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1  | INTRODUC TION

Tumor heterogeneity consists of intra-tumoral and inter-tumoral 
heterogeneity, which poses a major challenge in glioblastoma 

(GBM) diagnosis and treatment.1 Robust transcriptome and epig-
enome studies have revealed the inter-tumoral heterogeneity of 
GBM, which is associated with distinct outcomes or therapeutic 
responses.2,3 During tumor progression, neoplastic cells from the 
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Abstract
Aims: To reveal the effects of intra- and inter-tumoral heterogeneity on characteris-
tics of primary IDH-wild type glioblastoma cells.
Methods: Single-cell RNA-seq data were acquired from the GEO database, and bulk 
sample transcriptome data were downloaded from the TCGA database with clinical 
information. Neoplastic subtype and glioma stem-like cells (GSCs) were identified 
by matching 5000 random virtual samples based on ssGSEA. CNV was inferred to 
compare the heterogeneity among patients and subtypes by infercnv. Transition di-
rection was inferred by RNA velocity, and lineage trajectory was inferred by mono-
cle. Regulon network of cells was analyzed by SCENIC, and cell communication was 
identified by CellPhoneDB.
Results: Glioblastoma (GBM) cells could be divided into four subtypes by Verhaak 
classifier. However, classification of three subtypes (except NE subtype) was more 
suitable for GBM cells, and Verhaak classifier has difficulty in distinguishing GSCs. 
GBM heterogeneity and GBM cells’ regulon network were mainly influenced by 
inter-tumoral heterogeneity. Within the same patient, different subclones exist in 
the same subtype of cells whose transition direction could be predicted by regulon 
similarity. Apart from inter-tumoral heterogeneity, different subtype of cells share 
common subtype-specific cell-cell communications.
Conclusions: Inter-tumoral heterogeneity contributes mainly to GBM heterogeneity 
and cell molecular characteristics. However, the same subtype of cells shared cell 
communication similarities.
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same tumor but different locations will acquire different additional 
mutations or exhibit specific phenotypic or epigenetic states.1,4-6

Glioblastoma is one of the most fatal and malignant central ner-
vous system (CNS) tumors in adults, with a median overall survival 
of 15 months.7 Multiple observations based on high-throughput se-
quencing data revealed tumor heterogeneity of GBM as well as its 
area-specific patterns of genomic imbalance, which contributes to 
prognostic outcome and treatment response.2,8 To develop an accurate 
treatment strategy and improve the therapeutic outcome, many clas-
sification methods according to key molecular events and genetic al-
terations were discovered, among which Verhaak classifier is generally 
accepted.9,10 Although traditional bulk tumor sequencing approaches 
have identified essential genes and pathways that play important roles 
in GBM tumorigenesis, they provide limited insights into the cellular di-
versity and molecular complexity of tumor cells. Recent developments 
in single-cell analysis methods and sequencing of individual cells pro-
vide a more comprehensive way to explore molecular changes at the 
cellular level.11 Herein, we used scRNA-seq data of primary IDH-wild 
GBM to thoroughly explore the intra- and inter-tumoral heterogene-
ity by identifying cell subtypes and then compared the difference of 
transcription factor regulon network and cell communication with the 
same subtype of cells or immune cells among patients.

2  | MATERIAL S AND METHODS

2.1 | Datasets and data processing

A total of 3589 cells from four primary IDH wild-type glioblastoma 
patients and 430 cells from five primary IDH wild-type glioblastoma 
patients’ single-cell RNA-seq data according to Smart-seq2 protocol 
(GSE84465, GSE57872) were downloaded from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo).8,12 GSE84465 was mainly ana-
lyzed, while GSE57872 was used as the validation dataset. A total 
of 367 samples of TCGA AffyU133a gene expression array data and 
143 samples of Illumina HiSeq RNA-seq data of primary IDH wild-
type glioblastoma and corresponding phenotype data were down-
loaded from the TCGA database (https://tcga-data.nci.nih.gov/) via 
Xena Browser developed by UCSC. The QC of single-cell RNA-seq 
data was performed by scater R package.13 Genes expressed in at 
least two cells were retained. Mitochondrial (MT) genes were set as 
internal reference. Cells with total counts <25 000 or total genes 
>6000 and the percentage of MT genes >20 were removed. The 
scImpute R package was used for imputation, and normalization was 
conducted by scran R package.14 RNA-Seq data were normalized by 
transcripts per kilobase million (TPM) method for further analysis.

2.2 | Subtype and glioma stem-like cells (GSCs) 
identification

Subtypes of GBM cells, bulk samples, and GSCs were identified 
by ssgsea.GBM.classification R package.15 First, we generated 

numerous virtual samples by randomly selecting expression values 
of the same gene from samples as a virtual sample correspond-
ing gene expression. Then, the ssGSEA scores for each category 
were calculated. We set 5000 virtual random samples and corre-
lated these samples with the real sample and counted the number 
of matches with random samples under each subtype. We defined 
the subtype as the one that had the fewest matches to the random 
sample. If more than one subtype shared the min matches in one 
sample, we defined the sample as MIX. We defined the first 10% 
of min matched neoplastic cells or the sample with match number 
<3 as mGSCs or pGSCs. The four GBM subtypes (classical, mesen-
chymal, proneural, and neural) signatures acquired from10 and three 
GBM subtypes (classical, mesenchymal, and proneural) signatures 
improved by Wang.15 Mesenchymal and proneural GSCs (mGSCs 
and pGSCs) signatures were from.16

2.3 | CNV evaluation and subclone cluster

The CNV evaluation based on single-cell RNA-seq raw counts was 
conducted by infercnv R package. We chose hidden Markov model 
to predict the CNV states. Gene location data were from AnnoProbe 
R package. Subclones of specific subtypes were divided by hier-
archy clustering based on CNV. Subclone was clustered by SC3 R 
package.17

2.4 | Differential state potency and cell cycle 
state prediction

Differential state potency of single-cell data was predicted by 
LandSCENT R package. Cell cycle of single-cell data was predicted 
by scran R package. The input data were first transferred into 
SingleCellExperiment class object and normalized by scater R package.

2.5 | Dimensionality reduction and GO 
enrichment analysis

A total of 2000 variable genes among all neoplastic cells were found 
by Seurat v3 R package based on TPM. PCA and Tsne were con-
ducted by Seurat v3 and PCs selected by JackStraw function. Genes 
with PC value in top 20% were selected for GO analysis by cluster-
Profiler R package.18

2.6 | Pseudo-time lineage trajectory and R velocity

RNA velocities were computed via velocyto.19 Glioblastoma cells of 
different subclones and subtypes were used for velocyto analysis to 
evaluate the state transformation direction. Lineage trajectory plot 
based on variant feature identified by Seurat v3 was generated by 
monocle R package.20

https://www.ncbi.nlm.nih.gov/geo
https://tcga-data.nci.nih.gov/
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2.7 | Regulon and cell communication network 
identification

To further analyze transcription factor regulons, we adopted SCENIC R 
package,21 using default parameters. For visualization, we mapped the 
regulon activity (AUC) scores to the TSNE plot and heat map. Intra-tumoral 
cell-cell communication network based on potential receptor-ligand inter-
action was inferred by CellPhoneDB from single-cell transcriptomic data.22

2.8 | Survival and statistical analyses

R packages survival and survminer were used for overall survival 
analysis. All statistical analyses were performed using R soft-
ware, version 3.6.2 (The R Foundation for Statistical Computing, 

http://www.rproj ect.org/). The Shapiro-Wilk method was used 
for normality test. The p-values for the significance of compari-
son among groups in Figure 1F, 2E, 4A were calculated using 
the Wilcoxon rank-sum test. The p-value for the significance of 
PDCD1LG2 between groups was calculated using Student's t test.

3  | RESULTS

3.1 | Intra-tumoral heterogeneity and cell subtype 
identification

We removed 473 cells in the GSE84465 dataset whose total counts 
were <25 000 or total gene number were >6000 to reduce the bias 
caused by low-quality sequencing or double-cell contamination 

F I G U R E  1   A, the tsne plot on GSE84465 single-cell dataset revealed the subtypes of each neoplastic cells. CL, classical; ME, 
mesenchymal; PN, proneural; NE, neural; MIX: cells divided into at least two subtypes. B, distribution of GSC and non-GSC subtypes. GSCs, 
glioma stem-like cells. C, cell subtype classification and distribution. mGSC, mesenchymal GSC; pGSC, proneural GSC. D, GO enrichment 
pathway based on genes with top 400 PC1 values among all neoplastic cells. E, proportion of cells with different differentiation potency 
in each subtype, potency state 1 means the cell with the highest differentiation potency, while state 4 means the lowest differentiation 
potency. F, distribution of PC1 sum in each subtype. G, transition direction between mGSC and pGSC inferred by RNA velocity

http://www.rproject.org/


984  |     XIONG et al.

(Figure S1A-B). Thereafter, we selected neoplastic cells for further 
analysis. Compared to the four subtypes proposed by Verhaak, three 
subtypes classification improved by Wang based on Verhaak sub-
types could obviously decrease the MIX cell number (Figure 1A). 
Consistent results were also achieved in the validation (GSE57872) 
dataset (Figure S1C). We then identified mGSCs and pGSCs in 
GSE84465. mGSCs were derived from ME and CL subtypes, while 
pGSCs were mainly derived from PN subtype (Figure 1B). Additionally, 
the MIX subtype in Verhaak subtype was mainly identified as GSCs 
(Figure 1C). Finally, five subtypes were obtained: mGSCs, CL, ME, 
PN, and pGSCs in the dataset. After PCA analysis of all neoplastic 
cells, genes that contributed to PC1 (genes with top 20% PC1 val-
ues) were enriched at mitosis-related pathway (Figure 1D). mGSCs 
were weaker than pGSCs, and PN was the most active subtype in 
mitosis (Figure 1F and S1D). In terms of differential potency, mGSCs 
possessed the highest potency and PN was the lowest followed by 
pGSCs (Figure 1E). RNA velocity showed that GSC subtype transi-
tions from mesenchymal to proneural phenotype (Figure 1G).

3.2 | Inter-tumoral heterogeneity dominated 
heterogeneity of primary IDH wild-type glioblastoma

All neoplastic cells were pooled by the patient ID instead of identi-
fied subtypes, and validated in the validation dataset (Figure 1A,C 
and Figure 2A). However, within patients, cells had clear distinc-
tion among different subtypes (Figure 1A,C). We used the hidden 
Markov model to infer the CNV status through single-cell RNA-seq 
data. The results showed that the CNV phenotypes were more dif-
ferent between patients, and different subtypes within the same 
patient shared more commonality than between patients (Figure 2B 
and S2A).

3.3 | Heterogeneity in neoplastic subtype of 
cells of the same patient

Even in the same patient, the same subtype of cells had dif-
ferent subclones, such as patient BT_S1 PN_1 and PN_2 cells 
(Figure S2B), patient BT_S2 mGSC_1 and mGSC_2 cells, and pa-
tient BT_S4 ME_1 and ME_2 cells. Moreover, within the same 
patient and same subtype, these subclones clustered together 
(Figure 2C and S2C,D). To infer the subclones’ state transforma-
tion relationship within subtypes, we used RNA velocity algorithm 
and found that within patient BT_S1, PN_1, and PN_2 seemed to 
be different differentiated cells from the same origin (Figure 2D), 
while BT_S2 mGSC_1 and mGSC_2 and BT_S4 ME_1 and ME_2 
had state transition relationship with each other (Figure S2E,F). 
To examine differences between PN subclones, we used PCA on 
BT_S1 PN cells, and PC1 could distinguish between PN_1 and 
PN_2 with good performance (Figure 2E). We chose the top and 
bottom 20% genes based on PC1 values to conduct GO enrich-
ment, which showed that PN_1 did well in development growth 

while PN_2 did well in the catabolic process (Figure S2G,H). The 
cell cycle prediction supported the differences between PN sub-
clones, which also showed that subclones within patient-subtypes 
had divisional differences (Figure 2F). We also explored whether 
the different subclone percentages impact prognosis, by using 
top and bottom 100 genes ordered by PC1 values of PN cells as 
PN_1 and PN_2 markers, which were used to calculate PN_1 and 
PN_2 ssGSEA scores in TCGA Hiseq and microarray dataset of 
primary IDH-wild type PN subtype GBM samples. We calculated 
the subtraction of PN_1 and PN_2 ssGSEA scores and defined 
the sample with score ≤0 as PN_1-like tumor and the other as 
PN_2-like tumor. No survival difference was observed between 
the groups (Figure 2G,H).

3.4 | Regulon difference was mainly affected by 
inter-tumoral heterogeneity

To compare the transcription factor regulon differences among pa-
tients, subtypes, and subclones, we adopted SCENIC to calculate 
the regulon network. Based on the regulon network, the main dif-
ference in regulon existed among patients (Figure 3A,B and S3A). 
Despite the mixing of GSCs and non-GSCs within the same patient, 
the regulon network of different non-GSCs subtypes (CL, ME, PN) 
and subclones were divergent. Since BT_S1 PN cells shared little 
regulon with other patients and cells, we selected these cells and 
found that the regulon activity could also distinguish subclones of 
the same subtypes within patients (Figure 3C). The subtypes and 
subclones of other patients performed the same as mentioned for 
patient BT_S1. Additionally, we observed that regulon networks 
could indicate the cell lineage trajectory of subtypes and subclones 
within the same patient. Even though subclones were identified as 
the same subtype, they possessed different transition directions. In 
regulon network of patient BT_S2, mGSC_1 was closer to CL than 
ME cells and mGSC_2 was closer to ME cells (Figure 3B). The line-
age trajectory of this patient's neoplastic cells showed that some 
mGSC_2 cells differentiated to mGSC_1 cells, the progenitor of 
CL cells in this patient, and the remaining mGSC_2 cells differenti-
ated to ME cells (Figures S2E and S3B). Within patient BT_S4, the 
regulon network of mGSCs was closer to ME_1 than CL. Its lineage 
trajectory supported the regulon network differences among sub-
types and subclones (Figure S3C). Patient BT_S4 ME_2 cells and 
patient BT_S6 ME cells shared more regulons, which could not be 
separated by tsne (Figure S3D).

3.5 | Subtype-specific cell-cell communication was 
rarely affected by inter-tumoral heterogeneity

To examine the cell-cell communication difference among each 
subtype within patients and identify commonality within each 
subtype among patients, we used CellPhoneDB to infer the unbi-
ased receptor-ligand interaction among cells. Within all patients, 
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CL cells expressed a high level of ligands of epidermal growth fac-
tor receptor (EGFR) interacting with EGFR receptors on CL cells 
(Figure 4A), which was consistent with CL subtype characteristics 
in bulk samples10 (Figure 4B). Interaction within CADM1, involved 
in neuronal migration, axon growth, pathfinding, and fasciculation 
on the axons of differentiating neurons, was strong in PN subtypes 

and mesenchymal cell mitogens PDGFB, ME subtype marker MET, 
and TNF, TNFRSF1A, and TNFRSF1B involved in tumor necrosis fac-
tor superfamily pathway expressed specifically in ME subtype were 
highly interactive within ME cells10 (Figure S4A,B). In addition, we 
also evaluated immunosuppressive interactions between subtypes 
and immune cells in each patient. Intra-immune-cell interactions 

F I G U R E  2   A, the tsne plot of neoplastic cells annotated by patient ID. B, inferred CNV based on neoplastic cells scRNA-seq divided by 
patient ID and subtypes. Red means amplification and blue indicates deletion. C, consensus cluster within patient BT_S1 PN subtype of 
cells, subclones were clustered together. D, transition direction predicted by RNA velocity in patient BT_S1 PN subclones. E, PC1 values’ 
distribution of patient BT_S1 PN subtype of cells. F, proportion of cells in different cell cycle stages of neoplastic cells in each patient G, 
Kaplan-Meier curve of primary IDH wild-type glioblastoma in TCGA database (Hiseq). H, Kaplan-Meier curve of primary IDH wild-type 
glioblastoma in TCGA database (microarray)
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would activate the immunosuppressive receptors, like VSIR, among 
all patients. In terms of immunosuppression between subtypes and 
surrounding immune cells, PN cells had weaker effects than ME and 
CL cells, and PDCD1LG1 expression was consistent, the ligand of 
PDCD1, from the TCGA dataset (Figure 4C,D).

4  | DISCUSSION

Intra-tumoral heterogeneity that involves different subtypes of 
cells within a tumor provides different insights into tumor biology. 
Previous research has confirmed the intra-tumoral heterogeneity in 

primary IDH wild-type glioblastoma by single-cell analysis.8 In bulk 
samples, GBM could be divided into four subtypes: CL, ME, PN, and 
NE. However, recent research found that the NE subtype is nontu-
mor specific, which is caused by normal NE tissue contamination sur-
rounding the tumor margin and tested these subtype classification 
also suit GBM neoplastic cells.10,15,23 Meanwhile, there are very few 
strong markers of glioma stem-like cells (GSCs) due to the limitation 
of bulk samples. Single-cell sequencing offers a feasible way to iden-
tify the GSCs and reveal the lineage relationships among GSCs and 
non-GSCs. Lin et al revealed that GSCs mainly contain two subtypes: 
mesenchymal GSCs (mGSCs) and proneural GSCs (pGSCs) because 
CL samples can be distinguished from ME samples due to different 

F I G U R E  3   A, neoplastic cells of all patients clustered by regulon activity. The red of the surrounding plots represents the activity of 
regulons (AUC). B, heat map of binarized regulon network activity, red means regulon on and blank means regulon off. C, patient BT_S1 PN 
subclone cells hierarchy clustered by regulon activity (AUC). The heat map list only the regulons with significant differences
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cell infiltrations.16 We applied their GSC markers and identified 
pGSCs and mGSCs in patients, and the characteristics of different 
GSCs were analyzed, such as GSC division activity and transition 
direction between GSCs. The results of this study were consistent 
with previous results, which proves the validity of this identification. 
Since Verhaak subtypes of GBM were discovered based on bulk 
samples, we thought it might be the reason for most GSCs being 
identified as the MIX group when Verhaak subtypes were identified 
in single-cell data. The renewed three subtypes’ classification dis-
covered based on both bulk and single-cell data was more suitable 
for GBM non-GSC neoplastic cell classification.

Despite the intra-tumoral heterogeneity in GBM, we found that 
tumor heterogeneity was mainly due to inter-tumoral heterogeneity. 
Although neoplastic cells were classified as the same subtype, these 
cells from the same patient clustered together and their CNV status, 
as well as regulon network, shared more similarity within the same 
patient. Our results indicated that not only the DNA structural vari-
ation but also the transcription factor regulon difference of GBM 
were mainly influenced by the genetic background of patients. The 
study on GLASS cohort revealed few common features of glioma 
evolution across subtypes and instead showed highly variable and 
patient-specific trajectories of genomic alterations.24 According to 
the COSMIC signature database,25 the dominant mutational signa-
ture in IDH-wild type glioma was aging, which indicated that aging 

majorly contributed to the differences of regulon and genetic alter-
ations among IDH wild-type glioblastoma patients.24

Within the same patient, though different subtypes of cells 
shared many commonalities in CNV changes and regulon network, 
there were differences to some degree. We found that the non-GSCs, 
which shared more common features in CNV or regulon network with 
a specific GSC, were derived from this GSC by trajectory analysis, 
suggesting that the differentiation or evolution of tumor cells is a 
gradual process with mutation accumulation.26 We also identified the 
subclones of the same subtype in the same patient. In patient BT_S1, 
PN subclones shared few commonalities in the GO pathway and were 
two different subclones from the same progenitor. The subclones be-
long to distinct cell lineages could coexist in the same malignancy due 
to tumor evolution, and the distribution of this patient's CNV indi-
cated that the GBM was in the inferred mid growth phase.27 We did 
not find negative survival impacts of PN_1 and PN_2 on primary IDH 
wild-type glioblastoma patients in TCGA and hypothesize that the 
subclones emerged due to neutral evolution, which dominated in can-
cer evolution, and both had not acquired the necessary alterations 
for progression.28,29 mGSC subclones existed in patient BT_S2, and 
the mGSC_1 subclone was derived from mGSC_2 subclone. Regulon 
network similarity among mGSC_1, mGSC_2, CL, and ME cells was 
consistent with their lineage trajectories, which indicated that some 
mGSC_2 differentiate to mGSC_1 and then transition to CL cells, 

F I G U R E  4   A, the receptor-ligand interaction (EGFR) within each subtype of each patient. B, EGFR expression of each subtype primary 
IDH wild-type glioblastoma from TCGA database. C, the receptor-ligand interactions between immune cells of each patient and neoplastic 
subtype of cells. D, the expression of PDCD1LG2 of each subtype primary IDH wild-type glioblastoma from TCGA database
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and the remaining mGSC_2 transition to ME cells. This finding was 
consistent with previous research that ME and CL cells are derived 
from mGSCs.16 We also discovered that BT_S4 ME subclones ME_2 
shared more similarity with BT_S6 ME cells, which could not be dis-
tinguished by tsne, instead of BT_S4 ME_1 subclone. It indicated that 
some subclones were less affected by inter-tumoral heterogeneity 
and we speculated that these subclones may be directly derived from 
driver mutations.30,31 In patient BT_S4, ME_2 showed a tendency of 
transition to ME_1 subclones, and we thought that these two sub-
clones possessed the same progenitor and were at different phases 
of glioma genesis of one consecutive evolution process.26

Since the accumulation of alterations in GBM cells occur over de-
cades-long growth phase that leads to a highly diverse population,32 we 
thought each subtype of cells within patients that clustered together 
and showed similar CNV status were from the same clonal expansion 
and at the same anatomical region.1,23 Thus, we used CellPhoneDB 
to infer the inner cell communication of each subtype by receptor-li-
gand interaction within the same subtypes. CL cells highly expressed 
EGFR ligands interacting with EGFR on themselves, which was con-
sistent with the results that EGFR was frequently amplified in the CL 
subtype.10,23 CADM1 played a pivotal role in developing neurons and 
highly interacted within PN subtypes, indicating the relationship be-
tween neural stem cells and PN progenitor.33,34 Interactions within 
ME cells mainly occurred in tumor necrosis factor superfamily path-
way, which promoted ME cell differentiation and radio resistance.35 
When inferring the immunosuppressive interaction with the immuno-
suppressive receptor, including PDCD1, TIGIT,36 and VSIR,37 between 
neoplastic subtypes of cells and immune cells, the immunosuppressive 
effect of ME was higher than other subtypes of cells, which suggested 
that ME had higher TAM infiltration than other subtypes.38

In summary, compared to intra-tumoral heterogeneity, inter-tu-
moral heterogeneity contributes more to tumor heterogeneity of 
primary IDH wild-type glioblastoma. The subtype molecular charac-
teristics were based on the patient's genetic background, and differ-
ent subtypes of cells share more molecular similarities within the same 
patient than the same subtype of cells in different patients. However, 
although neutral mutation accumulation in patients contributes to dif-
ferent genetic backgrounds, the driver mutations and cell-cell com-
munication of subtypes of cells remained stable among patients.24,28
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