomatic COVID-19 patients. Increases were observed in

diacylglycerol (DG) 30:0 (14:0_16:0), DG 36:5 (18:2_18:3), phosphatidylcholine (PC) 36:5 (18:2_18:3), and

phosphatidylethanolamine (PE) 36:2 (18:0_18:2). Ether lipids [including PC O-35:4 (i), LPC O-18:1 (i) and

LPE O-18:2], sphingomyelin (SM34:1; O2), and FAs (including FA 18:1 and FA 20:0) were observed to be

decreased.

A new ensemble learning model further improved the sensitivity for diagnosis of

asymptomatic COVID-19

Based on the 15 lipids selected in the last step, we first investigated four machine learning algorithms

including RF, SVM (Cortes and Vapnik, 1995), multilayer perceptron (MLP) (Gardner and Dorling, 1998),

and logistic regression (LR) (Nick and Campbell, 2007) for diagnosis of asymptomatic infections. Nested

cross-validation (10 repeated ten-fold cross-validation for the inner loop and 20 repeated fivefold cross-

validation for the outer loop, 100 models in total) (Krstajic et al., 2014) was used to evaluate the model per-

formance. For each algorithm, the hyperparameters were optimized in the inner loop by grid search, and

then the models with the highest average accuracy were reported to the outer loop for classification of the

test samples. Among the four models, RF exhibited the best performance with an average accuracy of

0.954G 0.029 and average specificity of 0.988G 0.016. However, the sensitivities of all models were found

to be relatively low (<90%) (Figure 3D, Table S5). It has been reported that asymptomatic individuals had a

weaker immune response to SARS-CoV-2 infection than the symptomatic patients (Long et al., 2020), and

we infer that molecular changes of their serum lipids may be too mild for a separate machine learning

model to classify these samples. Considering the high infectivity of asymptomatic patients, the

consequences would be serious if they are not diagnosed in time.
iScience 24, 102974, September 24, 2021 5
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Figure 3. Classification of asymptomatic patients and healthy controls by ensemble learning

(A) Workflow of the construction of ensemble models. The RF and SVM models were separately trained in the inner loop

of nested cross-validation first, and then the output in the outer loop of the two models was ensembled by a new voting

algorithm.

(B) Receiver operating characteristic (ROC) curve obtained by averaging 20 rounds of fivefold nested cross-validations

(100 models in total) with a mean AUC of 0.982.

(C) Precision recall (PR) curve obtained by averaging 20 rounds of fivefold nested cross-validations (100 models in total)

with a mean AUC of 0.975.

(D) Performance indicators of four separate machine learning models, stacking ensemble model with meta-learner, and

the new ensemble model with a voting algorithm.

See also Table S5.
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To improve the sensitivity of the classifiers, an ensemble learning scheme named stacking (Li et al., 2019)

was attempted. Stacking is a two-level framework that consisted of multiple machine learning models as

the first level whose output was input to a meta-learner in the second level to generate the final output.

Owing to the poor performance of MLP and LG, RF and SVM were selected to form the first layer of the

ensemble model, RF was used as the meta-learner, but the sensitivity was not improved as expected

(0.886G 0.087) (Figure 3D, Table S5). Given that a reliable diagnosis method for COVID-19 shouldminimize

the false negative rate, we further replaced the meta-learner in the second level by a new voting algorithm

as described in the following: a sample will be predicted as healthy only when the outputs of all classifiers in

first level are healthy. If the output of any one classifier is asymptomatic, the sample will be predicted as

asymptomatic (Figure 3A). The resulting new ensemble model reached a high average sensitivity of

0.952 G 0.049 while maintaining a high average specificity of 0.964 G 0.029 (Figure 3D, Table S5). The

mean accuracy, mean area under the curve (AUC) of the receiver operating characteristic (ROC) curve

and the mean AUC of the precision recall (PR) curve of the new ensemble model was 0.960 G 0.025 (Fig-

ure 3D, Table S5), 0.982 G 0.018 (Figure 3B), and 0.975 G 0.032 (Figure 3C), respectively, which demon-

strated the high performance of the ensemble learning model with a new voting algorithm.

Enhanced biosynthetic pathway of membrane phospholipids in asymptomatic SARS-CoV-2

infection

To further investigate the molecular basis for this high-performance diagnosis, lipids with | log2

(asymptomatic/healthy) | > 0.25 and adjusted p value <0.05 (Table S6) were shortlisted and visualized in

a heatmap (Figure 4) to reveal the differential lipid metabolism in asymptomatic COVID-19. Among these

lipids, 83 lipids were found to be downregulated in the serum of asymptomatic COVID-19 patients

compared with healthy controls, while 41 lipids were upregulated. We found that the glycerophospholipids

which constitute most eukaryotic membranes (van Meer et al., 2008) are increased in the serum of asymp-

tomatic COVID-19 patients, including PC and PE. The increased circulating levels may indicate the elevated

intracellular biosynthesis and extracellular transport. Research studies have revealed that enveloped

viruses including SARS-CoV-2 utilize host lipid membranes to assemble viral replication complexes

(VRCs) for viral genome amplification and hijack the lipid metabolism of hosts to produce lipids for their

envelopes (Strating and van Kuppeveld, 2017). Viruses can promote PC synthesis and/or accumulation at

the viral replication sites (Zhang et al., 2016). The inclusion of PE in PC bilayers may contribute to the induc-

tion of negative membrane curvature, which is important for membrane fusion, budding, and fission during

virus propagation (vanMeer et al., 2008). The replication of tomato bushy stunt virus (TBSV) was reported to

depend on local enrichment of PE at replication sites (Xu and Nagy, 2015). Besides, an overall decrease of

lysophospholipids were observed in asymptomatic COVID-19 patients, including LPS, LPA, LPC, and LPI,

which may indicate the compromised activity of phospholipase upon virus infection. Specifically, LPA is

essential for synthesis of other phospholipids. It is the precursor of phosphatidic acid (PA), which could

be converted to DG or cytidine diphosphate-DG and then form most subclasses of phospholipids in the

endoplasmic reticulum (Han, 2016). We also identified the increase of DG. These integrated data may indi-

cate that the membrane glycerophospholipids biosynthesis pathway was enhanced upon SARS-CoV-2

infection to support virus entry and replication.

Altered sphingolipids homeostasis in asymptomatic COVID-19

Sphingomyelin (SM), the most abundant sphingolipid component of the mammalian plasma membrane,

was observed to be decreased in asymptomatic patients. It has known that SMs preferentially associate

with cholesterol to form lipid rafts which is important for virus entry on the cellular surface (Otsuki et al.,

2018; Radenkovic et al., 2020). The role of lipid rafts has been reported in promoting SARS-CoV entry by
iScience 24, 102974, September 24, 2021 7



Figure 4. Heatmap of 124 dysregulated lipids belonging to 17 subclasses as indicated

See also Table S6.
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providing a platform facilitating the interaction of the virus S-protein with the cellular receptor ACE2

(Lu et al., 2008). Therefore, the decrease in SMs may resist the SARS-CoV-2 infection by blocking the for-

mation of lipid rafts. In contrast to SMs, the level of ceramide (Cer) was observed to be increased in the

serum of asymptomatic COVID-19 patients. SM is biosynthesized from Cer by donation of phosphorylcho-

line from phosphatidylcholine catalyzed by sphingomyelin synthase (SMS), whereas it could also be

hydrolyzed to Cer in the catalysis of sphingomyelinase (SMase). The altered sphingolipid homeostasis

may correspond to either the suppression of SMS or elevated activation of SMase during the virus invasion.

This change is opposite to that observed in symptomatic COVID-19 patients (Song et al., 2020), which im-

plies certain distinct metabolic regulations may happen in asymptomatic SARS-CoV-2 infection.

Suppressed biosynthesis of ether phospholipids in asymptomatic COVID-19

In addition to diacyl phospholipids, the dysregulation of ether phospholipids was also observed in asymp-

tomatic COVID-19 patients. Ether lipids are synthesized in peroxisomes through acyl-dihydroxyacetone

(DHAP) pathway by DHAP and FAs. They play important roles in facilitating membrane fusion and stabiliz-

ing lipid raft microdomains (Dean and Lodhi, 2018). We found the overall decrease of both ether lipids

including ether PC, ether PE, and ether lysophospholipids such as ether LPC and ether LPE in the serum

of asymptomatic patients. This change indicated the suppression of the synthetic pathway of ether phos-

pholipids, which might be caused by the competition of the enhanced pathway of regular phospholipids

biosynthesis. The decreased ether phospholipids in membrane may further affect the replication of

SARS-CoV-2 virus.

Differential metabolic pattern of FAs in asymptomatic COVID-19

Fatty acids are essential for viral infection because they provide building blocks for various membranes

lipids during virus proliferating, and poly-unsaturated fatty acids (PUFAs) can be converted to hundreds

of lipid mediators such as eicosanoids which play important roles in immune and inflammatory response

(Bennett and Gilroy, 2016). It is known that the SARS-CoV-2 infection could cause systematic hyperinflam-

matory response and potentially life-threatening cytokine storms (Mehta et al., 2020). Elevated levels of

PUFAs and derived lipid mediators have been observed in COVID-19 patients in several studies (Hammock

et al., 2020; Schwarz et al., 2020; Thomas et al., 2020b), which may be associated with the activated

biosynthetic pathways due to the hyperinflammatory response in severe SARS-CoV-2 infection.

Interestingly, all FAs including a variety of PUFAs were observed to be significantly decreased in

asymptomatic COVID-19 patients in this study. The overall decrease of FAsmay be related to the enhanced

synthetic pathways of membrane phospholipids, which was consistent with the enrichment of PC, PE, and

DG consisting of both saturated and unsaturated fatty acyl chains.

To further investigate the metabolism of FAs, we performed multiscale embedded correlation analysis to

investigate the perturbations of FAs coregulation upon asymptomatic SARS-CoV-2 infection (Table S7).

Coregulated lipids may display similar patterns in lipid metabolism, which may result in strong correlations

between their lipid levels. Changes in lipid-lipid correlation patterns between disease and healthy groups

may reveal pathologically related metabolic disorders (Lu et al., 2019; Song et al., 2020). Here, the lipid

pairs with significant differential correlations (Benjamini & Hochberg adjusted p values <0.05) in asymp-

tomatic patients compared with healthy controls were displayed in a network (Figure 5). Three notable

modules related to FAs were identified from the global network.

Module I comprises myristic acid (FA 14:0) as the hub connected to palmitic acid and several PUFAs

including FA 22:5, FA 22:4, FA 20:4, FA 22:6, and FA 22:5, represented by green (++/+) and purple lines

(+/0). The weakened positive correlation of myristic acid with other PUFAs was observed, which was

confirmed by the larger decrease of PUFAs (1.47–1.89-fold) in asymptomatic COVID-19 than that of FA

14:0 (1.38-fold) (Table S7), which may indicate the enhanced conversion of PUFAs to downstream lipid

mediator products. This result further indicated the induced inflammatory response during the asymptom-

atic SARS-CoV-2 infection and the involvement of PUFAs in this process. Arachidonic acid pathway is a cen-

tral regulator of inflammatory response. We also identified the weakened positive correlation of FA 20:4

with other unsaturated FAs, such as FA 18:2, FA 18:3, FA 18:3, FA 16:1, and FA 18:1 (module II). Compared

with these FAs (decrease of 1.61–2.64-fold), the decrease of FA 20:4 (1.47-fold) was compromised, which

may be due to its relatively enhanced synthesis in the inflammatory process even in the context of overall

decrease of FAs. In addition, differential correlation between multiple LPAs (LPA 16:0, LPA 18:0, LPA 18:1,

LPA 18:2, LPA 22:6) and FAs, especially FA 18:2, FA 18:3, and FA 24:1, was also observed (module III). Most
iScience 24, 102974, September 24, 2021 9



Figure 5. Differential correlation network analyses of serum lipids in asymptomatic patients relative to healthy controls

Lipid pairs with significant differential correlations (Benjamini and Hochberg adjusted p values <0.05) were connected by lines of different colors according

to their changes in correlation patterns. Sign/sign indicates the direction and strength of the correlation in control/asymptomatic COVID-19. For instance,

red line +/++ indicates that correlation between two connected lipids was positive (+) in control samples and became more strongly positive (++) in

asymptomatic COVID-19 patients, as defined by statistically significant increase in correlation coefficients between the lipid pair in asymptomatic patients

compared with healthy controls. Three modules (I–III) of interest were circled and expanded for better visualization. Module I comprises myristic acid as the

hub connected to palmitic acid and several poly-unsaturated fatty acids (PUFAs) by green (++/+) and purple lines (+/0). Module II comprise AA as the hub

connected to several 16-carbon and 18-carbon FAs by green (++/+) and purple lines (+/0). Module III showed the differential correlation network between

multiple LPAs and FAs.

See also Table S7.
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LPAs-FAs showed positive correlations in healthy controls but converted to negative correlations in

asymptomatic patients. Given that both FAs and LPAs were observed to be decreased in patients, the

altered correlation might indicate the enhanced utilization of FAs in other pathways, such as the

b-oxidation to provide energy during virus invasion.
Association of lipid metabolism with serum antibody levels of IgM and IgG

To investigate whether lipid metabolism relates to IgM and IgG levels in this study, we performed

spearman correlation analysis between levels of serum lipids and IgG/IgM, but found that no lipids showed

correlation coefficient >0.4 and p value <0.05 with IgM or IgG (Figure S4), suggesting no significant corre-

lation between them. We also tried to divide asymptomatic patients into different groups according to the

levels of serum IgM (IgM <1 versus IgM >1) and IgG (1 < IgG <10 versus IgG >10) to see if there are
10 iScience 24, 102974, September 24, 2021
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significant differences in serum lipids between these groups (Table S8). Unfortunately, we did not find sig-

nificant differences between them using the criterion of | log2 FC | > 0.25 and adjusted p value <0.05

(Figure S5).
DISCUSSION

The rapid spread of COVID-19 around the world presents an unprecedented threat to global public health.

The emergence of asymptomatic COVID-19 makes it more difficult for the prevention and control of the

epidemic because these silent spreaders are hard to identify. Although SARS-CoV-2 can be detected by

RT-PCR, the attempts to develop alternative methods that could diagnose asymptomatic COVID-19

with high sensitivity and convenience are still meaningful. The subtle changes in asymptomatic SARS-

CoV-2 infection make its molecular diagnosis more challengeable. In this study, we show that asymptom-

atic patients can be distinguished from healthy controls based on a panel of only 15 of the key serum lipids,

which provides a potential method for future clinical application. We noted that low sensitivity is a common

problem in many early diagnostic methods (Delafiori et al., 2021; Kourou et al., 2015). Therefore, a new

ensemble learning model was developed using stacking strategy with a new voting algorithm. This

ensemble model showed much better performance than that of separate machine learning models or cur-

rent stacking models for improving the sensitivity (Krstajic et al., 2014). The improved sensitivity with only

4.8% false negative rate is critical for identifying the asymptomatic COVID-19 patients.

The lack of clinical oversight of asymptomatic COVID-19means we know very little about the proportions of

people throughout the course of their infection. Current studies mainly focus on symptomatic COVID-19

patients partially owing to the difficulty to recruit cohort of asymptomatic COVID-19 patients. Acquisition

of molecular information is critical for deep understanding of its mechanism and pathogenesis. Our data

shed light on the lipidomic changes ref lected in the serum asymptomatic COVID-19. The results revealed

not only common dysregulation of lipids observed in SARS-CoV-2 infection but also the distinct changes of

lipid metabolism in asymptomatic COVID-19. For example, increase in PC, PE, and DG indicated enhanced

biosynthesis of membrane glycerophospholipids upon SARS-CoV-2 infection to support entry and replica-

tion of virus, which is consistent with other symptomatic COVID-19 studies (Xu andNagy, 2015; Zhang et al.,

2016). More importantly, distinct molecular changes of several major lipid classes were identified in the

serum of asymptomatic COVID-19 patients. We observed all FAs including a variety of PUFAs to be signif-

icantly decreased in asymptomatic COVID-19 patients, whereas the severe COVID-19 patients were known

by systemic hyperinflammatory response and potentially life-threatening cytokine storms with elevated FAs

levels (Schwarz et al., 2020; Thomas et al., 2020b). It has been reported that only a specific mild immune

response is caused by the SARS-CoV-2 invasion in asymptomatic patients (Long et al., 2020), and immune

suppression was observed in the early stage of COVID-19 disease (Tian et al., 2020). In the context of the

overall decrease of FAs, interestingly, we observed the relatively enhanced synthesis of FA 20:4 (Figure 5).

This finding may highlight the arachidonic acid pathway as a central regulator of inflammatory response

(Calder, 2003). Compared with the activated immune response that emerges in severely infected patients,

the milder immune response in asymptomatic and mild-type patients may help them escape from poten-

tially life-threatening cytokine storms caused by the systemic hyperinflammatory response. In addition, we

also observed the altered sphingolipids homeostasis in asymptomatic COVID-19 patients, which was

opposite to that of previous report in mild to severe COVID-19 patients. SMs can associate with cholesterol

to form lipid rafts which could promote virus entry on cellular surface (Lu et al., 2008; Otsuki et al., 2018;

Radenkovic et al., 2020), whereas depletion of host and viral SMs was reported to impair influenza virus

infection (Audi et al., 2020). Decrease in SMs and increase in Cer may implicate the resistance of the

host to the entry and internalization of SARS-CoV-2 virus. Other characteristic changes also include the

impaired synthesis of both ether and lyso-ether phospholipids in asymptomatic COVID-19 patients in

our research. This distinct lipidomic landscape of asymptomatic SARS-CoV-19 infection provided underly-

ing basis for its molecular identification, new insights into its underlying mechanism, and the clues for the

treatment of COVID-19.

In conclusion, our study presents a systematic lipidomic investigation of serum samples from a cohort of

asymptomatic COVID-19 patients and healthy controls. We demonstrated the potential for the accurate

identification of asymptomatic COVID-19 using a discovered panel of 15 lipids with the developed

ensemble learning method. In addition, the distinct lipidomic landscape revealed the comprehensive

changes of bioactive lipids during the asymptomatic SARS-CoV-2 infection. These results implicated the

specific host immune, inflammatory, and antiviral responses during the virus invasion in asymptomatic
iScience 24, 102974, September 24, 2021 11
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COVID-19. The revealed molecular signature provided clues for precise diagnosis and therapy of this

disease.
Limitations of the study

Gender and age were matched between asymptomatic patients and healthy controls in this cohort,

whereas the information of body mass index and other clinical symptoms were not included owing to

the constraints in collecting these medical records during the outbreak. These might be potential con-

founders in this study. In addition, restricted by the controlled healthcare resource during the pandemic,

collection of controls with other infections was not available, which might influence the specificity of lipido-

mics profile observed in asymptomatic COVID-19. Although the symptomatic COVID-19 patients were not

available in this cohort, the comparative strategy adopted in this study enable the comparison of our results

with those of other reported studies. Finally, our results were based on a single Chinese cohort of asymp-

tomatic COVID-19 patients, and future studies in different racial, ethnic, and geographical cohorts will be

indispensable for extending our current understanding of lipid metabolic dysregulation in asymptomatic

COVID-19 pathogenesis.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Serum samples from 89 asymptomatic COVID-

19 patients and 178 healthy individuals

WuHan Prevention and Treatment Center for

Occupational Diseases

This paper(Table S1-Patient ID)

Chemicals, peptides, and recombinant proteins

Myristic acid FA 14:0 Sigma-Aldrich Cat # 70082-50G

Palmitic acid FA 16:0 Sigma-Aldrich Cat # 27734-1KG

Palmitoleic acid FA 16:1 (9Z) Sigma-Aldrich Cat # P9417-100MG

Margaric acid FA 17:0 Sigma-Aldrich Cat # H3500-1G

Stearic acid FA 18:0 Sigma-Aldrich Cat # S4751-1G

Oleic acid FA 18:1 (9Z) Sigma-Aldrich Cat # O1008-1G

Linoleic acid FA 18:2 (9Z, 12Z) Sigma-Aldrich Cat # L1376-10MG

g-Linolenic acid FA 18:3 (6Z, 9Z, 12Z) Sigma-Aldrich Cat # L2378-10MG

a-Linolenic acid FA 18:3 (9Z, 12Z, 15Z) Sigma-Aldrich Cat # L2376-500MG

Arachidic acid FA 20:0 Sigma-Aldrich Cat # A3631-1G

Eicosenoic acid (11Z) FA 20:1 (11Z) Sigma-Aldrich Cat # E3635-100MG

Arachidonic acid (AA) FA 20:4 (5Z, 8Z, 11Z,

14Z)

Sigma-Aldrich Cat # 10931-250MG

Icosapentaenoic acid (EPA)

FA 20:5 (5Z, 8Z, 11Z, 14Z, 17Z)

Sigma-Aldrich Cat # E2011-10MG

Behenic acid FA 22:0 Sigma-Aldrich Cat # 216941-5G

Adrenic acid FA 22:4 (7Z, 10Z, 13Z, 16Z) Sigma-Aldrich Cat # D3659-25MG

Omega-3 Docosapentaenoic acid (DPA-3)

FA 22:5 (7Z, 10Z, 13Z, 16Z, 19Z)

Sigma-Aldrich Cat # D1797-10MG

Omega-6 Docosapentaenoic acid (DPA-6)

FA 22:5 (4Z, 7Z, 10Z, 13Z, 16Z)

Supelco Cat # 18566-10MG

Docosahexaenoic acid (DHA)

FA 22:6 (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)

Sigma-Aldrich Cat # D2534-25MG

Nervonic acid FA 24:1 (15Z) Sigma-Aldrich Cat # N1514-100MG

Water Made in house by Millipore Direct-Q5 Cat # ZRQS VP500

Acetonitrile Fisher chemical Cat # A998-4

Isopropanol Fisher chemical Cat # A451-4

Ethonal Fisher chemical Cat # A995-4

Formic acid Aladdin Cat # F112034-100ml

Ammonium formate Sinopharm Chemical Reagent Cat # 30011661

Critical commercial assays

SARS-CoV-2 nucleic acid extraction kit Shanghai Zhijiang NO. P20200201

SARS-CoV-2 nucleic acid detection kit Shanghai Zhijiang NO. P20200203

IgM antibody detection kit Orienter http://www.scwwt.com

IgG antibody detection kit Orienter http://www.scwwt.com

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Lipidomics raw datasets This paper https://www.iprox.org/ Project ID:

IPX0002853000

Data analysis codes This paper https://github.com/Chen-micslab/

Covid19_TIMS

Software and algorithms

DataAnalysis Bruker Cat # 1867357

Reifycs file converter Reifycs http://www.reifycs.com/AbfConverter/index.

html

CompassXtract (V 3.2.201) Bruker https://www.bruker.com/cn/service/support-

upgrades/software-downloads/mass-

spectrometry/compass-tools.html

MS-DIAL (version 4.24) (Tsugawa et al., 2020) http://prime.psc.riken.jp/compms/msdial/

main.html

R (version 4.0.2) R Foundation for Statistical Computing https://www.r-project.org

Python (version 3.7.7) Python Software Foundation https://www.python.org/

Compass Hystar Bruker Cat # 1850838

Other

ACQUITY BEH C18 column, 2.1 mm 3

100 mm, 1.7 mm

Waters Corporation Cat # 186008316
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RESOURCE AVAILABILITY

Lead contact

Further information should be directed to and will be fulfilled by the Lead Contact Suming Chen (sm.chen@

whu.edu.cn).
Materials availability

This study did not generate new unique reagents.

Data and code availability

d Data

The lipidomics data are deposited in ProteomeXchange Consortium (https://www.iprox.org/) and are pub-

licly available as of the date of publication. Project ID: IPX0002853000.

d Code

The project data analysis codes are deposited in GitHub (https://github.com/Chen-micslab/Covid19_

TIMS) and are publicly available now.

d Additional Information

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cohort enrollment and data collection

We retrospectively recruited a total of 89 asymptomatic COVID-19 patients who were under quarantine in

Wuhan from January to March, 2020. They were diagnosed as asymptomatic COVID-19 according to the

Chinese Government Diagnosis and Treatment Guideline (Trial 6th version) (NHCPRC, 2020). Briefly,

asymptomatic COVID-19 referred to those people who meet the following two clinical criteria: 1) exhibited

no typical clinical symptoms, 2) tested either positive for SARS-CoV-2 nucleic acid test in respiratory
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specimens or seropositive for IgM antibody test. All enrolled patients were confirmed positive for SARS-

CoV-2 nucleic acid except for three individuals whose RT-PCR test turned from positive to negative at

the blood collection time (Table S1), they were also classified as asymptomatic due to the seropositive

of IgM or IgG. According to the epidemiologic investigations, none of these patients developed symptoms

until they were tested negative for SARS-CoV-2. For each confirmed patient, two healthy people of the

same gender and approximate age was matched as controls. These healthy controls come from the phys-

ical examination population in Wuhan Prevention and Treatment Center for Occupational Diseases during

the sample collection period. Baseline characteristics including age and gender and library findings

including serum IgM and IgG of both asymptomatic patients and healthy controls are summarized in Tables

1 and S1.

For identification of SARS-CoV-2 infections, throat swabs were collected and tested by real-time polymer-

ase chain reaction (RT–PCR) using virus nucleotide acid extraction kit (Shanghai Zhijiang, China, NO.

P20200201) and detection kit (triple fluorescence PCR, Shanghai Zhijiang, China, NO. P20200203) accord-

ing to manufacturer instructions. Briefly, target genes including RdRp, E and N were simultaneously ampli-

fied and tested during RT–PCR. Patients were diagnosed as positive if RdRp gene was positive (Ct < 43),

and one of E or N was positive (Ct < 43). Patients were also diagnosed as positive if two sequential tests

of RdRp were positive while E and N were negative.

IgG and IgM against SARS-CoV-2 were detected in serum samples using chemiluminescence immunoassay

kits (Orienter Biotechnology Co., Ltd, Sichuan, China) and Access2 automatic microparticle chemilumines-

cence immunoassay system (BechmanCoulter, California, USA). Antibody levels were expressed as the ra-

tio of the chemiluminescence signal over the cutoff value (S/CO). The result was defined as positive if the

S/CO value is higher than 1.00.

This study was approved by the Ethics Review Commission of WuHan Prevention and Treatment Center for

Occupational Diseases (reference no. 202002).
METHOD DETAILS

Serum collection and lipids extraction

Peripheral blood samples for all participants were collected using serum separation tubes after an

overnight fast. Serum was separated by centrifugation at 1,500 g for 10 min and then stored at� 80�C after

standard diagnostic tests. Before used, the frozen serumwas slowly thawed at 4�C overnight. For virus inac-

tivation and lipids extraction, pre-chilled ethanol was added to each sample to make a final solution of 75%

(v/v) ethanol. The mixture was shaken vigorously for 5 min to ensure inactivation of virus. The supernatant

was collected by centrifuged at 1,2000 g for 15 min. A pooled sample was generated by taking equal

aliquot of each experimental sample to serve as a technical replicate which was run multiple

times throughout the experiment. Extracted water samples served as blanks. All samples were stored

at � 80�C until analysis.
Untargeted lipidomic analysis

The lipidomics analysis was performed on an UltiMate 3000 UHPLC System (DIONEX, Thermo Fisher

Scientific, U.S.A.) coupled with a TIMS-TOF mass spectrometer (Bruker, Germany). In detail, the UHPLC

separation was performed on a Waters ACQUITY UPLC BEH C18 Column (2.1 mm 3 100 mm, 1.7 mm) at

35�C with a flow rate of 0.3 mL/min. ACN/H2O (6:4, v/v) and IPA/ACN (9:1, v/v), both containing 10 mM

NH4COOH and 0.1% (v%) FA, were employed as mobile phase A and B, separately. Gradient elution

was achieved with the following program: 0 min, 30% B, 2 min, 30% B, 3.5 min, 52% B, 5 min, 63% B,

6 min, 68% B, 12.5 min, 74.5% B, 13.5 min, 80% B, 14.5 min, 30% B, 19 min, 30% B. MS detection was per-

formed on a TIMS-TOF mass spectrometer equipped with an electrospray ionization (ESI) source in both

positive and negative ion modes, respectively. Data was acquired using an auto MS/MS (data dependent

acquisition) method with scan range of 100-1000 m/z for both MS1 andMS2. The time was set as 0.5 second

for a single cycle. Dynamic exclusion was activated by excluding the precursor ions for MS/MS acquisition

after they had been acquired 3 times and releasing them after 0.2min. The precursor ion was reconsidered if

its current intensity was 2 fold of the previous intensity. The collision energy for MS/MS was set at 30 eV.

A solution of sodium formate was injected to the mass spectrometer at the beginning of each sample anal-

ysis process.
iScience 24, 102974, September 24, 2021 17
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For quantitative and qualitative analysis of lipids, the spectra were first calibrated post-run by the sodium

formate cluster ions using DataAnalysis software (Bruker) to improve the mass accuracy. The resulting data

files (.d format) were then converted to ABF format using Reifycs file converter and CompassXtract (Bruker).

Then the abf files were imported into MS-DIAL (version 4.24) (Tsugawa et al., 2020) for data processing

including peak extraction, alignment and annotation. MS1 tolerance was set as 0.005 Da and retention

time tolerance were set as 0.15min for peak alignment. Peaks presented in less than 30% of a sample group

were excluded for subsequent analysis. Fatty acids identification was achieved by accurate mass and reten-

tion time (RT) match with standards. Identification of other lipids was achieved by searching the internal

theoretical MS/MS spectra library of MS-DIAL, the accurate mass tolerance for MS1 and MS2 were set as

0.01 Da and 0.05 Da, respectively. Lipids identified in positive and negative ion mode were finally inte-

grated to generate a matrix containing lipid name and peak area information of all samples. If a lipid

was identified in both modes, peak information of either mode was retained for further analysis according

to their peak intensity and reliability of MS/MS spectra match.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis

Missing values were replaced with 1/10 of minimum peak height over all samples. Lipids with relative stan-

dard deviations (RSDs) of over 30% in the pooled quality control samples were removed for subsequent

analysis. Log2 fold-change (log2 FC) was calculated by log2-scaling the ratio of mean peak area in asymp-

tomatic and healthy group. Two-sided Wilcoxon rank-sum test was performed for comparing groups and

adjusted p values were calculated by Benjamini & Hochberg correction. The significant differential

expressed lipids were defined using the criteria of adjust p value less than 0.05 and absolute log2 FC larger

than 0.25.
Principal Component Analysis

PCA was performed using Python package scikit-learn (version 0.22.1) and matplotlib (version 3.1.3).
Power analysis

Power analysis was performed on MetaboAnalyst (http://www.metaboanalyst.ca/) by uploading a dataset

of randomly selected 90 samples (30/60: asymptomatic patients/healthy controls, MS ID: 1-90 in Table S1)

using 51 differentially expressed lipids (| log2 (asymptomatic/healthy) | > 0.25, adjusted p value < 0.01). The

false discovery rate (FDR) was set as 0.1.
Heatmap

Heatmap of the discriminative lipids was generated using R (version 4.0.2) with package pheatmap. The

original peak area values were log 2-scaled and Z-scored stepwise for better visualization.
Machine learning

Separate machine learning algorithms were carried out using Random Forest (RF), Support vector machine

(SVM), Multi-Layer Perceptron (MLP) and Logistic Regression (LR). Before imported to the model, the inten-

sity matrix of the 15 selected lipids was preprocessed using different methods. Zero-mean normalization

coupled with PCA (n_components=0.99) were used for SVM. Single zero-mean normalization was used

for MLP and LR. RF used the original intensity matrix without preprocessing. For each model, nested

cross-validation (10 repeated ten-fold cross-validation for the inner-loop and 20 repeated five-fold

cross-validation for the outer loop, 100 models in total) was used for performance evaluation. The ratio

of asymptomatic/healthy was kept as 1:2 in each split of both the inner loop and the outer loop. The hyper-

parameters (n_estimators and max_depth for RF, C and gamma for SVM, the number of nodes for each

layer for MLP (three layers), C and penalty for LR) of each algorithm were optimized in the inner loop by

grid search, then the models with the highest average accuracy were reported to the outer loop for clas-

sification of the test samples. The mean accuracy, mean sensitivity, mean specificity, mean AUC of ROC

curve and mean AUC of PR curve of the test samples were calculated based on the 100 models.

For ensemble learning named stacking, SVM and RF were selected to form the first layer of the ensemble

model, RF was used as the meta-learner in the second layer. Model training and test were performed using

nested cross-validation as described above in both layers.
18 iScience 24, 102974, September 24, 2021
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The new voting algorithm which replaced the meta-learner in the second level of stacking followed the rule

below:

If (rf == healthy, svm == healthy):

output = healthy

else:

output = asymptomatic

In above algorithm, rf and svm represented the predictions of the same sample obtained by the two

classifiers separately, and output was the prediction of the ensemble model.

All machine learning algorithms, zero-mean normalization and PCA were carried out in Python (version

3.7.7) with the package scikit-learn (version 0.22.1). ROC curve and PR curve were generated by the

package matplotlib (version 3.1.3).
Differential correlation analysis

Differential correlation analysis was carried out in R (version 4.0.2) using package DGCA (version 1.0.2).

Cytoscape (version 3.8.0) was used to build correlation networks from differentially correlated lipid pairs

(Benjamini & Hochberg adjusted p values < 0.05) in asymptomatic COVID-19 patients relative to healthy

controls.
iScience 24, 102974, September 24, 2021 19
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