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3 On Genetics, Lung Developmental Biology, and Adult Lung Function

A hypothesis is nothing but a hypothesis until proven. The fetal origins
of disease hypothesis, formally the Developmental Origins of Health and
Disease hypothesis, postulates that early life events may have a long-term
impact on diseases and traits in adulthood (1). Such events, including
environmental exposures, and developmental or pathophysiologic
processes, may take place in utero, perinatally, or during childhood.
Evidence is now accumulating that supports the Developmental
Origins of Health and Disease hypothesis in that factors underpinning
lung disease risk in adulthood act in early life (2-4).

In this context, Portas and colleagues (pp. 853-865) report in
this issue of the Journal associations between lung developmental
genes and adult lung function using the U.K. Biobank (5). They
make use of lung development biology knowledge, selecting
candidate genes to explore associations with lung function indices
(Figure 1), rather than starting with an agnostic genome-wide
association study (GWAS) analysis, currently a standard approach.

In the study by Portas and colleagues, almost 350,000 subjects
with mean age 56 years (range, 39-70 yr) contributed cross-
sectional lung function data from the well-powered U.K. Biobank
(6, 7). The list of genes related to lung development was prepared
by two authors, summarizing both human and experimental data
in a variety of model organisms. In addition, this list was further
extended to include relevant genes based on pathway information
from four databases. In total, 391 genes (represented by 106,384
variants) believed to influence lung development were tested for
association with prebronchodilator FVC and FEV/FVC. Using a
two-stage and “best SNP per gene” approach, novel independent
signals from 36 genes were identified and replicated internally;

16 were uniquely associated with FVC, 19 were uniquely with
FEV,/FVC, and only one signal was associated with both traits.
Next, the authors used meta-analysis data from previous GWASs in
the CHARGE (Cohorts for Heart and Aging Research in Genomic
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Epidemiology) and SpiroMeta consortia (n > 100,000 in both
datasets) and replicated 16 variants. Pathway analyses revealed that
identified genes belong primarily to the following pathways: growth
factors, transcriptional regulators, cell-cell adhesion/cytoskeletal,
and extracellular matrix, which was not surprising given the fact
that genes were preselected based on involvement in lung
development in the first place. Finally, a majority of the key SNPs
were found to influence expression in the blood and/or lung tissue.

The results emerging from this methodologically sound sequence
of analyses have important implications. If the missing heritability of
complex traits resides at least partly in genetic variants that are missed by
traditional genome-wide significance thresholds, using a priori
knowledge to reduce the search space may be an effective approach to
retrieve these missing genomic components. Using this hypothesis-
driven approach, which is reminiscent of the classical candidate gene or
pathway study, this study identified 16 novel variants associated with
lung function that were sufficiently robust to survive both internal and
external replication. Of note, although all these variants were significant
after Bonferroni correction, only a few of them reached genome-wide
significance in the U.K. Biobank, and none did in the external
replication. Therefore, this approach identified successfully multiple
novel robust genetic variants for lung function that could have been
missed in a traditional GWAS. Naturally, any approach that is based
on a priori knowledge is as good as the knowledge on which it is based.
Although the authors did try to formalize their selection process
of genes, it should be noted that this process eventually boils down
to expert opinion and the integration of data from animal and human
studies, which could be perceived as subjective. Future approaches
guided by single cell-specific transcriptomic signatures obtained during
different stages of lung development may represent another way to
select genes and limit the search space of a GWAS (8).

Complex traits are complex not only because of their multifactorial
nature but also because of their phenotypic heterogeneity. Lung
function impairment is no exception, as it is associated with different
profiles of risk factors and morbidities (and genetic determinants)
depending on whether the “impairment” refers to FEV;, FVC, or their
ratio. Not surprisingly, in the study by Portas and colleagues, the vast
majority (97%) of the identified susceptibility genes affected either
FVC or FEV/FVC uniquely, and only one variant was associated with
both indices. Although deficits in FEV,/FVC identify the obstructive
pattern and are the hallmark of chronic obstructive pulmonary disease
(COPD), low levels of FVC in the presence of a conserved ratio could
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Figure 1. A schematic figure depicting the study design by Portas and colleagues. Genes known to be involved in lung development were selected as candidate
genes to explore associations with lung function in adults (flow—volume indices FVC and FEV,/FVC). lllustration by Fuad Bahram, FB Scientific Art Design.

be indicative of a spirometric restrictive pattern (albeit not
diagnostic), which has been shown to carry a substantial and
frequently overlooked morbidity and mortality burden in the general
population (9, 10).

It is now clear that substantial heterogeneity exists also in the
trajectories by which lung function patterns develop (11, 12). It has
been conclusively shown that adults may develop irreversible airflow
limitation, the functional hallmark of COPD, by either having an
accelerated decline of FEV, in adult years, by reaching suboptimal
maximal FEV; levels by young adulthood, or by any combination of
the two (13). To what extent these trajectories are influenced by
different molecular pathways and genetic determinants is largely
unknown. By focusing on genes involved in lung development, this
study captured genetic contributions that are likely relevant to a
persistently low lung function trajectory into adult life. Interestingly,
previous studies that tested genetic variants known to be associated
with levels of adult lung function failed to find those variants to be
associated with the decline of lung function (14). This suggests that the
effects of genetic variants identified to date are possibly mediated more
through development and growth of lung function than susceptibility
to accelerated decline. The differential expression of lung function
genes during fetal lung development in previous studies lends support
for this observation (6, 15).

Because of the cross-sectional nature and the age range of
participants in the U.K. Biobank, the study by Portas and colleagues
could not address genetic contributions to lung function trajectories.
We recommend that the newly identified genetic variants should be
studied in the context of longitudinal lung function from cohorts
that transition from childhood into adult life. This will enable the
research community to fully exploit the opportunities that the fetal
origins hypothesis offers to advance risk stratification and preserve
lung health across the life span.
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3 Simplifying Rifapentine Dosing for Tuberculosis Treatment

and Prevention

In this issue of the Journal, Hibma and colleagues (pp. 866-877)
convey results of a population pharmacokinetic (PK) model for
rifapentine based on a meta-analysis of participant-level PK data
from nine clinical trials (1). These data are both relevant and
timely, as evidence on the use of rifapentine for both tuberculosis
(TB) treatment and prevention continues to build. Rifapentine
efficacy for TB prevention was first shown in a trial of a 3-month
regimen of weekly rifapentine and isoniazid (3HP; PREVENT-TB
trial) and more recently in the BRIEF-TB trial, in which a 1-month
daily rifapentine and isoniazid (1HP) regimen in people living with
HIV was as effective as 9 months of daily isoniazid (2-4).
Investigations into rifapentine use in TB treatment include an
ongoing phase 3 clinical trial, the Tuberculosis Trials Consortium
(TBTC) Study 31, in which rifapentine-containing regimens are
being studied with the goal of shortening treatment duration to 4
months for drug-susceptible TB (5).

The excellent work by Hibma and colleagues demonstrates how
models built on a robust set of pharmacology data, strengthened by
inputs from multiple studies and validated by external data sets, can
be utilized to inform current dosing recommendations as well guide
future clinical trial design. One of the article’s primary conclusions
suggests that weight-based dosing of rifapentine is unnecessary,
and in the authors opinion, “puts the smallest, most vulnerable
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individuals at risk of underexposure and, consequently, treatment
failure” (1). The second major finding was that people living with
HIV may require a higher dose of rifapentine compared with
individuals without HIV. It is unclear as to why people with HIV
have reduced rifapentine exposures, but this may lead to worsened
outcomes based on rifapentine exposure-response relationships
during TB treatment. However, one of the limitations of the
analysis by Hibma and colleagues was the relatively low number of
people with HIV included in the analysis, making up only 81 of the
863 participants. These data could be strengthened by the inclusion
of PK data from BRIEF-TB, when available.

The understanding of rifapentine’s pharmacology has
advanced since the drug was initially U.S. Food and Drug
Administration approved in 1998. Early phase one healthy
volunteer studies suggested rifapentine did not induce (or increase)
its own metabolism (6), which is refuted in the present work by
Hibma and colleagues. By combining rifapentine PK data from
nine clinical trials, the authors’ population rifapentine PK model
predicts the clearance of rifapentine increases 73% after repeated
daily dosing, ultimately stabilizing by Day 21. Furthermore, the
authors report a concentration effect on rifapentine autoinduction,
which follows an maximum effect (Emax) relationship, with the
greatest effect at daily doses of 300 mg, whereas the extent of
autoinduction appears to plateau at doses above this amount.
Conversely, intermittent dosing of rifapentine showed only
minimal to moderate metabolism autoinduction.

Collectively, these new findings have implications for current
treatment narratives as well as rifapentine dosing in future trials and
represents a significant step forward for the field. Beginning with the
implementation of the 1HP regimen, the Hibma and colleagues data
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