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Abstract

Motivation: Motions of transmembrane receptors on cancer cell surfaces can reveal biophysical features of the can-
cer cells, thus providing a method for characterizing cancer cell phenotypes. While conventional analysis of receptor
motions in the cell membrane mostly relies on the mean-squared displacement plots, much information is lost
when producing these plots from the trajectories. Here we employ deep learning to classify breast cancer cell types
based on the trajectories of epidermal growth factor receptor (EGFR). Our model is an artificial neural network
trained on the EGFR motions acquired from six breast cancer cell lines of varying invasiveness and receptor status:
MCF7 (hormone receptor positive), BT474 (HER2-positive), SKBR3 (HER2-positive), MDA-MB-468 (triple negative,
TN), MDA-MB-231 (TN) and BT549 (TN).

Results: The model successfully classified the trajectories within individual cell lines with 83% accuracy and pre-
dicted receptor status with 85% accuracy. To further validate the method, epithelial–mesenchymal transition (EMT)
was induced in benign MCF10A cells, noninvasive MCF7 cancer cells and highly invasive MDA-MB-231 cancer cells,
and EGFR trajectories from these cells were tested. As expected, after EMT induction, both MCF10A and MCF7 cells
showed higher rates of classification as TN cells, but not the MDA-MB-231 cells. Whereas deep learning-based can-
cer cell classifications are primarily based on the optical transmission images of cell morphology and the fluores-
cence images of cell organelles or cytoskeletal structures, here we demonstrated an alternative way to classify can-
cer cells using a dynamic, biophysical feature that is readily accessible.

Availability and implementation: A python implementation of deep learning-based classification can be found at
https://github.com/soonwoohong/Deep-learning-for-EGFR-trajectory-classification.

Contact: Tim.Yeh@austin.utexas.edu or allen.liu@cmu.edu.tw

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In response to stimuli, cells adapt a number of strategies to regulate
the signaling pathways of transmembrane receptors, including
changing the composition of the plasma membrane (Kusumi et al.,
2014), reorganizing the cytoskeleton networks (Liu et al., 2019a)
and altering the intermolecular binding kinetics (Kasai and Kusumi,
2014). Receptor tyrosine kinases (RTKs), an important class of

transmembrane receptors that control many critical cellular func-
tions such as proliferation, survival and movement (Blume-Jensen
and Hunter, 2001; Ullrich and Schlessinger, 1990), are found
deregulated in most human cancers (Blume-Jensen and Hunter,
2001). In particular, derailed ‘spatial regulation’ of RTKs can be a
hallmark of tumorigenesis or even increased tumor invasiveness
(Casaletto and McClatchey, 2012; Salaita et al., 2010; Tomas et al.,
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2014). These findings suggest that the movement trajectories of
RTKs could encode the information of membrane composition and
organization, as well as the dimerization and intermolecular binding
kinetics of RTKs (Manzo and Garcia-Parajo, 2015; Tsunoyama
et al., 2018).

We have previously used the single-particle tracking (SPT) tech-
niques to study the movement of epidermal growth factor receptor
(EGFR) in the membrane and showed that the aberrant spatial dy-
namics of EGFR are associated with the upregulated EphB2 and Src
pathways in advanced prostate cancer (Liu et al., 2019b). In another
work, by examining EGFR trajectories in seven breast epithelial cell
lines, we developed a physical phenotyping assay termed
Transmembrane Receptor Dynamics (TReD) that can assess the
metastatic potential of breast cancer cells (Liu et al., 2019a).
However, our previous trajectory analysis method was primarily
based on extracting the EGFR diffusivity (D) and the linear size of
the compartment (L) from the mean-squared displacement (MSD)
plots. While MSD analysis is widely used in the field, much informa-
tion is lost when turning the raw trajectories into an MSD plot
(Kusumi et al., 2005). Although examining individual trajectories
and developing novel anomalous diffusion models may provide new
insights into the molecular events occurring in the plasma membrane
(Dietrich et al., 2002; Fujiwara et al., 2016; Ghosh et al., 2019; Jin
et al., 2007; Liu et al., 2016; Zhao et al., 2019), we believe we can
also extract hidden features in the membrane from a vast amount of
receptor trajectories using deep learning algorithms. Unlike the pre-
vious reports that focused on diffusive state characterization using
the trajectory-trained machine learning or deep learning models
(Dosset et al., 2016; Granik et al., 2019; Matsuda et al., 2018;
Wagner et al., 2017), here we directly differentiated cell types based
on hidden features extracted from the transmembrane receptor
trajectories.

Deep learning approaches, such as convolutional neural network
(CNN), and machine learning approaches, such as k-nearest neigh-
bor, have become an increasingly important tool in image-based
tumor segmentation and analysis (Campanella et al., 2019; Gautam
et al., 2019; Hosny et al., 2018; Ismael et al., 2020; Moen et al.,
2019; Trebeschi et al., 2017; Zhao et al., 2018). Assessment and
classification of tumors based on tissue microarray images (Shamai
et al., 2019), histological images (Araújo et al., 2017), cytological
images ( _Zejmo et al., 2017), and magnetic resonance images
(Leithner et al., 2019) have been recently demonstrated. However,
none of these characterization methods employed any dynamic in-
formation of the live tumor cells or tissues. We believe TReD is not
only a new type of physical biomarkers (Liu et al., 2019a,b), but
also can be used as input data to train deep learning models,
expanding the current arsenal and bringing the cell-based classifi-
cation of cancer to another level (Fig. 1). Here we demonstrate
that we can train a neural network using the motions of EGFR
from six breast cancer cell lines and reach 83% accuracy in clas-
sifying these cells. Our method is simple, reliable, versatile and
cost-effective, and can be combined with the traditional genetic
and transcriptomic biomarkers to assess patient-derived tumor
samples in the future.

2 Results

We first acquired EGFR motions from six breast cancer cell lines
which have different gene expression profiles, hormone receptor sta-
tus and surface receptor status: MCF7, BT474, SKBR3, MDA-MB-
468, MDA-MB-231 and BT549. The methods for EGFR labeling
and trajectory acquisition were described in our previous publica-
tions (Liu et al., 2019a,b) and summarized in the Supplementary
Information (SI) Method S1. EGFR was chosen as it is a well-
characterized transmembrane receptor which is often overexpressed
in carcinogenic cells, thus making it attractive for SPT experiments
(Normanno et al., 2006). Based on their receptor status, the six
breast cancer cell lines were divided into three subtypes: hormone
receptor positive (HRþ: MCF7), human epidermal growth receptor
positive (HER2þ: BT474 and SKBR3) and triple negative (TN:
MDA-MB-468, MDA-MB-231 and BT549) (Table 1) (Kao et al.,
2009; Neve et al., 2006; Subik et al., 2010). Hormone receptors
refer to estrogen (ER) and progesterone receptors (PR), which are
often the targets for breast cancer therapy (DeGregorio and Wiebe,
1999; Hudis, 2007). TN subtype refers to breast cancer cells without
the presence of ER, PR and HER2. With no primary receptor target
for therapy, TN breast tumors have a low survival rate, high recur-
rence, and high metastatic potential (Liedtke et al., 2008).

A total of 13,652 two-dimensional EGFR trajectories of varying
track durations [up to 1-min long; 50 ms per time step (dt)] were
acquired from the six cell lines at 37�C on an Olympus IX-71
inverted fluorescence microscope equipped with a Hamamatsu
sCMOS camera (Supplementary Method S1). The acquired raw tra-
jectories were first divided into nonoverlapping 300-dt segments
and filtered based on the criteria detailed in Supplementary Method
S2. In short, we removed the segments of stalled receptors that did
not contain any meaningful dynamic information of EGFR. The
remaining segments were then repositioned around the coordinate
origin, randomly shuffled and stitched into 1,998 of 3,000-dt-long
‘reassembled trajectories’ within their cell types (Supplementary
Method S2 and Fig. S1). We emphasize that these preprocessing
steps were necessary as they guaranteed that each trajectory used for
the model training is equally informative. Besides, they preserved
the information of both movement speed and pattern of EGFR,

Fig. 1. The schematic diagram of deep learning classification of breast cancer cells based on TReD. The deep learning model is a 14-layer variant of a residual neural network

(ResNet) optimized using SGD with categorical cross-entropy as the loss function. Our model takes the two-dimensional trajectories of EGFR as inputs and outputs the proba-

bilities of predicted classes, in which the highest probabilities represent the model predictions. The probabilities were then converted into a confusion matrix for a quick assess-

ment of the model prediction

Table 1. Receptor status for each of the cell lines used in training

and testing the model

Cell line Hormone receptor status

ER PR HER2

MCF7 þ þ �
BT474 þ þ þ
SKBR3 � � þ
MDA-MB-468 � � �
MDA-MB-231 � � �
BT549 � � �

244 M.Kim et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab581#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab581#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab581#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab581#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab581#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab581#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab581#supplementary-data


which, we believe, hold the key in distinguishing subtypes of cancer
cells.

After preprocessing, the 1,998 reassembled trajectories were split
into five stratified folds using StratifiedKFold from the scikit-learn
library (Pedregosa et al., 2011) (Supplementary Fig. S2 and Method
S3), resulting in 20% of trajectory data in each fold. With 5-fold
cross-validation, each trial dedicated 4-folds to training (80%) and
1-fold to testing (20%). The 4-folds for training (80%) were further
divided into a training set (64%) and a validation set (16%)
(Supplementary Table S1). This stratification was employed to keep
the representation of each sample (i.e., the label) identical within
each fold, ensuring that all samples contribute equally in the model
training.

Our model starts with a 14-layer variant of a residual neural net-
work (ResNet) optimized using stochastic gradient descent (SGD)
with categorical cross-entropy as the loss function (Supplementary
Fig. S3, Method S4 and Method S5) (He et al., 2016). Training time
and final performance of neural networks are highly dependent on
the choices of a number of hyperparameters, including learning rate
(how quickly the model is trained), weight decay (how much the
data are regularized), dropout rate (how many units are ignored)
and batch size (how many samples are trained in one iteration)
(Hutter et al., 2014; Van Rijn and Hutter, 2018). By observing the
clues during the early training process, we tuned the hyperpara-
meters based on short runs of a few epochs, eliminating the necessity
of running complete grid search or random search (Smith, 2018).
The optimized values for the learning rate, weight decay, dropout
rate and batch size were found to be 5�10�4, 5�10�4, 0.4 and 32,
respectively. The model took the 3,000-dt-long (150 s) reassembled
trajectories as inputs and output a vector containing the probability
distributions of predicted classes. The prediction results were visual-
ized in three different ways: a confusion matrix (Supplementary

Method S7), a receiver operating characteristic (ROC) curve
(Supplementary Method S8) and a uniform manifold approximation
and projection [UMAP (McInnes et al., 2018); Supplementary
Method S9].

The model was first evaluated using a testing dataset within the
StratifiedKFold from the scikit-learn library. The testing dataset was
hidden from the network until each fold had completed training.
The StratifiedKFold approach ensured each reassembled trajectory
to be used in the testing dataset once and used in the training dataset
k�1 times. Eventually, five networks (k¼5) were trained, and a
number of evaluation metrics were obtained based on the testing
dataset, providing an assessment of the model performance. Each
network generated a set of prediction results, and the model metrics
were averaged over the k steps.

Based on the testing set of 396 trajectories from the six cell lines
(Supplementary Table S1), our model produced a normalized confu-
sion matrix showing the prediction rates across all the labels and the
true positive rates along the diagonal line (Fig. 2A). While the true
positive predictions ranging from 0.57 for MDA-MB-468 to 0.91
for MCF7, the overall prediction accuracy was calculated to be 83%
for our model (Supplementary Method S7). The worst prediction
came from MDA-MB-468 trajectories that were misclassified as
MCF7 and BT549 trajectories. The sensitivity and specificity of our
model were estimated through the ROC (Supplementary Method
S8) (Fawcett, 2006; Grzybowski and Younger, 1997), leading to at
least 0.96 AUC (area under the curve) for all labels (Supplementary
Fig. S4). Based on their features in the high-dimensional space, the
reassembled EGFR trajectories were projected onto a 2D space using
the UMAP algorithm (Fig. 2B). While most of the trajectory projec-
tions formed distinguishable clusters according to their cell-line ori-
gins, notable overlaps between the BT474/SKBR3 clusters (green
circle) and between the MDA-MB-468/BT549 clusters (orange cir-
cle) were found in Figure 2B.

The model was also trained and tested based on receptor status
of the six cell lines (HRþ: MCF7, HER2þ: BT474 and SKBR3 and
TN: MDA-MB-468, MDA-MB-231 and BT549 in Table 1). The
resulting confusion matrix had the true positive rates ranging from

Fig. 2. Cell line classification results with an overall accuracy of 83%. (A) Normalized

confusion matrix showing rates of correct classifications and misclassifications for

each cell-line sample (i.e., label). (B) UMAP showing the clustering of the low-dimen-

sional projections according to their cell-line origins. The green circle indicates overlap-

ping clusters of the two HER2þ cell lines (BT474 and SKBR3). The orange circle

indicates overlapping clusters of the two TN cell lines (MDA-MB-468 and BT549).

Fig. 3. Receptor status classification results with an overall accuracy of 85%.

(A) Normalized confusion matrix showing rates of correct classifications and mis-

classifications for each receptor status subtype. (B) UMAP showing the clustering of

the low-dimensional projections according to their receptor status.
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0.77 to 0.90 for the three labels, with an overall accuracy of 85%
(Fig. 3A, Supplementary Method S7). The AUC of ROC curves was
at least 0.94 for all labels (Supplementary Fig. S5). UMAP was again
used to visualize the clustering of low-dimensional projections that
preserve the local and global structures in the high-dimensional fea-
ture space. Interestingly, the projections from the TN cell trajecto-
ries formed two clusters that overlapped with the HER2þ and HRþ
clusters, respectively (Fig. 3B). The result of overlapping clusters
reflected the high misclassification rates seen in the confusion ma-
trix: 0.23 for HRþ cells and 0.21 for HER2þ cells were misclassi-
fied as TN cells.

To answer the question of whether or not the segment-stitching
step in the data preprocessing generated any bias or artifact during
the model training, we randomly shuffled the segments again and
created a new set of 1,998 reassembled trajectories. When testing
the trained models on this new dataset (1,998 trajectories), we
obtained two confusion matrices (Fig. 4) that were similar to the
matrices obtained from the previous testing dataset (396 trajecto-
ries, Figs 2A and 3A). The overall prediction accuracies were 82%
for the six cell lines and 90% for the three receptor status groups.
Interestingly, the misclassification rates from MDA-MB-231 to
MCF7 and from MDA-MB-231 to BT549 noticeably increased on
the new dataset (from 0.12 to 0.21 and from 0.02 to 0.13, respect-
ively) while the true positive rate of MDA-MB-231 prediction
dropped from 0.81 to 0.64 (Figs 2A and 4A). In contrast, while high
misclassification rates were still seen in the confusion matrix of

receptor status prediction, those rates were nearly halved on the new
dataset: 0.12 for HRþ cells and 0.10 for HER2þ cells were misclas-
sified as TN cells. As a result, the true positive rates became higher
(>0.87) on the new dataset (Fig. 4B). While both HRþ and HER2þ
cells had �0.10 rate to be misclassified as TN cells, the misclassifica-
tion rates between HRþ and HER2þ cells were �0.01, similar to
the previous testing results (Fig. 3A). These similarities in the confu-
sion matrices indicated that our trained models are reliable in classi-
fying cell types and receptor status, regardless of the shuffling order.

To further investigate the capabilities of the trained models, we
tested EGFR trajectories from MCF10A cells (benign breast epithe-
lial cells) with and without the induction of epithelial–mesenchymal
transition (EMT, Supplementary Method S1). MCF10A cells are
nonmalignant breast epithelial cells that are commonly used in com-
parison with MDA-MB-231 and other breast cancer types in physic-
al oncology research (Kumar et al., 2018). Using MCF10A as a
control, we wanted to see if our model (which was trained only on
cancerous cells) can truly classify phenotypic changes such as EMT.
EMT induction could transform benign cells and noninvasive cancer
cells into highly aggressive cells (Scheel et al., 2011), thus resulting
in an increase in TN classification of EMT-induced MCF10A.
Together with the trajectories from MCF7 cells (HRþ) and MDA-
MB-231 cells (TN), as well as their EMT-induced cells, we per-
formed the receptor status classification using the trained model
(Fig. 5). We emphasize that these trajectories were independently
acquired and never used in the training process. As expected, all

Fig. 5. Receptor status classification using the trained model before and after the in-

duction of EMT. MCF10A and MCF7 increased in TN classification by 20% and

142%, respectively. MDA-MB-231 decreased in TN classification by 22%. (A)

Confusion matrix of the three cell lines before the EMT induction. (B) Confusion

matrix of the three cell lines after the EMT induction. After EMT induction, both

MCF10A and MCF7 cells have even higher chances to be classified as TN cells (red

squares).

Fig. 4. Validation of the trained models using a newly reassembled dataset. The clas-

sification of six cell lines and receptor statuses achieved 82% and 90% overall accu-

racies, respectively. (A) Confusion matrix on the new dataset, using the pretrained

model from Figure 2. (B) Confusion matrix on the new dataset, using the pretrained

model from Figure 3.
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three cell lines had low chances (<0.05) to be misclassified as
HER2þ cells. In contrast, MCF10A (benign) and MDA-MB-231
(TN) cells had high chances to be misidentified as TN and HRþ
cells, respectively, before EMT induction (Fig. 5A). After EMT in-
duction, both MCF10A (benign) and MCF7 (HRþ) cells had much
higher rates to be classified as TN cells (20% and 142% increase
from their original values, respectively), while fewer MDA-MB-231
cells were classified as TN cells (22% decrease, Fig. 5). These results
indicated that, after EMT induction, both MCF10A (nontumori-
genic) and MCF7 (noninvasive) cells produced EGFR trajectories
that resembled those on the TN cells (highly metastatic), resonat-
ing with the previous result that the diffusivity of EGFR increased
in MCF10A and MCF7 cells after EMT induction (Liu et al.,
2019a). While the signature of EMT could not be fully captured by
the trajectory features that normally differentiate among the HRþ,
HER2þ and TN subtypes, our results indicated that TReD dis-
cerns the changes caused by epithelial cell transition.

3 Discussion

We demonstrated that well-trained deep learning models based on
ResNet (Supplementary Fig. S3 and Method S5) can differentiate
EGFR trajectories from six breast cancer cell lines (Fig. 2) and from
three groups of cells with distinct receptor status (HRþ, HER2þ and
TN, Fig. 3) with high accuracies (83% and 85%, respectively). In this
report, we use the terms ‘trajectory classification’ and ‘cell classifica-
tion’ interchangeably, as the probabilities to identify the cell origin of
a trajectory should be identical to the probabilities to identify the cell
itself (assuming each cell produces tens to hundreds of EGFR trajecto-
ries for analysis). Our method is reliable, as the control experiment
also showed equally good overall classification accuracies (82% and
90%, respectively, Fig. 4). To the best of our knowledge, this is the
first time that the EGFR trajectories are used as inputs to train deep
learning models that differentiate breast cancer cells with distinct
metastatic potential. While other machine learning classifications of
single-particle trajectories focused on the identification of diffusive
modes [e.g., Brownian diffusion, confined diffusion or directed diffu-
sion (Dosset et al., 2016; Matsuda et al., 2018; Wagner et al., 2017)]
or diffusive conditions [e.g., continuous time random walk and frac-
tional Brownian motion (Granik et al., 2019; Mu~noz-Gil et al.,
2019)], and used simulated trajectories for training, we aimed to dir-
ectly differentiate the cell types and only used the experimental EGFR
trajectories for our model training.

The members of EGFR family are able to form homodimers or
heterodimers (Alroy and Yarden, 1997), and the density of the
receptors does affect the probability of dimerization and the diffu-
sivity of receptors (Chung et al., 2010). We analyzed the mRNA ex-
pression levels of EGFR family, including EGFR, HER2, HER3 and
HER4, using the same set of databases on the Genevestigator
(Supplementary Fig. S6). The results did not show a strong negative
correlation between the EGFR expression level and the measured
diffusivity across these six cell lines we tested, and the correlation
coefficient of EGFR expression and EGFR diffusivity was �0.09.
Regarding HER2 expression level, the result showed the SKBR3 and
BT474 cells with the highest HER2 gene expression levels (10-fold
higher than other cells) exhibited the lowest EGFR diffusivities. This
result cohered with Agazie’s research which demonstrated that
HER2 overexpression enhances the stability of HER2 homodimers
and HER2-EGFR heterodimers (Hartman et al., 2013). In addition,
HER3 may also play a similar role in the formation of HER3-EGFR
heterodimers, which reduces the diffusivity of EGFRs.

It is well known that the highly invasive breast cancer cell lines,
such as MDA-MB-231 and BT-549, show traits of EMT with upre-
gulated EMT markers (Blick et al., 2008; Choi et al., 2013). EMT
involves a series of signaling pathways that alter the morphology of
the cell to become more migratory and metastatic in nature. The
process involves multiple biochemical changes, including the expres-
sion of specific cell-surface proteins, the reorganization of cytoskel-
etal networks, and the degradation of extracellular matrix (Kalluri
and Weinberg, 2009). As we believe the information about plasma

membrane organization, composition, receptor interactions, and re-
ceptor status are embedded in the TReD, it is thus important to test
whether or not our neural network model can capture the signature
of EMT induced in the benign and the noninvasive cancer cells. As
we expected, after EMT induction, both MCF10A (benign) and
MCF7 (noninvasive) cells behaved more like TN cells (Fig. 5).
Interestingly, the TN cell line, MDA-MB-231, became less TN-like
after EMT induction. This result indicated that the current model
cannot fully capture the EMT signature. One possibility is that
many EMT-related trajectory features were not included in the fea-
tures that normally differentiate among the three receptor status
groups. Another possibility is the EMT induction produced very het-
erogeneous responses among single cells (i.e., not all cells being suc-
cessfully transformed into aggressive phenotypes). Our next goal is
to use other methods to induce invasiveness, such as the use of
macrophage coculture system to activate the JNK and NF-jB path-
ways (Hagemann et al., 2005), and test our models again. Our cur-
rent model training excluded the trajectories from MCF10A cells,
thus resulting in a high misclassification rate of MCF10A as TN
cells, even before the EMT induction (Fig. 5A). We have attempted
to train a model with MCF10A trajectories, but MCF10A was al-
ways misclassified as MDA-MB-231 at a high rate. The reason is
not clear at this moment. Other than the breast cancer cell lines, we
are extending our method to classify prostate cancer cell lines and
will publish that result in the future.

Our method is not only reliable and versatile, but also simple
and cost-effective as the data can be preprocessed, and the networks
can be trained on a PC with GPU (Supplementary Method S4). It
takes less than an hour to preprocess 13,652 EGFR raw trajectories,
approximately 2 hours to train, validate and test the model, and less
than 5 min to test the new set of 1,998 assembled trajectories. With
a high classification accuracy demonstrated on the cell lines, it is
very promising that this biophysical assessment platform can rapidly
and precisely predict the metastatic potential of patient-derived sam-
ples, such as circulating tumor cells (CTC) or tumor organoids. For
instance, EGFR tracking can be integrated with a microfluidic CTC
capture system, so the combination of CTC capture and the SPT sys-
tems could provide a unique chance to achieve streamlined physical
and molecular analyses on the same CTCs. We also anticipate the
integration of our deep learning models with single-cell transcrip-
tomic analysis of CTCs in the near future.

As our trajectory-based deep learning classification is inherently
an image-based single-cell differentiation method (i.e., trajectories
can be collected from individual cells in a tumor sample), it can be
extended to investigate single-cell behaviors in the tumor micro-
environment and tumor heterogeneity (Gupta et al., 2011;
Provenzano et al., 2009). As cell culture, labeling and imaging can
all be carried out by automation and 101–103 of independent recep-
tor trajectories can be obtained in one field of view, more compre-
hensive model training and better classification accuracy are
expected in the near future. Whereas machine learning classifica-
tions of cancer cells are primarily focused on the label-free images of
cell morphology (Chen et al., 2016) and the fluorescence images of
cell organelles or cytoskeletal structures (Jones et al., 2009), here we
demonstrate an alternative way to classify cancer cells using a dy-
namic, biophysical feature that is easy to acquire.
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Data availability

The dataset and a python implementation of deep learning-based
classification can be found at https://github.com/soonwoohong/
Deep-learning-for-EGFR-trajectory-classification.
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