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Abstract

Directed evolution can generate proteins with tailor-made activities. However, full-length 

genotypes, their frequencies, and fitnesses are difficult to measure for evolving gene-length 

biomolecules using most high-throughput DNA sequencing methods as short read lengths can 

lose mutation linkages in haplotypes. We present Evoracle, a machine learning method that 

accurately reconstructs full-length genotypes (R2 = 0.94) and fitness using short-read data 

from directed evolution experiments, with substantial improvements over related methods. We 

validate Evoracle on phage-assisted continuous evolution (PACE), phage-assisted non-continuous 

evolution (PANCE) of adenine base editors, and OrthoRep evolution of drug-resistant enzymes. 

Evoracle retains strong performance (R2 = 0.86) on data with complete linkage loss between 

neighboring nucleotides and large measurement noise such as pooled Sanger sequencing data 

(~$10/timepoint), and broadens the accessibility of training machine learning models on gene 

variant fitnesses. Evoracle can also identify high-fitness variants, including low-frequency ‘rising 

stars’, well before they are identifiable from consensus mutations.

Introduction

The generation of peptide, enzymes, proteins and pathways with enhanced or modified 

activity has contributed to substantial scientific and therapeutic advances1–4. Directed 

evolution is a powerful approach that harnesses iterated cycles of mutagenic replication 

under selection pressure to generate variant molecules with novel activities5,6. While the 

directed evolution of modest-length biopolymers such as antibody fragments7, peptides8, 
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and highly functionalized nucleic acid polymers9,10 has substantial therapeutic and scientific 

interest, the directed evolution of gene-length or longer biomolecules can provide access to a 

larger diversity of activities, such as expanding the targeting capacity of Cas911,12, thwarting 

evolved insecticide resistance3, and developing novel adeno-associated virus tropisms to 

target therapeutically relevant organs2.

Characterizing the evolutionary histories of full-length genotypes that emerge from directed 

evolution campaigns reveals the solution space that has been explored and can suggest 

individual mutations for reversion analysis. Understanding epistatic interactions between 

distant residues can provide insights into the biochemical underpinnings of evolved activity 

and facilitate reversion analysis. Estimating fitness of full-length gene variants enables the 

comparison of distinct solutions, allows researchers to prioritize variants for low-throughput 

follow-up studies, and facilitates optimization of desired activities.

However, monitoring and characterizing key aspects of directed evolution campaigns—

including full-length genotypes and their frequencies, evolutionary trajectories, and fitnesses

—remains a challenge, especially for genes of typical length and other long biomolecules. 

Timepoints of directed evolution campaigns can contain enormous genotype diversity (>107 

gene variants)5,6,13. While individual gene variants can be sequenced by shotgun sequencing 

and overlap graph-based contig assembly14,15, these approaches scale poorly when tasked 

on the expansive diversity of genotypes generated by directed evolution. Highly diverse 

gene pools from directed evolution experiments are commonly subjected to high-throughput 

sequencing by Illumina methods,16 but the resulting read lengths are much shorter than 

most gene lengths, resulting in a loss of associations between non-proximal mutations 

within individual gene variants. While long-read high-throughput sequencing can address 

these problems3,17,18, these approaches are much less available compared to low-throughput 

Sanger sequencing19 or high-throughput short-read Illumina sequencing, and also can suffer 

from higher error rates17 that can occlude measurement of mutation frequencies. As a result, 

it can be difficult to follow genotypes that emerge, flourish, change, or are lost through 

a directed evolution campaign, even though such genotype dynamics are rich with structure

function information that illuminates how evolving genotypes acquire desired properties.

The problem of reconstructing full-length genotypes from short reads has been considered 

from a variety of perspectives. Methods for reconstructing viral haplotypes from 

evolutionary data have been developed15, but they rely on overlap-based algorithms 

which exploit the typically short distances between polymorphic alleles in evolving viral 

genomes, and cannot be used when linkage information between alleles is missing. Methods 

for metagenomic genome assembly20,21 address the reconstruction of genomes from 

mixtures of short sequencing reads, but these methods are not designed for disentangling 

highly similar genomes and can perform poorly on mixtures of evolving genotypes that 

typically have >95% similarity22. Separately, the problem of deciphering evolutionary 

lineages and epistasis from evolutionary data has been considered from various angles. 

Barcoding approaches can track the trajectories of evolutionary lineages23, but cannot track 

individual haplotypes over time. Pseudo-time ordering methods have also been developed 

to deconvolve single mixed samples into phylogenetic trees24, and methods leveraging 

evolutionary dynamics can reveal epistasis from data without physical linkage25. However, 
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few methods address overlap-free gene or haplotype reconstruction in the context of 

evolution26,27.

Here, we describe Evoracle, a machine learning method that reconstructs full-length 

genotype frequencies, trajectories, and fitness from short-read sequencing data derived 

from timepoints during directed evolution campaigns. We use datasets with both long-read 

and short-read sequencing to evaluate Evoracle and related methods26–28. We consider 

two published datasets3,6 and report a new dataset with full-gene sequencing and short 

read data in 99 samples spanning 37 timepoints from a directed evolution campaign on 

TadA, an E. coli tRNA adenosine deaminase that was evolved for the adenine base editor 

ABE8e29. Evoracle substantially outperforms two related overlap-free gene reconstruction 

methods26–28 and retains strong performance with pooled Sanger sequencing data, an 

inexpensive sequencing approach with substantial noise and loss of linkage between 

sequenced nucleotides. We further show that Evoracle can propose variants with higher 

fitness than common approaches that use consensus mutations3,5,6,11,12,29–31. We anticipate 

that Evoracle (https://github.com/maxwshen/evoracle) will be a valuable tool for the directed 

evolution community.

Results

Inference using Evoracle

Evoracle is a machine learning method that uses noisy short-read data to infer the parameters 

and latent state of a non-linear dynamical system. We consider a model including two 

fundamental aspects of directed evolution: enrichment and depletion of genotypes through 

natural selection governed by fitness w, and a flexible mutation model that introduces 

new genotypes, parameterized by a discrete vector z of timepoints when each genotype 

first enters the population at frequencies s. The state transition process updates genotype 

frequencies xt at time t with a standard model of asexual fitness-based natural selection26,32 

as w
wT xt

⊙ xt, then introduces a genotype i to the population at time t at frequency s[i] if 

z[i] = t. We observe data at T timepoints through a lossy stochastic observation process 

E[yt] = Bxt, where B is a binary matrix that is rank deficient because the dimension of yt 

is smaller than xt, which describes DNA sequencing when reads are shorter than genotypes. 

Evoracle first proposes full-length genotypes that could exist in the population, then uses 

noisy short-read data to infer the timepoint frequencies and fitness of these full-length 

genotypes (see Online Methods for a complete description of our algorithm).

Given y1, y2, …, yT, the inference task is to learn (w, s, z). However, this requires solving an 

intractable discrete optimization problem over TG possible discrete z, which often exceeds 

10100 for real data. A common workaround is to parameterize a distribution p(z; ψ) and 

infer (w, s, ψ). However, computing the data likelihood p(y1, y2, …, yT|ψ) is intractable 

as it requires summing over z, which prevents the use of maximum likelihood estimation 

(MLE) or variational inference. Prior work has sidestepped this problem by using MLE on 

a model with a restricted mutation model26, while Evoracle solves the challenging inference 

task with z under a flexible mutation model that allows genotypes to enter the population 

at any timepoint. In practice, this enables Evoracle to better fit data where high-fitness 

Shen et al. Page 3

Nat Chem Biol. Author manuscript; available in PMC 2022 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/maxwshen/evoracle


genotypes enter the population at later timepoints, which is often the case in directed 

evolution1,3,5,6,11,29,31 or in data collected over long time periods3,23.

The insight underlying Evoracle is that we can bypass s and z and directly infer x1, x2, 
…, xT if they satisfy constraints raised by s, z through the state transition process. The 

inferred s, z can then be computed from x1, x2, …, xT. The constraints are: 1) each genotype 

enters the population at an arbitrary inferred frequency at most once, 2) frequencies of 

present genotypes should be consistent with fitness-based natural selection, and 3) absent 

genotypes have zero frequency. We satisfy these constraints by distinguishing present and 

absent genotypes using a small frequency threshold ϵ, renormalizing present frequencies, 

and enforcing a gradient-matching regularizer on present genotypes to ensure fidelity to the 

natural selection process. These steps explicitly handle all constraints except ensuring that 

genotypes enter the population at most once, which is handled implicitly by encouraging 

fidelity to the natural selection process: in Supplementary Note 1, we prove that in mild 

conditions, genotype frequencies under natural selection can rise to appreciable frequency at 

most once.

These insights lead to a simple likelihood-free inference algorithm supporting efficient 

gradient-based optimization. Evoracle enjoys better efficiency over related approaches 

including expectation maximization, sequential Monte Carlo33,34 and approximate 

Bayesian computation35 (Online Methods). Evoracle’s infers w and xt for each t 

by optimizing a loss function with a data fitting term DKL(Bxt yt) and a gradient

matching36,37 fidelity term comparing inferred states to the natural selection process 

DKL
w

wT xt
⊙ xt‖xt + 1 . We designed a regularizer motivated by skew structure induced by 

our model of natural selection, which sorts genotype frequencies by fitness in logarithmic 

time, then monotonically increases the unnormalized skew of the genotype frequency 

distribution. This leads to genotype frequency distributions with high unnormalized skew 

xt – 1/G 3
3 (Extended Data Fig. 1). We also prove that the gradient-matching term 

DKL
w

wT xt
⊙ xt‖xt + 1) implicitly encourages a smaller L1-norm for s, which is compatible 

with low initial genotype frequencies expected under typical mutation rates3,6.

The non-identifiability of our measurement process E[yt] = Bxt may raise concerns for 

inference, though regularization can improve identifiability, and Evoracle is consistent and 

accurate in practice. In Supplementary Note 1, we theoretically investigate the impact of 

regularizing to a state transition process on identifiability, and prove that the highest fitness 

genotype is identifiable from partial measurements under mild conditions.

Evoracle’s performance is robust to noise, varying hyperparameters, and genotype proposal 

strategies (Extended Data Fig. 1–2, Supplementary Note 2). We provide guidelines for using 

Evoracle to real data in the Online Methods and Supplementary Note 3.
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Reconstruction of evolving 2,138-nt genotypes from PACE

We evaluated Evoracle’s ability to reconstruct full-length genotype frequencies from 

standard 150-nt sequencing data. Cry1Ac (2,138 nt) encodes an insecticidal Bacillus 
thuringiensis δ-endotoxin (Bt toxin) widely used in agriculture for pest control3. We 

previously evolved Cry1Ac using phage-assisted continuous evolution (PACE)5 to bind a 

non-native cadherin-like receptor with high affinity (Kd = 18-34 nM), thereby circumventing 

evolved insect resistance to Bt toxins3. In PACE5, the gene of interest is encoded by 

bacteriophage and its activity is linked to expression of gene III, a gene necessary for 

phage propagation, by a plasmid-based DNA circuit in host E. coli cells. A mutagenesis 

plasmid (MP) controls the phage mutation rate. PACE occurs in culture vessels (“lagoons”) 

continuously diluted with host E. coli cells at rates that allow mutagenic replication of 

phage, but that are too fast to allow replication of E. coli5. During PACE, phage encoding 

active gene variants replicate faster than they are diluted from the lagoon, while inactive 

variants fail to generate infectious progeny and are diluted out of the persisting gene 

population5.

We previously evolved Cry1Ac using PACE for 528 h. Over this time, surviving gene 

variants experienced an average of 511 generations of mutagenic replication and continuous 

selection across four selection phases, each with a different target protein, selection 

stringency, and/or lagoon outflow rate3. At 34 timepoints, taken every 12 h or 24 h, lagoon 

samples were collected and sequenced with long-read (>2,138 nt) PacBio sequencing to 

an average depth of ~500 reads and short-read (150-nt) Illumina sequencing to an average 

depth of ~500,000 reads. We identified commonly evolved non-synonymous mutations 

at 19 positions with high confidence that collectively spanned 658 aa (1,974 nt), and 

tabulated frequencies of combinations of mutations at these positions within ten 100-nt 

segments spanned by short reads (Fig. 1B, Online Methods). The trajectories of these 19 

mutations were complex: some mutations fixed early, while others rose and fell multiple 

times (Fig. 1C). We refer to combinations of amino acids at these 19 positions as “full

length genotypes”, although we note that they actually represent mutational families (Online 

Methods).

Using only 100-nt reads truncated from PacBio reads, we used Evoracle to infer full-length 

genotype trajectories throughout the 528 h of PACE. Predicted frequencies closely matched 

observed frequencies from held-out long-read sequencing data (R2 = 0.94; Fig. 1D–G). 

Inferred fitnesses were also consistent with fitnesses calculated from full-length genotype 

frequencies from long-read data (the fitness of a genotype is its replication rate relative 

to other genotypes, R2 = 0.71, Online Methods). From 312–528 h, Evoracle accurately 

reconstructed a complex series of genotypes that featured up to 13 simultaneous mutations 

spanning 658 aa (1,974 nt) (Fig. 1E), demonstrating effective recovery of distant mutation 

combinations from short 100-nt read segments. Evoracle also accurately reconstructed the 

trajectories of several genotypes that peaked at 20% frequency or lower (Fig. 1E), and 

recognized timepoints with high genotype diversity (Fig. 1E). Reconstruction performance 

was higher for high-frequency genotypes that are typically of greatest interest, and lower 

on rarer genotypes, which typically have weaker activity and lower interest (Spearman R = 

0.09, P=4.6×10−10). Taken together, Evoracle effectively reconstructs historical trajectories 
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of full-length genotypes that arise during directed evolution from short-read data with 

missing linkage.

Evoracle’s inferences can enable epistatic analysis of mutations (Online Methods). The 

triple mutant A-76V, D384Y, S404C dominated the lagoon from 120-288 h, even though it 

had less fitness than expected from an independent combination of fitnesses from the single 

mutant A-76V and the double mutant D384Y, S404C according to the long-read sequencing 

data (Extended Data Fig. 3). Evoracle’s inferred fitnesses recapitulated the same conclusion 

from short-read sequencing data (Extended Data Fig. 3), identifying D384Y, S404C as driver 

mutations and A-76V as a passenger mutation.

Fitness reconstruction on OrthoRep data

We next evaluated Evoracle on data from OrthoRep, a separate in vivo continuous directed 

evolution method6. During OrthoRep-mediated evolution, a gene of interest on a linear 

plasmid undergoes stable mutagenic replication at ~100,000-fold higher mutation rates 

(to ~1×10−5 substitutions per base) by a DNA polymerase that acts orthogonally to 

(does not increase) mutation rates on the host yeast genome6. OrthoRep was used to 

evolve antimalarial drug resistance to pyrimethamine in Plasmodium falciparum malarial 

dihydrofolate reductases (PfDHFRs)6. The OrthoRep study used pooled Sanger sequencing 

to obtain population sequencing traces that were analyzed by Surveyor38 to estimate 

position-wise mutation frequencies with complete loss of physical linkage between 

neighboring nucleotides38. Importantly, Surveyor has a high error rate39: it estimates 

95% of frequencies within ±5.7% of Illumina sequencing (standard deviation, s.d. ~3%) 

and is typically unable to resolve mutation frequencies below 5%. We gathered data 

from the OrthoRep study6 comprising three replicates with timepoints from 14 passages 

(Online Methods) spanning 87 generations with 5–10 amino acid mutations across the gene 

(Fig. 2A–C). We also gathered drug resistance measurements of the minimum inhibitory 

concentration (MIC) for two mutational landscapes with 5 mutations and 32 alleles from the 

OrthoRep study 6.

We used Evoracle to infer the fitness of full-length PfDHFR genotypes from pooled Sanger 

sequencing data with complete loss of physical linkage (Fig. 2D–F, Extended Data Fig. 

3). Across three campaigns, all pairs of full-length genotypes were correctly ordered by 

reported log10 MIC of pyrimethamine [M] values using inferred fitness values (P = 0.04, N 
= 5 pairs; Online Methods). These results suggest that Evoracle can accurately distinguish 

full-length genotypes with weak and strong activity under designed selections from pooled 

Sanger sequencing data at different time points during evolution.

Reconstruction of base editor variants from PACE and PANCE

TadA (167 amino acids) is a tRNA adenosine deaminase in E. coli that converts adenine 

to inosine.40 We previously evolved TadA mutants that deaminate deoxyadenosine to 

create adenine base editors (ABEs) such as ABE7.1041. More recently, the TadA from 

ABE7.10 (TadA-7.10) was further evolved to yield ABE8e29, which has 590-fold increased 

activity (kapp), improved editing efficiency, and eight non-synonymous mutations relative 

to TadA-7.10 (22 non-synonymous mutations from wild-type TadA). The ABE8e directed 
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evolution campaign began with two parallel phage-assisted non-continuous evolution 

(PANCE) campaigns across 15 overnight serial passages. PANCE operates similarly to 

PACE, except continuous dilution of phage is replaced by manual passaging into fresh 

host-cell culture after a user-defined time period. PANCE is less stringent than PACE due 

to its lower effective dilution rate. Final aliquots from these low-stringency PANCEs were 

then used to seed four parallel high-stringency PANCE experiments for 10 further passages, 

which were finally seeded into three parallel PACE lagoons that ran for 84 h (Extended 

Data Fig. 4)29. A total of 99 samples were collected from parallel evolutions across 37 

unique timepoints at an average depth of 110,461 reads per timepoint. Due to the short 

length of TadA (501 nt), 600-nt Illumina sequencing reads were sufficient to read full-length 

genotypes. We identified 34 common non-synonymous mutations with high confidence 

(Online Methods) that collectively spanned the entire 167-aa length of the protein (501 nt; 

Fig. 3A–B).

From the 501-nt reads, we generated synthetic 100-nt segments by sequentially tiled in silico 
truncation (Online Methods). Evoracle inferred genotype frequency trajectories that closely 

matched ground-truth trajectories (Fig. 3C–D), achieving R2 = 0.88 between predicted and 

observed full-length genotype frequencies across timepoints (Fig. 3E–F). Inferred fitnesses 

were also consistent with fitness calculated from full-length sequencing reads (R = 0.80). 

The model performed strongly in the PANCE stages of the campaign with both low and 

high selection stringencies (timepoints 1–29) but struggled more in the PACE stage when 

the lagoon was a more diverse mixture of low frequency genotypes reminiscent of clonal 

interference42 (timepoints 30–36).

While the model performed best under selective sweep conditions in which one or two 

genotypes dominated the population, the model was not limited to recovering only high 

frequency genotypes: we also observed accurate reconstruction of time-series frequencies 

of full-length genotypes such as the double mutant T111R+M126L that never rose above 

10% frequency (Fig. 3C–D). On two other replicate directed evolution campaigns, Evoracle 

performed similarly (R2 = 0.85–0.87; Extended Data Fig. 4). The model’s weakest 

performance occurred at timepoint 32 (after 25 PANCE passages and 36 h of PACE), 

where it failed to reconstruct an unusual second peak for single mutant T111R. Evoracle can 

accurately reconstruct full-length genotype trajectories and fitness for evolving genes from 

both non-continuous and continuous directed evolution platforms.

Effect of read length on reconstruction

We evaluated the impact of reducing read length on Evoracle’s reconstructions. From full

length Cry1Ac and TadA reads, we generated datasets by aligning reads to the reference 

sequence, then progressively truncating these reads in silico to the limit of 3-nt “post

alignment reads” with loss of linkage between adjacent amino acids. In this scenario, the 

input data are amino acid frequencies at each timepoint, but no knowledge of mutation 

co-occurrence frequencies (Fig. 1C, 3B). While Evoracle reconstructed full-length genotype 

frequencies more accurately with longer read lengths, it performed surprisingly well even 

with a 3-nt post-alignment read length with a median R2 of 0.90 for Cry1Ac evolution 

and 0.83 for TadA evolution (Fig. 4A–D) across 50 replicates with random parameter 
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initializations (Online Methods). Fitness inferred from reads with complete loss of physical 

linkage maintained good consistency with ground-truth fitness (R2 = 0.67 for Cry1Ac 

and 0.69 for TadA, Extended Data Fig. 5). These results indicate that Evoracle is robust 

to shorter read lengths, loss of linkage in reads, and random parameter initializations. 

Evoracle’s compatibility with very short read lengths suggests its potential to process 

data from chip array-based DNA sequencing by hybridization technologies, which allow 

simultaneous DNA sequencing in a very high-throughput manner43,44.

Robustness to DNA sequencing errors

We evaluated Evoracle’s robustness to increased noise in the form of DNA sequencing 

errors. We designed a synthetic noise procedure to inject noise into data with a tunable noise 

level (standard deviation, s.d.) (Online Methods). We evaluated Evoracle’s reconstructions 

on Cry1Ac and TadA data with complete loss of linkage and synthetic noise with s.d. 

ranging from 0% to 25% across 50 replicates. Relative to 0% noise s.d. (mean R2 = 0.90, 

IQR = 0.88–0.93), Evoracle maintained remarkably strong performance on Cry1Ac data 

with 5% noise s.d. (mean R2 = 0.86, IQR = 0.84–0.87) and even with 8% noise s.d. (mean 

R2 = 0.76, IQR = 0.73–0.81; Fig. 5A–C). Compared to TadA data with no noise (R2 = 

0.82, IQR = 0.82–0.83), Evoracle also maintained remarkably strong performance with 5% 

noise s.d. (mean R2 = 0.76, IQR = 0.74–0.77) with deterioration at 8% noise s.d. and 

above (Fig. 5D–F). Fitness inferred with 5% noise s.d. from reads with complete loss of 

linkage also maintained robust performance (R2 = 0.52 for Cry1Ac and R2 = 0.42 for TadA). 

Evoracle also maintained robust performance to shallower read depths (Extended Data Fig. 

6). Together, these findings suggest that Evoracle is robust to noise levels as high as 5% s.d.

Pooled Sanger sequencing of a mixture of variants yields population sequencing traces, 

which can be analyzed using Surveyor38, EditR39, or other deconvolution methods to 

estimate single-nucleotide mutation frequencies along a reference sequence with complete 

loss of linkage between adjacent nucleotides. Surveyor’s noise has been characterized 

as roughly binomial with a standard deviation of 3% compared to mutation frequencies 

measured by Illumina methods38,39. In a previous section, we demonstrated that Evoracle 

accurately inferred fitness rankings from pooled Sanger sequencing with Surveyor38 

deconvolution of OrthoRep directed evolution data of PfDHFR (P = 0.04, Extended Data 

Fig. 3). Taken together with our synthetic noise results, Evoracle’s reconstructions can be 

accurate using pooled Sanger sequencing and Surveyor deconvolution, which is generally 

more accessible and cost-effective than NGS, and can cost as little as ~$10/timepoint 

(Supplementary Table 1, Supplementary Note 4)6,17,38,39.

Comparison to related methods

While many methods have been developed for haplotype reconstruction20,26,28,45–47, most 

require extensive overlaps between reads45, or additional input such as long-read47 or gene 

expression data46. Overlap-free methods using only short-read data with incomplete linkage 

can be categorized into model-free and model-based methods. A representative model-free 

method28,48 is bacterial haplotype reconstruction (BHap)28, which clusters disconnected 

linkage groups by frequency to reconstruct haplotypes. However, model-free methods face 

identifiability problems and have poor guarantees on performance, as without additional 
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information, these methods cannot reconstruct a mixture of haplotypes present at equal 

frequency. Model-based methods can leverage time-series information, and include Evoracle 

and the single-segment multi-locus model (SGML)26,27 which infers genotype frequencies 

and fitness under the same model of natural selection as Evoracle. SGML considers a 

restricted mutation model that diffuses genotype frequencies into their single mutants 

each timestep, while Evoracle introduces novel methodology to perform inference with a 

more flexible mutation model that induces an intractable likelihood. We refer readers to 

Supplementary Note 4 for a detailed methods comparison of Evoracle to BHap and SGML.

Notably, BHap and SGML have not been previously evaluated using real full-gene 

sequencing data. We evaluated each method using the ground truth full-gene sequencing 

data from the Cry1Ac and TadA datasets, and considered various types of input data, 

including short reads with 100-nt of linkage (Illumina sequencing data) and data with 

complete loss of linkage between mutations and 5% noise (simulating pooled Sanger 

sequencing data).

Evoracle performed substantially better (R2 = 0.76–0.94) than BHap (R2 = 0.01–0.31) and 

SGML (R2 = 0.00–0.01) across six evaluation tasks (Fig. 6A). BHap assumes that no 

genotypes have similar frequency, and assumes that mutations around the lowest observed 

frequency belong to the same genotype. We speculate that BHap’s performance performs 

poorly when a diverse mixture of genotypes occur at low frequency, which is typical of 

directed evolution. While SGML successfully reconstructed a high-fitness Cry1Ac genotype 

that swept the population near the final timepoint, SGML tends to find solutions with a 

single slow sweep (Extended Data Fig. 7). SGML struggles with reconstructing multiple 

selective sweeps observed in our directed evolution datasets due to its restrictive model 

of evolution. When populations evolve under high selection stringency and high mutation 

rates, novel high-fitness genotypes can arise that differ by many mutations from common 

genotypes via many intermediate sequences that have low or undetectable frequencies, 

which can be difficult for SGML’s explicit mutation model to reconstruct. In contrast, a key 

property of Evoracle is that it flexibly allows any genotype to enter the population at any 

timepoint, improving its performance on evolutionary data where large jumps in sequence 

space can occur. These results demonstrate that Evoracle offers a substantial improvement 

over prior methods.

One alternative to using Evoracle with pooled Sanger sequencing data is using data from 

Sanger sequencing of many clones. In our analysis, clonal Sanger sequencing data requires 

10x more resources (~$100/timepoint) to match Evoracle’s performance with a single 

pooled Sanger sequencing sample (Extended Data Fig. 7, Supplementary Note 4).

Identification of gene variants with high fitness

We compared Evoracle’s ability to propose variants with high fitness to the commonly used 

approach of proposing variants comprising consensus mutations with >50% frequency at the 

last timepoint of directed evolution campaigns3,5,6,11,12,29–31. For gene-length biomolecules, 

using consensus mutations to nominate high-fitness genotypes can result in incomplete 

sets of epistatic interactions, or suboptimal mutation combinations by mixing variants. 

Furthermore, proposing genotypes using only the last timepoint ignores time-course 
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information: for example, variants with high but decreasing frequency have lower fitness 

than variants with low but increasing frequency. Motivated by Evoracle’s fitness inference 

performance (R2 = 0.64–0.71; Extended Data Fig. 5), we hypothesized that Evoracle could 

propose genotypes with higher fitness than the consensus mutation approach. We evaluated 

Evoracle’s performance on data with complete loss of linkage and 5% noise (simulating 

a pooled Sanger sequencing strategy) truncated at every timepoint (Fig. 6B). Proposed 

variants were evaluated using ground-truth fitness (relative genotype replication rates) 

calculated using held-out full-length genotype frequencies.

On the Cry1Ac dataset truncated at 32 different timepoints, Evoracle predicted a total of 18 

gene variants with higher fitness than the consensus variant with eight hits for an accuracy 

of 44% (Fig. 6C). The improved Cry1Ac variants had an average of 142% higher fitness 

and up to 211% higher fitness than the consensus variants at the same timepoints (Fig. 6C). 

Evoracle also performed well on TadA data, with a hit rate of 32/44 in the PANCE truncated 

datasets, and 7/9 in the PACE regime (Fig. 6D) for an accuracy of 76%. The improved 

TadA variants had an average of 151% higher fitness and up to 315% higher fitness than the 

consensus variants.

In the OrthoRep campaign 2, Evoracle identified “NH..” as a high-fitness variant two 

passages (>48 h) earlier and “.HN.” three passages (>72 h) earlier than the consensus 

method. At passage 6, the consensus variant was “..N.” while Evoracle identified “NH..” 

which had two-fold higher MIC of pyrimethamine6 (Fig. 6E). A particular advantage of 

Evoracle over the consensus mutation approach is the ability to identify high-fitness ‘rising 

star’ variants even when their frequency is low. In one PfDHFR campaign, Evoracle was 

able to identify the variant “NH..” with two-fold higher pyrimethamine resistance more 

than 48 h before the consensus method, when the mutations D54N and Y57H were at 25% 

to 35% frequency (Fig. 6E). In timepoints 192–276 h in the Cry1Ac campaign (Fig. 1D), 

the consensus method called the variant A-76V, D387Y, S404C with high but decreasing 

frequency, while Evoracle was able to identify variants including M-73I and S363P with low 

but rising frequencies of 10% to 15% which had higher fitness. Overall, these comparisons 

across three datasets demonstrate that Evoracle can identify variants with higher fitness than 

those identified with the common consensus approach.

Identifying variants with strong phenotypic activity

We investigated Evoracle’s ability to propose variants with higher biochemical activity 

measured by phenotypic assays. Thus far, we have evaluated Evoracle’s variant prioritization 

based on fitness (defined as relative genotype replication rates) calculated from ground-truth 

genotype frequencies. However, fitness under designed selections can have an imperfect 

relationship to the end-goal biochemical activity - for instance, mutations that reduce protein 

stability can propagate effectively in directed evolution but reduce activity in validation 

assays3,49. Following PACE3, seven anti-insecticidal Cry1Ac variants were designed by 

humans based on consensus mutations for synthesis. Among these variants, Evoracle 

inferred that the genotype “WS.DNGE.I.YC.KS.L” had the highest fitness from data with 

complete loss of physical linkage and 5% noise, and this variant indeed proved to have 

the highest larval mortality across toxin doses ranging from 10−1 to 102 ppm3, with up 
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to 10-fold higher larval mortality rates than other tested variants. Across three OrthoRep 

campaigns and using only pooled Sanger sequencing data, Evoracle correctly identified the 

PfDHFR variants with the best log10 MIC of pyrimethamine [M] among tested variants 

(Extended Data Fig. 3), with up to 2-fold improvement over other variants. Together, these 

observations suggest that Evoracle can prioritize variants with high biochemical activity.

Discussion

Integrating machine learning and directed evolution to propose genotypes with optimized 

fitness has had longstanding interest in the molecular life sciences50–55. Standard 

supervised machine learning approaches, however, require full-length genotypes with 

activity annotations, which have not been previously accessible at scale for gene-length 

biomolecules. By reconstructing full-length genotypes with fitness annotations, Evoracle can 

generate training data from short-read sequencing data on gene-length biomolecules and 

expand the intersection between machine learning and directed evolution.

Evoracle (https://github.com/maxwshen/evoracle) is a machine learning method that 

leverages covariation in point mutation frequencies over time to accurately reconstruct 

fitness and frequencies of full-length genotypes from directed evolution timepoints, even 

with very short DNA sequencing read lengths and substantial measurement noise such as 

sequencing errors. We validated Evoracle on data from three campaigns across three directed 

evolution platforms: PACE, PANCE, and OrthoRep, and reported a new dataset with full

gene sequencing and short read data in 99 samples spanning 37 timepoints from a directed 

evolution campaign on TadA29. We demonstrate that Evoracle substantially outperforms 

two related overlap-free genotype reconstruction methods. By reconstructing full-length 

genotypes, Evoracle can help reveal the molecular basis of activity improvements. Epistatic 

interactions between mutations at distant residues can be deciphered by analyzing genotype 

fitness. Importantly, we showed that Evoracle can propose genotypes with higher fitness 

and activity compared to typical experimental workflows that focus on consensus mutations, 

including ‘rising star’ genotypes with low frequency but higher fitness than the consensus 

variant. Finally, we demonstrated that all these aspects of Evoracle are compatible with 

pooled Sanger sequencing with Surveyor deconvolution, which is substantially more 

accessible and cost-effective than alternatives such as long-read NGS.

Evoracle advances overlap-free genotype reconstruction methodology and could extend 

beyond directed evolution of gene-length biomolecules. Since Evoracle requires no linkage 

between mutations, in principle Evoracle may be able to recover fitness interactions between 

nucleotides in different genes, or even in the genomes of distinct species. Although Evoracle 

was designed to study evolution experiments with high selection stringency, mutation rates, 

and large population sizes where timepoint samples can be easily acquired, Evoracle might 

also be applied to cancer evolution or other natural evolutionary processes.
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Methods

High-throughput sequencing

Phage samples from individual time points during the ABE8e evolution campaign 

were used for high-throughput sequencing. 1 uL of each sample was used for PCR 

with primers KZ1532 (5’-ATAAACTGATACAATTAAAGGCTCC-3’) and KZ1533 (5’

GGTGTTTCGCTACCGGAAGAACCAC-3’) to yield PCR products of 602 base pairs in 

length. PCR activation was done at 95 °C for 10 min to ensure phage lysis, followed by 30 

cycles of 30 second extensions. After each sample was confirmed by agarose gel, a second 

round of PCR for 10 additional cycles was performed to barcode each sample individually. 

All samples were then pooled at comparable amounts and sequenced using an Illumina 

MiSeq v2 600-cycle kit.

Cry1Ac data processing

The Cry1Ac dataset is from a PACE directed evolution campaign on the gene Cry1Ac3. 

PacBio sequencing reads, Illumina sequencing reads, and the Cry1Ac reference sequence 

were obtained from Badran et al.3 and NCBI Sequence Read Archive accession number 

PRJNA293870. Following their methods, PacBio data were aligned to the reference 

sequence using blasr version 5.3.3 with default parameters. Reads with fewer than 2,000 

matches (out of a reference sequence length of 8,326 nucleotides) were discarded. Non

synonymous amino acid mutations among a list of 19 high-confidence mutations derived 

from Badran et al. were tabulated; these mutations were A-76V, M-73I, C15W, F68S, 

R198G, G286D, T304N, E332G, A344E, Q347R, T361I, S363P, D384Y, S404C, N417D, 

E461K, N463S, E515K, and S582L. Full-length genotype frequencies were tabulated 

after discarding reads that contained a deletion at any high-confidence mutation position. 

Following the methods of following Badran et al., full-length genotypes that did occur at 

>1% frequency at any timepoint were discarded; at this point, approximate PacBio read 

depth was on the order of 102, so this step corresponded to filtering genotypes with no more 

than a handful of reads at all timepoints.

Paired end 2x150 Illumina reads were aligned to the reference sequence using bowtie2 

version 2.3.5.1 using default settings. Non-synonymous amino acid mutations were reduced 

to the previously described list of 19 high-confidence mutations from the study. The 

reference sequence was split into 100-nt segments and mutation combination frequencies 

were tabulated using all reads spanning each segment.

TadA data collection and processing

The TadA dataset is from a PACE and PANCE directed evolution campaign on the E. coli 
TadA gene (167 amino acids), which encodes a tRNA adenosine deaminase converts adenine 

to inosine40, which is used in adenine base editors (ABEs)41. Directed evolution occurred 

over more than 444 h. Due to the short length of TadA (501 nt), 600-nt Illumina sequencing 

reads were used to read full-length genotypes. The dataset contains 99 samples collected 

from parallel evolutions across 37 unique timepoints at an average depth of 110,461 reads 

per timepoint.
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We obtained 2x300 bp Illumina sequencing data for 99 samples, comprising 20 samples for 

each of two low-stringency phage-assisted non-continuous evolutions (PANCEs) (samples 

1-20 and 21-40), 9-10 samples for four high-stringency PANCEs (samples 41-50, 51-60, 

61-69, and 70-78), and 7 samples for three phage-assisted continuous evolutions (PACEs) 

(samples 79-85, 86-92, and 93-99). All consecutive samples were collected 24 h apart 

(within the same regime) or more (across regimes) except for one consecutive pair collected 

12 h apart. Pandaseq 2.7 was used to merge overlapping paired-end Illumina sequencing 

reads with default settings, and bowtie2 version 2.3.5.1 was used to align merged reads 

to the ABE 7.10 reference sequence with default settings. Non-synonymous mutations that 

occurred at greater than 5% frequency in at least one sample were retained as ‘major’ 

mutations; these 34 mutations were verified to include all significant mutations described by 

Richter et al.29 and consisted of M1I, R23L, R26C, R26G, A48S, T55P, R74G, R74L, R74V, 

D77V, V82T, F84L, E85Q, P86R, C87G, V88A, S97A, A109S, A109T, T111R, D119N, 

H122N, Y123H, M126L, C146G, Y147D, Y147H, Y147S, F149Y, Q154K, A158T, T166I, 

D167G, and D167N. Full-length genotype frequencies were aggregated by summation to 

reduce them into the set of major mutations. At this point, full-length genotypes occurring 

with 5 or fewer reads were filtered from each sample. Relevant sequences are provided in 

Supplementary Sequences.

Following the relationship between the PANCE and PACE regimes in the study29, whereby 

each low-stringency PANCE was used to seed two high-stringency PANCEs, and all four 

high-stringency PANCEs were combined to seed each PACE experiment, we combined 

the two low-stringency PANCE regimes by using a 1:1 mixture of full-length genotype 

frequencies and re-normalizing. We manually aligned samples to maximize consistency 

between the four high-stringency PANCEs as some regimes had 9 samples and other 

regimes had 10 samples and combined their data by a uniform mixture. This yielded full

length genotype trajectories across 20 low-stringency PANCE timepoints, 9 high-stringency 

PANCE timepoints, and 7 PACE timepoints for a total of 36 timepoints.

Supplementary Sequences

Amino acid sequence of TadA in ABE 7.10—
MSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPT

AHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGIRNAKT

GAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMPRQVFNAQKKAQSSTD

DNA reference sequence for TadA and surrounding context—
TCTTATAAACTGATACAATTAAAGGCTCCTTTTGGAGCCTTTTTTTTTGGAGTAAGG

AGGAAAAATGTCAGAAGTAGAGTTTTCACACGAGTACTGGATGAGACACGCATTG

ACTCTCGCAAAGCGTGCTCGAGATGAACGCGAGGTGCCCGTGGGAGCAGTACTC

GTGCTCAACAATCGCGTAATCGGCGAAGGTTGGAATCGTGCAATCGGACTCCACG

ACCCCACTGCACATGCGGAAATCATGGCCCTTCGACAGGGCGGGCTTGTGATGCA

GAATTATCGACTTATCGATGCGACGCTGTACGTCACGTTTGAACCTTGCGTAATGT

GCGCGGGAGCTATGATTCACTCCCGCATTGGACGAGTTGTATTCGGTGTTCGCAAC

GCCAAGACGGGTGCCGCAGGTTCACTGATGGACGTGCTGCATTACCCAGGCATGA

ACCACCGGGTAGAAATCACAGAAGGCATATTGGCGGACGAATGTGCGGCGCTGTT
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GTGTTACTTTTTTCGCATGCCCAGGCAGGTCTTTAACGCCCAGAAAAAAGCACAA

TCCTCTACTGACTCTGGTGGTTCTTCTGGTGGTTCTTCCGGTAGCGAAACACC

PfDHFR data processing

The PfDHFR dataset is from an OrthoRep directed evolution campaign that evolved 

antimalarial drug resistance to pyrimethamine in Plasmodium falciparum malarial 

dihydrofolate reductases (PfDHFRs)6. Measurements were taken using pooled Sanger 

sequencing and Surveyor.

Position-wise mutation frequencies were calculated from vectorized figures obtained from 

the OrthoRep study6 using rulers in Adobe Illustrator. Specifically, figures 3C, 3D and S5A 

were used. Distances can be measured in vector graphics to arbitrary precision; we used a 

measurement resolution of 0.001 points and calculated the y-value of each point compared 

to the y-axis. A range of 100% frequency in the y-axis corresponded to 100.863 points, so 

our resolution of 0.001 points translated to a frequency resolution of 0.001%.

Fitness values were obtained from Fig. 4. Fitness ranges were provided as text. Fitness 

midpoints (out of three replicates) were depicted as the color of each box and converted to 

a number using the color bar in each subfigure. The color bar was converted to a pixelized 

format and the nearest color pixel to a box’s color was used to estimate the fitness value to a 

resolution of 0.1.

Inference problem definition

We consider a stochastic non-linear dynamical system that describes directed evolution. The 

latent state at time t is a vector of genotype frequencies xt, which undergo the following 

state transition process each timestep: first, genotype frequencies are updated according to a 

standard model of asexual fitness-based natural selection26,32 as w
wT xt

⊙ xt where w is a non

negative fitness vector, then mutation introduces a genotype i to the population at time t with 

frequency s[i] if z[i] = t for each i indexing the G genotypes, where z[i] ≠ t if xt[i] > 0. These 

two steps can be expressed in a single equation as E xt + 1 = 1 − ∑i pt
w

wT xt
⊙ xt + pt

where pt is a vector whose i-th element is s[i] if z[i] = t otherwise 0, with initial genotype 

frequencies xt=0 = p0.

We observe data at T timepoints through a lossy stochastic observation process E[yt] = 

Bxt, where B is a binary matrix that is rank deficient because the dimension of yt is 

smaller than xt. This measurement process is a generalized description of the process 

of performing short-read sequencing, then computing the fraction of the population that 

contains a mutation at some position, for many positions and mutations of interest.

We assume that noise models for the state transition and observation process are known and 

finite (for example, binomial or beta-binomial observational noise), but we do not focus on 

noise models since Evoracle is a likelihood-free inference method.
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The inference task is: Given y1, y2, …, yT, infer the parameters (w, s, z) and the unobserved 

genotype frequency states x1, x2, …, xT. This inference task is challenging due to the high 

dimensionality of the parameters (three per genotype with hundreds of relevant genotypes), 

the large discrete space of z, and the intractability of computing likelihoods in models that 

attempt to infer the parameters of a distribution governing z. We discuss related work and 

alternative inference approaches in the results.

Briefly, Evoracle is a simple likelihood-free inference algorithm supporting efficient 

gradient-based optimization with faster asymptotic time complexity than conventional 

expectation maximization approaches. Evoracle bypasses the challenging task of inferring 

s, z by directly inferring x1, x2, …, xT under the constraints: 1) each genotype enters 

the population at an arbitrary inferred frequency at most once, 2) frequencies of present 

genotypes should be consistent with fitness-based natural selection, and 3) absent genotypes 

have zero frequency. We satisfy these constraints by distinguishing present and absent 

genotypes using a low positive threshold ϵ, renormalizing present frequencies, and 

enforcing a gradient-matching regularizer on present genotypes to ensure fidelity to the 

natural selection process. These steps explicitly handle all constraints except ensuring that 

genotypes enter the population at most once, which is handled implicitly by encouraging 

fidelity to the natural selection process.

Evoracle

Here, we describe algorithms for Evoracle and the forward pass computation of our 

differentiable loss function. We discuss theoretical properties of Evoracle in Supplementary 

Note 1.

Algorithm 1.

Evoracle.

Input:

  - Observations y1, y2, …, yT

  - Non-negative hyperparameters α, β

  - Hyperparameters for the genotype proposal method

Output:

  - Inferred genotype frequencies x1, x2, …, xT
  - Inferred parameters (w, s, z)

Steps

  1. Propose genotypes that could exist in the population

Add single mutants

Add genotypes with multiple mutations that rise or fall together in any consecutive timepoint

G = number of genotypes proposed

  2. Initialize parameters and hyperparameters

Initialize non-negative ϵ such that Gϵ << 1

Initialize x1, x2, …, xT  such that all entries are greater than ϵ

Initialize w
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  3. Perform inference by optimizing loss function with gradient descent

Until convergence:

  loss = differentiable_loss_function(parameters, hyperparameters)

  Update x1, x2, …, xT , w using gradient of loss

  4. Recover s  and z
z = A vector of the earliest timepoint where each genotype i has >ϵ frequency in x1, x2, …, xT  for each i.

s = A vector of the frequency of genotype i in xt where t = z[i] for each i.

Return x1, x2, …, xT  and w, s, z

We first describe our genotype proposal heuristic, then describe our differentiable loss 

function. Generally, SNPs or mutations are described by a specific amino acid residue 

at a particular position. However, combinations of SNPs can be observed by short-read 

sequencing across multiple nucleotides (and equivalently, amino acids). To represent both 

cases, we refer to ‘symbols’ occurring at ‘positions’, where a ‘symbol’ can be a single amino 

acid residue or a combination of amino acid SNPs, and ‘positions’ correspond to the range 

of amino acids observed in each contiguous and non-overlapping measurement across the 

reference sequence.

Illingworth et al.26 describes a maximal genotype proposal strategy, which produces an 

exponentially many (2N) genotypes for N separately measured mutations. Here, we describe 

a genotype proposal strategy that scales better by proposing substantially fewer genotypes 

by focusing on genotypes that are likely to be in the population based on short-read data. In 

our standard proposal strategy, we first include every single mutant corresponding to a non

reference symbol at a single position and the reference symbol at all other positions. Then, 

at each consecutive pair of timepoints, combinations of symbols at distinct positions that 

rise or fall together in absolute frequency greater than “change_threshold” (we used 2.5%), 

where the symbols’ absolute changes are sufficiently similar (difference < “split_threshold”, 

set to 5% in our work) are used to form additional full-length genotypes built by using the 

majority frequency symbol (occurring at greater than “majority_threshold”, set to 50% in 

our work) at all other non-covarying positions. In situations where no symbol has greater 

than the majority_threshold frequency at a position, we used the wild-type symbol. Finally, 

we add the consensus variant at every timepoint.

In our work, we also explored the impact of using a combinatorial proposal approach to 

evaluate method robustness and sensitivity to mis-specifying or over-specifying full-length 

genotypes. An exponential number of genotypes were proposed as the Cartesian product of 

the top 14 positions and symbols ranked by mean frequency across time. In some cases, 

we keep only a random fraction. We find that Evoracle retains efficient runtime and robust 

performance when proposing many genotypes.
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Algorithm 2.

Differentiable forward pass to calculate loss for a pair of timepoints.

Input:

  - Inferred xt, xt − 1, w

  - Hyperparameters 0 < ϵ << 1, α > 0, β > 0

Output:

  - Scalar loss. This algorithm is differentiable, which is used to compute a gradient for updating xt, xt − 1, and 

w to minimize the loss.

Steps

  1. Calculate present genotypes with threshold ϵ

zt = [xt[i] if xt[i] > ϵ else 0 for i in range(G)]

zt − 1 = [xt − 1[i] if xt[i] > ϵ else 0 for i in range(G)]

  2. Normalize frequencies

zt = zt/sum(zt)

zt − 1 = zt − 1/sum(zt − 1)
3. Calculate loss terms for time t

Ldata = DKL(Bzt‖yt)

Lfidelity = DKL
w

wTzt − 1
⊙ zt − 1‖zt

Lskew =
i

(zt[i] − 1/G)3

Return Lfidelity + αLdata + βLskew

The state transition process fidelity term compares the fitness-based updated genotype 

frequencies for genotypes present at t − 1 to the normalized frequency of the same genotypes 

at time t, because the state transition process specifies that natural selection occurs before 

new genotypes are introduced at time t.

In practice, our implementation of this algorithm ignores the normalization steps for zt and 

zt − 1, as we assume that Gϵ ≪ 1: the total number of genotypes modeled multiplied by ϵ 

is small, which means not normalizing incurs a very minor bias. In practice, it is difficult 

for G to be high due to the limitations of the lossy measurement process, and is often ~100, 

while we use ϵ = 10−6 in our work, and in general decreasing ϵ has no impact until machine 

precision limits are reached. A practical benefit of skipping these normalization steps is 

that otherwise, inferred genotype frequencies below ϵ no longer participate in any loss term 
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either, and thus will not be updated in future gradient descent updates. For this reason, when 

using normalization, all genotype frequencies should be initialized above ϵ.

In practice, we introduce zt* = [xt[i] if xt − 1[i] > ϵ else 0 for i in range(G)], normalize it as 

zt* = zt*/sum(zt*), and use a modified DKL
w

wT zt − 1
⊙ zt − 1‖zt*  fidelity term. This sacrifices 

the implicit regularization that encourages lower L1-norm on s, but helps avoid instabilities 

from high KL divergence values which can arise when many new genotypes are introduced 

at high total frequency at time t. We did not observe these instabilities on our datasets, but 

prefer this conservative choice in our implementation for our general-use package.

The loss function was implemented in PyTorch56 1.4.0 and optimized using gradient 

descent. As default settings, we used 1000 optimization epochs, a learning rate of 0.1, 

weight decay of 1e-5, and a learning rate scheduler that reduced learning rate when the 

loss plateaued with a patience of 10 epochs, a threshold of 1e-4, and a reduction factor 

of 0.1. All optimizations performed for this manuscript were done on a single CPU and 

typically converged within less than one minute to up to five minutes using a 2.80 GHz 

CPU. We initialize genotype frequencies with a standard normal distribution, and used 

softmax to obtain normalized frequency distributions. We initialized fitnesses using a normal 

distribution with mean −1 and standard deviation −0.01, then exponentiated to ensure non

negativity.

Simulating reduced read length

Mutation positions were grouped into reads of a specified length in a naïve manner by 

starting from the 5’-most mutation (lowest position index) and binning by the simulated 

read length. We note that simulated read lengths could be repositioned to cover highly 

variable mutations more optimally, or reduce the number of non-overlapping reads, but we 

purposefully chose to work with an unoptimized approach to show that such optimization, 

though helpful in expectation, is not necessary for our model’s performance.

Simulating noise

To simulate a noise at a specified standard deviation s between 0% and 100%, we used a 

variety of approaches depending on the frequency p of a particular non-overlapping read 

(potentially containing groups of mutations). We used a binomial model for the noise, 

since 1) this model describes the noise that occurs when read samples are drawn from a 

single well-mixed population to investigate model performance with reduced read depth, 

and 2) a binomial distribution provides a good fit to the empirical distribution of noise 

produced by pooled Sanger sequencing compared to next-generation sequencing of mutation 

frequencies38,39. Other common noise models in the life sciences include beta-binomial and 

negative binomial (gamma-Poisson mixture), which are usually motivated by fitting models 

to overdispersed data with higher variance than can be specified under a binomial noise 

model for an observed mean read count. Here, we do not fit our noise model to data, but 

directly vary the variance of our simulated noise across a wide range. As a result, there is no 

additional noise that can be achieved under a beta-binomial or negative binomial model.

Shen et al. Page 18

Nat Chem Biol. Author manuscript; available in PMC 2022 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We observed that binomial noise would sometimes yield 1) highly discretized noise values 

(when N is low), and 2) would add less noise than specified when p is near 0 or 1 (that is, 

the added noise’s standard deviation was less than our specified noise level s). We wanted 

to avoid highly discretized noise, which would primarily be expected to occur if read depth 

was extremely shallow, because discretized noise does not accurately represent noise from 

Surveyor deconvolution. We also wanted to ensure that we never added less noise than 

specified. Thus, we augmented our binomial noise model to address these two issues.

If p was initially between 0.01 and 0.99, we calculated an effective number of reads n as:

n = p(1 − p)
s

2

Then, if n > 20, we sampled a new p ~ binomial(n, p)/n which draws from a distribution 

with standard deviation s. Otherwise, if n was too small, we avoided extreme discretization 

by repeatedly sampling a new p ~ Gaussian(p, s) until p was greater than 0 and less than 1.

If p was initially less than 0.01 or greater than 0.99, the above procedure would yield an 

approximation to a half-Gaussian distribution which has standard deviation smaller than s, 

which means that less noise is added than desired. Specifically, a Gaussian with variance s2 

that is truncated in half has variance s2(1 − 2/π) < s2. Thus, a Gaussian with

std = s 1 − 2
π

−1/2

where the scaling factor ≈ 1.659, when truncated in half, yields a half-Gaussian with 

standard deviation equal to s. To ensure that the specified amount of noise was added at 

these boundary conditions, we resampled p from a half-Gaussian derived in this manner to 

ensure its standard deviation was equal to s and not lower.

Calculating fitness from full-length genotype frequencies

To evaluate Evoracle, we compared inferred fitness to ground-truth fitness values w 
computed from the ground-truth full-length genotype frequencies x1, x2, …, xT for the 

Cry1ac and TadA datasets. To compute w, we minimized KL w
wT xt

⊙ xt  using gradient 

descent.

Proposing consensus variants

From an input set of mutation frequencies at given positions at a particular timepoint, we 

formed the full-length consensus variant by using the amino acid with >50% frequency at 

each position, or the wild-type amino acid if no mutation surpassed 50% frequency.

Predicting variants with higher fitness than the consensus

From an input matrix of mutation frequencies with complete loss of physical linkage and 

5% noise, we used Evoracle to reconstruct full-length genotypes and fitnesses. To compare 
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against a consensus baseline, we formed a consensus variant using mutation frequencies at 

the final timepoint. To obtain a list of variants predicted by Evoracle to have higher fitness 

than the consensus, we found all variants with higher predicted fitness than the consensus 

variant’s predicted fitness. To retain variants with higher confidence predictions, we filtered 

variants that had less than 5% predicted frequency in the final timepoint (this threshold was 

motivated by the 5% noise in the data).

To evaluate performance, we used ground-truth fitnesses calculated using held-out full

length genotype data. We calculated the ground-truth fitness of the consensus variant and 

used the ground-truth fitnesses to evaluate whether each variant predicted by Evoracle to 

have higher fitness than the consensus actually had higher ground-truth fitness.

We focus on accuracy (true positive rate among predicted positives) and not other binary 

classification metrics because the class of true positives contains many low-frequency 

genotypes that are difficult for any method to identify from sequencing data with incomplete 

linkage.

Non-linear interpolation of full-length genotype frequencies

To investigate the effects of gathering samples at finer time resolution, we interpolated data 

between two timepoints Pt and Pt+1 of a given dataset of full-length genotype frequencies 

that are one unit of time apart. Due to measurement limitations, genotypes reported with 

zero frequency are generally indistinguishable from exceedingly rare genotypes; as such, 

we replaced zeros that occurred exactly once for a particular full-length genotype in Pt and 

Pt+1 with a tunable value ε which was set to 1e-6 in this work. Pt and Pt+1 were then 

renormalized to sum to one. We calculated fitness for all full-length genotypes using Pt and 

Pt+1 and apply Lemma 4 (Supplementary Note 1) to convert these fitness values to a smaller 

time unit denoted δ that is less than 1. We then generate interpolated full-length genotype 

frequencies at time resolution δ for 1/δ total discrete steps between Pt and Pt+1. In practice, 

this procedure yields frequency trajectories that are smooth piecewise with discontinuities at 

observed timepoints.

Mutational families

It is common practice in directed evolution experiments to constrain one’s focus to a 

subset of mutations that are particularly common across the campaign, and to consider only 

these mutations when designing variants that represent the output of directed evolution for 

downstream low-throughput characterization or validation. In our work, we used a threshold 

of 5%. Our analysis follows this practice and refers to combinations of amino acids at these 

common mutation positions as “full-length genotypes”.

Data Availability

The sequencing data generated during this study are available at the NCBI Sequence Read 

Archive database at accession code PRJNA625117. Processed data have been deposited 

under the DOI 10.6084/m9.figshare.12121359.
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Code Availability

The code used for data processing and analysis are available at https://github.com/

maxwshen/evoracle-dataprocessinganalysis. The Evoracle model is available at https://

github.com/maxwshen/evoracle.

Extended Data

Extended Data Fig. 1. Evoracle model properties
a, Regularization strategies. Comparison of loss incurred by L2 norm, variance, normalized 

statistical skew, and unnormalized statistical skew (our skew) regularizers for distributions 

of three variables. b, Synthetic data to demonstrate the utility of the skew regularizer. 
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The top left graph shows a ground-truth simulated population containing only a wild-type 

genotype and a double mutant. Observed single-mutation frequencies from the ground

truth simulation were used by Evoracle to infer full-length genotype trajectories of the 

wild-type genotype, both single mutants, and the double mutant. Evoracle was performed 

with varying values of beta (top right, bottom left, and bottom right). When beta is 

higher, Evoraclemore correctly infers the ground truth trajectories. Inferred genotype 

frequencies are plotted with a small jitter to show overlapping lines clearly. c, Robustness 

to hyperparameters. Performance while varying hyperparameters alpha and beta for 

Cry1Ac data. Reported statistics summarize performance across ten replicates with random 

parameter initializations.

Extended Data Fig. 2. Evaluating Evoracle’s genotype proposal strategy.
a-b, Sequence proposal strategies. Performance with varying full-length genotype proposal 

strategies for (a) Cry1Ac data, and (b) TadA data. N = 40 replicates. Box plot depicts 

median and interquartile range. Default strategy is described in the Online Methods; x2 

to x100 represent adding full-length genotypes comprising combinations of mutations to 

increase the total number of reconstructed full-length genotypes by the stated multiplicative 

factor of the default number. See Online Methods for more details.
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Extended Data Fig. 3. Evolutionary fitness reconstruction from pooled Sanger sequencing of 
Ortho Repcampaignsa.
a, Comparison of ground-truth and inferred fitness, indicating a negative epistatic interaction 

between A76V and D384Y, S404C in Cry1Ac. b-d, Comparison of MIC values and inferred 

fitness for evolved PfDHFR variants.

Shen et al. Page 23

Nat Chem Biol. Author manuscript; available in PMC 2022 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4. Evoracle performance on ABE8e evolution replicates.
Model evaluation on replicate PACE experiments 1 and 3 of the ABE8e directed evolution 

campaign. Samples 1-20 are from low-stringency PANCE, samples 21-29 are from high

stringency PANCE, and samples 30-36 are from PACE. a, Observed frequencies of 34 

mutations. Colors represent amino acid mutations, using the same coloring scheme as in Fig. 

2a–b. b, Observed full-length genotype trajectories. Colors represent full-length genotypes, 

using the same coloring scheme as in Fig. 2c–d. c, Inferred full-length genotype trajectories. 

Colors represent full-length genotypes, using the same coloring scheme as in Fig. 2c–d. d, 
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Consistency between observed and predicted full-length genotype frequencies; scatter plot 

and swarm plot with kernel density estimate.

Extended Data Fig. 5. Evaluation of fitness inference
a-b, Comparison of inferred fitness to fitness calculated from full-length reads for (a) 

Cry1Ac and (b) TadA.
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Extended Data Fig. 6. Evoracle performance with varying sequencing read depth
a-b, Full-length genotype reconstruction performance across timepoints with varying 

simulated read depths using binomial samples for (a) Cry1Ac and (b) TadA. Box plot 

depicts median and interquartile range. N=50 independent replicates with random seeds.
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Extended Data Fig. 7. Comparison to related methods
a, Observed Cry1Ac (2,138 nt) genotypes from 34 timepoints (spanning 528 h) of PACE 

from PacBio long-read sequencing data. Colors represent distinct genotypes. Figure is 

the same as Fig. 1c and reproduced for convenience. b, Cry1Ac genotype frequencies 

reconstructed by SGML. Gray lines indicate genotypes that are not present in PacBio data. 

c, Comparison of performance by clonal Sanger sequencing depth compared to pooled 

Sanger sequencing. Box plots indicate median and interquartile range, and whiskers indicate 

extrema. N=50 random seed replicates. d, Comparison of rising star performance by clonal 

Sanger sequencing depth vs pooled Sanger sequencing on 12 h interpolated Cry1Ac data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Genotype reconstruction during evolution from short-read sequencing data with 
incomplete physical linkage.
a, Overview of the method. b, Schematic of the Cry1Ac gene (2,138 nt) with locations 

of 19 major mutations evolved in a previous study3. Gray boxes indicate 100-nt segments 

measurable from Illumina sequencing data. Colored dots represent amino acid mutations. 

c, Observed frequencies of 19 major Cry1Ac mutations at 34 timepoints (spanning 528 

h) of PACE from short-read DNA sequencing data. Mutation colors match Fig. 1b. d, 

Observed Cry1Ac (2,138 nt) genotypes from 34 timepoints (spanning 528 h) of PACE from 

long-read sequencing data. Periods denote wild-type amino acid. Colors represent distinct 

genotypes. e, Inferred Cry1Ac (2,138 nt) trajectories from 34 timepoints (spanning 528 

h) of phage-assisted continuous evolution from 150-nt Illumina sequencing data. Periods 

represent wild-type amino acids. Gray lines indicate genotypes that are not present in 
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PacBio data. Colors match those in Fig. 1d. f, Consistency between observed and predicted 

full-length genotype frequencies. Genotypes are colored in the same manner as Fig. 1d, and 

lines connect genotypes at neighboring timepoints. g, Consistency between observed and 

predicted full-length genotype frequencies by timepoint with kernel density estimate.
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Fig. 2 |. Evolutionary fitness reconstruction from pooled Sanger sequencing of OrthoRep 
campaigns.
a-c, Point mutation frequencies for three PfDHFR evolution campaigns. Colors represent 

amino acid mutations. d-f, Inferred full-genotype frequencies for three PfDHFR evolution 

campaigns. Colors represent full-length genotypes. These genotype trajectories are 

hypotheses from our model, and are consistent with observed point mutation frequencies.
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Fig. 3 |. Evolutionary time-series frequency reconstruction from non-continuous directed 
evolution data.
a, The TadA gene (501 nt) annotated with secondary structure regions and non-synonymous 

mutations in ABE7.10 (14 mutations) and mutations that arose during ABE8 PANCE 

(34 mutations). Colors represent amino acid mutations. b, Observed frequencies of 34 

mutations. Colors match those in Fig. 3a. c, Observed frequencies of full-length genotypes. 

Samples 1-20 are low stringency PANCE, samples 21-29 are high stringency PANCE, and 

samples 30-36 are PACE. Colors represent full-length genotypes. d, Inferred full-length 

genotype trajectories. Samples 1-20 are low stringency PANCE, samples 21-29 are high 

stringency PANCE, and samples 30-36 are PACE. Samples are in chronological order. 

PANCE samples were collected every 24 h and PACE samples were collected every 12 

h. Colors match those in Fig. 3c. e, Consistency between observed and predicted full

length genotype frequencies. Genotypes are colored in the same manner as Fig. 3c, and 

lines connect genotypes at neighboring timepoints. f, Consistency between observed and 

predicted full-length genotype frequencies by timepoint with kernel density estimate.
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Fig. 4 |. Robustness to shorter read lengths.
a, Consistency between inferred and observed full-length genotype frequencies by read 

length for Cry1Ac. Box plot depicts median and interquartile range. N = 50 replicates 

from random initializations. Colors represent read length. b, Inferred full-length genotype 

frequencies from reads with a post-alignment length of 3 nt, simulating pooled Sanger 

sequencing with Surveyor deconvolution, for Cry1Ac. In pooled Sanger sequencing, a mixed 

trace is aligned to a reference sequence, but co-occurrence frequencies of nucleotides at 

distinct positions cannot be measured. With a post-alignment length of 3 nt, co-occurrence 

frequencies of amino acids at distinct positions cannot be measured. Colors represent full

length genotypes and match those in Fig. 1d. c, Consistency between inferred and observed 

full-length genotype frequencies by read length for TadA. The box plot depicts median 

and interquartile range. N = 50 replicates from random initializations. Colors represent 

read length. d, Inferred full-length genotype frequencies from 3-nt post-alignment reads for 

TadA. Colors represent full-length genotypes and match those in Fig. 3c.
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Fig. 5 |. Robustness to measurement noise.
a, Consistency between inferred and observed full-length genotype frequencies with 1-nt 

reads and varying measurement noise for Cry1Ac. Box plot depicts median and interquartile 

range. N = 50 replicates with independent noise and random initializations. Colors represent 

synthetic noise levels. b, Observed positional mutation frequencies for Cry1Ac with 5% 

measurement noise. Colors represent amino acid mutations and match those in Fig. 1b. c, 

Inferred full-length genotype trajectories from 1-nt reads with 5% measurement noise for 

Cry1Ac. Colors represent full-length genotypes and match those in Fig. 1d. d, Consistency 

between inferred and observed full-length genotype frequencies with 1-nt reads and varying 

measurement noise for TadA. Box plot depicts median and interquartile range. N = 50 
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replicates with independent noise and random initializations. Colors represent synthetic 

noise levels. e, Observed positional mutation frequencies for TadA with 5% measurement 

noise. Colors represent amino acid mutations and match those in Fig. 3a. f, Inferred full

length genotype trajectories from 1-nt reads with 5% measurement noise for TadA. Colors 

represent full-length genotypes and match those in Fig. 3c.
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Fig. 6 |. Model-guided fitness optimization.
a, Performance comparison of Evoracle to related methods on the Cry1ac and TadA datasets. 

N=1 experiment for noiseless conditions, and N=10 experiments for noise conditions. 

Error bars indicate standard error of the mean across replicates with independent noise. b, 

Example of truncated data analysis. Colors represent amino acid mutations and match those 

in Fig. 1b. c, Cry1Ac truncated datasets. Ground-truth fitness of unique variants predicted 

by Evoracle to have higher fitness than the consensus variant. d, TadA truncated datasets 

at PACE timepoints. Ground-truth fitness of unique variants predicted by Evoracle to have 
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higher fitness than the consensus variant. Values in (c) and (d) are normalized such that the 

consensus variant ground-truth fitness is 1. e, Mutation trajectories for PfDHFR evolution 

campaign 2 in OrthoRep, annotated with variants identified by Evoracle and the consensus 

approach. Left: colors represent amino acid mutations and match those in Fig. 2b. Right: 

colors represent full-length genotypes and match those in Fig. 2e.
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