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Microfibrillar-associated protein 5 is linked with
markers of obesity-related extracellular matrix
remodeling and inflammation
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Objective: Microfibrillar-associated protein 5 (MFAP5) is an extracellular matrix (ECM) glycoprotein, which is colocalized with
microfibrils in elastin networks. Its function in adipose tissue (AT) is not known. We have recently shown that the expression of
MFAP5 is downregulated in AT along with weight reduction (WR) in persons with metabolic syndrome (MetS). The aim of this
work was to study whether the change of MFAP5 mRNA expression in response to WR is associated with markers of adiposity,
glucose metabolism and insulin resistance in human AT.
Design: Weight reduction intervention study in parallel study design (The Genobin study). Altogether 46 obese subjects with
impaired glucose tolerance and features of MetS were randomized to a WR (n¼28) or a control group (n¼18) lasting for
33 weeks.
Measurements: Circulating glucose and insulin concentrations were measured and subcutaneous AT biopsies were performed
before and after the intervention. The mRNA expression was studied by quantitative real-time PCR (QPCR).
Results: QPCR of human AT biopsy samples confirmed that MFAP5 is highly expressed in AT and its expression is decreased
during WR. The mRNA expression of MFAP5 correlated positively with body mass index, and the change in MFAP5 mRNA
expression during WR correlated positively with the change of body fat mass. Furthermore, the MFAP5 mRNA expression
correlated negatively with circulating fasting concentrations of adiponectin and interleukin (IL)-1b and positively with leptin,
insulin and IL-1Ra levels. In addition, the MFAP5 mRNA expression correlated positively with the mRNA expressions of
peroxisome proliferator-activated receptor gamma, cyclin D2 and A disintegrin and metalloproteinase domain 12, genes
involved in AT remodeling.
Conclusion: This study demonstrates that MFAP5 is highly expressed in human AT and is correlated with markers of insulin
resistance. Furthermore, it is possible that MFAP5 is related to ECM remodeling during development of obesity.
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Introduction

Obesity is a chronic low-grade inflammatory state, which is

characterized by an increase in circulating inflammatory

factors partly due to changes in cytokine and adipokine

production in adipose tissue (AT).1 In addition to mature

adipocytes, AT is composed of different cell types in the

stromavascular fraction1 that may have different roles in

obesity-related inflammation of AT. It has been suggested

that a proinflammatory state with a concomitant upregula-

tion of inflammation-related genes might lead to changes in

the expression of genes linked to the extracellular matrix

(ECM) in order to accommodate the growing AT.2 Weight

reduction (WR) is an effective way to reverse the state of

inflammation and decrease biological markers of inflamma-

tion in the circulation, and also the expression of inflam-

matory markers in AT.3

Genome-wide transcriptomics analysis performed from AT

of the subjects with metabolic syndrome (MetS) participating

in the Genobin study4 showed that the ECM-associated

gene, microfibrillar-associated protein 5 (MFAP5),5 also known

as MAGP2, was one of the genes, whose expression was

downregulated in subcutaneous AT along with WR and

improved insulin sensitivity. It was found that MFAP5 mRNAReceived 4 April 2011; revised 10 June 2011; accepted 24 June 2011
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was highly expressed in AT, although its function in human

AT is not known. In this work, our aim was to investigate

whether the change of MFAP5 gene expression, along with

WR, is correlated with the measures of glucose metabolism

and body adiposity in the Genobin study individuals and

with circulating adipokines and expression of genes, which

were changed after WR.

Materials and methods

Altogether 75 overweight/obese (body mass index (BMI)

28–40 kg m�2) subjects aged 40–70 years were recruited

into the Genobin study (NTC00621205) described in detail

earlier.4 The subjects had impaired fasting glucose or

impaired glucose tolerance, and at least two other features

of the MetS.6 Subjects were randomly assigned to one of the

following groups: WR (n¼28), aerobic exercise training

(n¼ 15), resistance exercise training (n¼14) or control group

(n¼ 18),4 but in this study only the data from the WR and

control groups were included and analyzed. The number of

study participants varied among the correlation analyses due

to missing values of the variables in some of the participants.

In addition, mRNA samples were not available from all the

participants. The final number of participants included in

the data analysis is indicated in the table footnote. Subjects

were matched for age, gender, BMI and the status of glucose

metabolism. Briefly, the WR group had an intensive WR

period lasting for 12 weeks during which the study subjects

followed detailed instructions given by a clinical nutritionist.

These instructions were based on a 4-day dietary record and

an interview. Between weeks 12 and 33, the aim was to

maintain the achieved reduction in weight. The control

group was asked not to change their lifestyle habits. The

intervention was performed in accordance with the stan-

dards of the Declaration of Helsinki. The Ethics Committee

of the district hospital region of Northern Savo and Kuopio

University Hospital approved the study plan. All participants

gave a written informed consent.

Glucose metabolism was measured using an oral glucose

tolerance test and by frequently sampled intravenous

glucose tolerance test, according to the Minimal Model

method,7 at baseline and at the end of the intervention.4

Insulin sensitivity index, glucose effectiveness and acute

phase insulin response to glucose were calculated by the

MINMOD Millenium software.8

After an overnight fast, AT samples were taken by needle

biopsy from subcutaneous abdominal AT, before and after

the intervention under local anesthesia (10 mg ml�1 lido-

caine) to collect 0.5–5 g of AT for the mRNA expression

studies. AT samples were washed twice with phosphate-

buffered saline and treated with RNAlater according to

the instructions provided by the manufacturer (Ambion,

Austin, TX, USA), and stored in �80 1C, until used for RNA

extraction. RNA extraction, cDNA synthesis and quantitative

real-time PCR (QPCR) were performed as previously described

in detail.4 Briefly, TRIzol method followed by purification

with RNeasy Mini Kit (Invitrogen, Carlsbad, CA, USA and

Qiagen, Valencia, CA, USA) were used for extracting total

RNA according to the manufacturer’s instructions. Nanodrop

(NanoDrop Technologies, Wilmington, DE, USA) was used

for measuring the RNA concentration and the A260/A280

ratio. RNA was reverse-transcribed into cDNA using

High-capacity cDNA Reverse Transcription Kit (Applied

Biosystems, Foster City, CA, USA) according to the instruc-

tions provided by the manufacturer. QPCR with TaqMan

chemistry (Applied Biosystems) by using ABI Prism 7500

analyzer (Applied Biosystems) was used for the confirmation

of microarray gene expression results. The analysis for the

relative quantity of a specific gene, before and after the

intervention in AT, was performed as described previously.4

Expression of target genes were normalized to cyclophilin A1

(PPIA) expression.

The clinical data were analyzed using the SPSS software

for Windows version 14.0 (SPSS Inc., Chicago, IL, USA).

Data are given as mean±s.d., unless otherwise indicated.

The normality of distributions of the variables was tested

with the Kolmogorov–Smirnov test, with Lilliefors signifi-

cance correction. Logarithmic transformation was used to

achieve normal distribution, whenever needed (indicated in

tables and/or figures). General linear model for univariate

analysis was used to test the difference in fold-change values

of mRNA expression between the groups. Paired samples

t-test was used for comparing the baseline and endpoint

measurements within the study group. Correlation analyses

were carried out using Pearson’s method. Partial correlation

analysis with adjustment for weight at baseline and gender

was used when appropriate. The WR and control groups were

combined in the correlation analysis at baseline and when

studying the correlations of change values. At baseline,

this was carried out because the participants who were

randomized either to an intervention or a control group

represents the same risk population, all having MetS. Thus,

the participants were homogenous regarding the selection

criteria. After the intervention, the two treatment groups

were analyzed separately because of potential treatment

effect. Moreover, the correlations between the change of

MFAP5 mRNA expression and the changes of clinical

and biochemical measures were studied when the WR and

control groups were combined, but also separately, for both

the groups. For the clinical and biochemical measurements,

Po0.05 was considered as statistically significant.

Results

Values for body weight, fasting plasma glucose and serum

insulin concentration were at baseline 92.1±14.9 kg,

6.2±0.4 mmol l�1 and 11.5±5.4 pmol l�1, and at the end of

the intervention 88.7±14.0 kg, 5.9±0.3 mmol l�1 and 10.7±
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7.0 pmol l�1 for the WR group, respectively. The respective

values for the control group were 87.3±8.3 kg, 6.4±

0.6 mmol l�1 and 9.9±5.0 pmol l�1 at baseline and 87.7±

9.0 kg, 6.1±0.6 mmol l�1 and 10.6±6.0 pmol l�1 at the end

of the intervention, respectively.

The QPCR analysis for MFAP5 expression confirmed the

data obtained by microarray (Figure 1). When the compari-

sons were made within the groups, the mRNA expression

levels of MFAP5 showed significant decrease (94.2±49.0 to

81.7±41.7 AU, P¼0.017) in the WR group and no change

was seen in the control group (106.4±40.4 to 109.4±

34.5 AU, P¼0.636). Similar results were also obtained by

microarray showing that MFAP5 expression was significantly

downregulated in the WR group (P¼0.004).4 Fold-change

results by QPCR showed a significant reduction in MFAP5

mRNA expression in the WR group (P¼0.028) when

compared with the control group.

Correlation analyses were performed with the combined

study groups at baseline. MFAP5 mRNA expression correlated

significantly at baseline with BMI (Table 1). Moreover, the

expression of MFAP5 correlated significantly with fasting

serum insulin concentration at baseline, when adjusted for

baseline body weight (Table 1). There was no correlation

between MFAP5 mRNA expression and fasting plasma

glucose levels.

Interestingly, at baseline, the mRNA expression of MFAP5

correlated negatively with fasting serum adiponectin and

positively with leptin concentrations. Moreover, a positive

correlation was also found for fasting plasma interleukin

(IL)-1Ra and a negative one for fasting plasma IL-1b
concentrations, when adjusted for baseline body weight

(Table 1). MFAP5 mRNA expression correlated positively with

leptin gene expression (Table 1) at baseline (adjusted for

baseline body weight) and with adiponectin and IL-6

expression after the WR (Table 1). However, at the expres-

sion level, there was no correlation with cytokines like

transforming growth factor beta 1, tumour necrosis factor

alpha, IL-1b or IL-1Ra (Table 1).

Taken into account that MFAP5 is involved in the NOTCH

pathway,9 we studied the correlation of MFAP5 mRNA

expression with NOTCH1 and NOTCH2 mRNA expressions.

MFAP5 mRNA expression did not correlate with the expres-

sions of these genes.

We also studied whether MFAP5 mRNA expression is

correlated with expressions of genes, which are involved in

modulation of AT formation. MFAP5 expression correlated

positively with peroxisome proliferator-activated receptor

gamma (PPARg), cyclin D2 (CCND2) and a disintegrin and

metalloproteinase domain 12 (ADAM12) mRNA expressions at

baseline (adjusted for baseline body weight), as well as after

the WR (Table 1), when adjusted for the corresponding body

weight.

The change in MFAP5 mRNA expression level correlated

significantly with the change IN body fat mass (r¼0.392,

P¼0.009). Furthermore, the change of MFAP5 expression

level correlated significantly with the changes of ADAM12,

adiponectin (ADIPOQ) and NOTCH2 expression levels

(r¼0.343, P¼0.026; r¼0.433, P¼0.004; r¼0.438, P¼0.006),

respectively, when adjusted for the change of body weight

and the WR and control groups were combined. When the

groups were analyzed separately, there was also a significant

correlation in the WR group between the change of MFAP5

mRNA expression and the change of ADIPOQ mRNA

expression. In the control group, there were no significant

correlations.

Discussion

MFAP5 is associated with microfibrils in elastin networks in a

number of tissues, and its function may be related to cell

signaling during microfibril assembly, elastogenesis and cell

survival.5,10,11 It has been shown that MFAP5 promotes

angiogenesis and interacts with NOTCH1 by either activat-

ing or suppressing its activity, depending on the cell type

involved.9,12 Furthermore, MFAP5 is increased in fibrotic

skin of humans and in mouse models with systemic

sclerosis.13 Whether its function in AT is similar to previous

findings is not known.

ECM is composed of structural and multifunctional

molecules such as collagen, adhesive glycoproteins and

proteoglycans.14,15 In AT, ECM maintains the structural

integrity of adipocytes, and has an important role in AT

formation.15 Development of obesity induces changes in AT

(e.g., adipocyte hypertrophy, new adipocyte formation),

which are associated with remodeling of ECM proteins and

angiogenesis.14,15,16 Genes related to ECM and cytoskeleton

have been shown to be upregulated by high-fat diet and

Figure 1 Fold changes of MFAP5 mRNA expression (y axis) using QPCR

(gray bars) and microarray analysis (black bars) in the weight reduction group

and control group. Po0.05 was considered statistically significant. MFAP5

gene expressed after the intervention divided by the intensity at baseline:

*P¼ 0.017, **P¼ 0.004 (comparisons were made within groups), #P¼0.028

(comparison was made between groups).
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correlated with body weight in mice.14,17 Not only weight

gain induces ECM remodeling but also weight loss modifies

the expression of ECM molecules.15 The chronic proinflam-

matory state in obesity is suggested to be associated with

ECM remodeling and subsequent interstitial fibrosis. It has

also been shown that human preadipocytes secrete fibrotic

factors because of inflammatory stimulus.18

Recent human and rodent studies have demonstrated

that collagen VI is highly expressed in obese state and

is associated with increased BMI, adipose fat mass and

inflammation. There is also evidence that a loss of collagen

VI in AT leads to improvements of metabolic profile.19–21

Expression changes in microfibrillar proteins such as MFAP5,

is known to participate in collagen synthesis and accumu-

lation.22 Lemaire et al.23 have demonstrated that MFAP5

could enhance type I collagen matrix by stabilizing type I

procollagen. Furthermore, it has been shown that MAGP-1,

which is structurally related molecule to MFAP5, could

bind to type VI collagen. It could also be possible that

MFAP5 might bind to collagen VI or other ECM molecules

of AT, but only fibrillin 1 has been shown to interact with

MFAP5.23

Our results showed that MFAP5 expression was correlated

with the change of body fat mass, fasting serum adiponectin

and leptin. Reduced adiponectin levels and increased leptin

levels are associated with obesity and insulin resistance.24

Moreover, adiponectin and leptin are involved in obesity-

related angiogenesis and ECM remodeling.16,24 Therefore,

the found correlation between the MFAP5 gene expression

and adiponectin and leptin might be related to angiogenesis

and ECM remodeling during development of obesity and

reduction of body fat mass along with WR.

In addition to MFAP5, also specific ADAM isoforms are

shown to be involved in NOTCH pathway. Moreover, ADAM12,

CCND2, NOTCH receptors and PPARg are known to be

involved in the development of AT, differentiation and

Table 1 Correlations of MFAP5 mRNA expression in subcutaneous adipose tissue with anthropometric, biochemical measures, and with selected genes expressed in

subcutaneous adipose tissue before and after the intervention in weight reduction and control groups; adjusted for body weight

Groups combined (n¼ 46) Weight reduction group (n¼ 28) Control group (n¼18)

0 week 34 weeks 34 weeks

ra P-value ra P-value ra P-value

Anthropometric and biochemical measures

Body mass index (kg m�2)b 0.369#### 0.014 0.06811 0.737 0.128 0.613

Body weight (kg)b 0.043### 0.785 �0.2131 0.297 �0.122� 0.641

Body fat mass (kg)b 0.277#### 0.069 0.05211 0.798 0.114 0.653

Waist circumference (cm) 0.282### 0.071 0.4311 0.032 �0.011� 0.968

SI ((mU l�1)�1�min�1) �0.260## 0.101 �0.1621 0.439 �0.429� 0.017

fS-adiponectin (mg ml�1) �0.378### 0.014 �0.36911 0.063 �0.626� 0.009

fS-leptin (ng ml�1) 0.361### 0.019 0.1551 0.459 0.153� 0.571

fS-insulin (pmol l�1) 0.397## 0.010 0.1651 0.429 0.352� 0.181

fP-glucose (mmol l�1) 0.132## 0.41 �0.0931 0.66 0.358� 0.174

fS-TNFa (pg ml�1) �0.162### 0.305 �0.2961 0.151 0.028� 0.919

fP-IL1b (pg ml�1) �0.401### 0.009 �0.221 0.29 -0.207� 0.441

fP-IL1Ra (pg ml�1) 0.347### 0.024 0.3251 0.113 0.469� 0.067

hsCRP (mg l�1) -0.021### 0.895 -0.1061 0.615 -0.076� 0.781

Gene expression in adipose tissue (AU)

Leptin 0.338### 0.028 0.2591 0.211 0.357� 0.174

Adiponectin 0.033### 0.838 0.4881 0.013 0.011� 0.968

PPAR-g 0.511### 0.001 0.6211 0.001 0.195� 0.469

TNF-a 0.132### 0.404 0.0181 0.932 0.39� 0.136

IL1-b 0.071## 0.659 0.140* 0.524 0.09� 0.741

IL-1Ra 0.106### 0.504 0.054* 0.807 0.386� 0.14

IL-6 0.007### 0.966 0.4091 0.042 �0.267� 0.317

TGF-b1 0.25# 0.12 0.388* 0.067 0.089� 0.743

NOTCH1 �0.277# 0.083 �0.191* 0.383 �0.121� 0.656

NOTCH2 0.191# 0.239 0.324* 0.131 0.37� 0.158

CCND2 0.523### o0.001 0.4011 0.047 0.392� 0.133

ADAM22 0.248### 0.114 0.261* 0.229 0.473� 0.064

ADAM12 0.584### o0.001 0.5521 0.004 0.579� 0.019

Abbreviations: ADAM12, A disintegrin and metalloproteinase domain 12; ADAM22, A disintegrin and metalloproteinase domain 22; AU, arbitrary unit; CCND2,

cyclin D2; fP, fasting plasma; fS, fasting serum; hsCRP, high-sensitivity C reactive protein; IL-6, interleukin 6; IL-1Ra, interleukin 1 receptor antagonist; IL-1b,

interleukin 1 beta; NOTCH1, notch1 preproprotein; NOTCH2, notch2 preproprotein; PPARg, peroxisome proliferator-activated receptor gamma; SI, insulin

sensitivity index; TGF-b1, transforming growth factor beta 1; TNF-a, tumour necrosis factor alpha. aAdjusted for body weight (kg). bCorrelation analyses were carried

out using Pearson’s method, no adjustments; #n¼ 41; ##n¼ 42; ###n¼ 43; ####n¼44; *n¼24; 1n¼26; 11n¼27; �n¼ 17. Values are logarithmized, when

appropriate. Bold font: result statistically significant (Po0.05).
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adipogenesis.25–27 Interestingly, our results showed a correla-

tion between MFAP5 mRNA expression and PPARg, CCND2

and ADAM12 mRNA expressions at baseline and after the

intervention, as well as with the changes of ADAM12,

ADIPOQ and NOTCH2 gene expressions. It is possible that

the effect of MFAP5 on angiogenesis or the role of MFAP5

gene in AT remodeling is mediated via factors related to

adipogenesis and differentiation. It could also be possible

that MFAP5 is a ‘structure’ gene and an ‘innocent bystander’

that will respond along with other ECM proteins to state of

obesity and adipokines secreted by AT. Further studies are

necessary to determine which mechanisms might be in-

volved in the regulation of MFAP5 expression in adipocytes.

In conclusion, MFAP5 is highly expressed in AT and is

correlated with markers of insulin resistance. It is possible

that MFAP5 is involved in ECM remodeling, which enables

AT enlargement in obesity. This process seems to be

reversible, at least partly, along with WR.
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