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Abstract
Purpose: Breast cancer is the most common cancer in women. The aim of this 
study was to build a prognostic signatures model based on the immune score of the 
ESTIMATE algorithm to predict survival of breast cancer patients.
Methods: The RNA-seq expression data and clinical characteristics of patients were 
derived from TCGA and GSE88770 of GEO. The ESTIMATE algorithm was used 
to calculate the patients' immune scores and to obtain DEGs. The LASSO Cox re-
gression model was applied to select prognostic genes. Survival analysis and the 
ROC curve were used to evaluate the predictive efficacy of the prognostic signatures 
model. Independent prognostic factors of breast cancer were assessed using the Cox 
regression analyses, and a nomogram was constructed to enhance the clinical value.
Results: Based on the immune score, we found that the high-score group showed bet-
ter clinical outcomes than the low-score group. Twenty-five (25) genes of 616 DEGs 
were confirmed as prognostic signatures through the LASSO Cox regression. The risk 
score for each patient was calculated according to the prognostic signatures. Survival 
analysis showed that the low-risk group had longer overall survival than the high-risk 
group. We also found that the risk score was an independent prognostic factor. To 
improve the clinical application value, a nomogram combing the risk score according 
to the 25-gene prognostic signatures and several clinicopathological prognostic fac-
tors was constructed.
Conclusions: This study revealed the significance of immune infiltration and con-
structed a 25-gene prognostic signatures model, that has a strong prognostic value for 
patients with breast cancer.
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1 |  INTRODUCTION

Breast cancer is the second most common cancer in the world 
(1.7 million cases, 11.9%), and it is the most frequently seen 
cancer among women.1 Breast cancer is a highly heterogeneous 
disease, with a slow growth rate, and, while it can be highly 
invasive, there is a good prognosis for some patients.2 At pres-
ent, the application of surgery, radiotherapy, chemotherapy, 
hormone therapy, and HER2-targeted therapy have greatly im-
proved the survival of breast cancer patients. However, some 
patients still relapsed and have distant metastasis after classical 
therapies. It remains important to continue looking for novel 
and effective treatments for breast cancer patients.

With recent developments and applications of new findings 
in immunology, immunotherapy is coming to play a critical role 
in cancer treatment. It has become the standard-of-care treat-
ment strategy for some malignancies, such as melanoma, lung 
cancer, and bladder cancer.3 In breast cancer, previous studies 
have confirmed that in patients with early stage triple-negative 
and HER2-positive disease, high levels of lymphocytic infil-
tration were consistently associated with a better prognosis, 
and these infiltrations reflect a good host anti-tumor immune 
response, suggesting potential benefit of immune activation 
to improve prognosis.4 There have been clinical reports of im-
mune checkpoint blockade monotherapy for several molecular 
subtypes of breast cancer, and persistent responses have been 
observed in a significant number of women with chemother-
apy-resistant diseases.3 In addition, Atezolizumab (targeted 
drugs for PD-L1) in combination with chemotherapy has been 
recently approved for the treatment of advanced triple-negative 
breast cancer.5 All these indicate that immunotherapy is ex-
pected to achieve encouraging results in the treatment of breast 
cancer. However, as breast cancer is a heterogeneous disease 
and most breast cancers exhibit limited innate immunogenicity, 
it is important to identify relevant biomarkers to distinguish im-
munotherapy responsive tumors.3

In this study, differentially expressed genes (DEGs) were 
selected based on the immune score using the ESTIMATE 
algorithm, and a 25-gene prognostic signatures model was 
established and validated using The Cancer Genome Atlas 
(TCGA) and the Gene Expression Omnibus (GEO) data-
bases. We then investigated the survival value of this model, 
and constructed a more meaningful nomogram combining 
clinicopathological prognostic factors.

2 |  MATERIALS AND METHODS

2.1 | Data source

The RNA-seq expression and clinical characteristic data of 
breast cancer tumors came from two databases and formed 
three cohorts. The training cohort was downloaded from 

TCGA (n = 1070) databases (https://portal.gdc.cancer.gov/
repos itory, Table 1). Among patients from the training co-
hort, we conducted multiple random sampling to establish 
internal validation cohorts, each containing 100 patients. 
The external validation cohort data set was the GSE88770 
(n  =  117) from GEO databases (https://www.ncbi.nlm.nih.
gov/geo/). Patients with unknown overall survival (OS) were 
excluded from both data sets.

2.2 | ESTIMATE algorithm of breast cancer

The estimate R package was used to implement the 
ESTIMATE algorithm, which calculated the immune score, 
stromal score and ESTIMATE score. And patients were di-
vided into two groups, high-score or low-score, using the me-
dian score of the immune score (stromal score or ESTIMATE 
score) as the cutoff.

2.3 | Differential gene expression analysis

The differential gene expression analysis was performed by 
the limma R package.6 The raw data were normalized and 
transformed to log2-counts per million (log CPM). The 
Benjamini-Hochberg method was adopted to correct the sig-
nificance p value. Finally, the fold change (FC) and the ad-
justed p value (False Discovery Rate, FDR) were adopted as 
key indexes for screening DEGs. DEGs were selected with 
|log2(FC)| > 1 and FDR < 0.05.

2.4 | Construction of the prognostic 
signatures model

The LASSO Cox regression model was built using the glm-
net R package. The optimal λ value was chosen through 10 
times cross-validations. Prognostic signatures were selected 
and the coefficient of each signature was calculated accord-
ing to the LASSO Cox regression. The same formula was 
used to calculate the risk score for each patient. According to 
the risk score, patients were divided into low-risk and high-
risk group with the median risk score as the cutoff. Survival 
analysis and the receiver operating characteristic (ROC) 
curve were used to test the performance of the prognostic 
signatures model.

2.5 | Independent prognosis 
factors and the nomogram

The Cox regression analyses were used to analysis clinico-
pathologic characteristics and find independent prognostic 

https://portal.gdc.cancer.gov/repository
https://portal.gdc.cancer.gov/repository
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE88770
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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factor, p < 0.05 was considered statistically significant. To 
improve the application value, a nomogram was built with 
the rms R package and its performance was evaluated by 
C-index.

2.6 | Functional enrichment and immune 
cell infiltration analysis

The Gene Ontology (GO) analysis and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway anal-
ysis were performed through the clusterProfiler R package.7 
Biological process, cell component, molecular function and 
KEGG pathway analysis were performed to enrich the func-
tion associated with the DEGs. In addition, Tumor IMmune 
Estimation Resource (TIMER2.0, http://timer.comp-genom 
ics.org/) was the online tool that provided us the correlation 
coefficient of prognostic gene expression and immune cells.8 
Immune cells included B cells, CD8+T cells, CD4+T cells, 
macrophages, neutrophils, and dendritic cells. And two of the 
prognostic genes screened by us, JCHAIN and TMEM273, 
were not included in the TIMER2.0 analysis.

2.7 | Statistical analysis

Statistical analyses were conducted with the R program ver-
sion 4.0.0, using the R studio version software 1.2.5042. The 
survival R package was used to perform the Kaplan-Meier 
survival analysis, the Cox regression analysis and define 
the C-index. The survival curve was constructed by the sur-
vminer R package. The volcano plot was formed through an 
R package called ggplot2. The pheatmap R package was used 
to draw the heatmap. The ROC curve was drawn using the 
survivalROC R package.

3 |  RESULTS

3.1 | The acquisition of DEGs based on the 
immune score

According to the ESTIMATE algorithm, we obtained the im-
mune score, stromal score, and ESTIMATE score of each 
breast cancer patient from TCGA. To explore whether a high 
score was associated with a better prognosis, we performed 
the survival analysis of two groups that grouped around the 
median scores. The median immune score was 24.57032, 
the median stromal score was 404.0199, and the median 
ESTIMATE score was 465.7355. Based on the immune 
score, there was a distinct difference between the two groups, 
and the high-score group showed longer OS than the low-
score group (p = 0.038, Figure 1A). However, in terms of the 

T A B L E  1  Clinicopathological characteristics for breast cancer 
patients in TCGA (n = 1070).

Characteristics n (%)

Gender

Male 12 (1.1)

Female 1058 (98.9)

Status

Dead 150 (14.0)

Alive 920 (86.0)

Race

White 746 (69.7)

Asian 58 (5.4)

Other 266 (24.9)

Agea 

≤58 546 (51.0)

>58 524 (49.0)

T

T1 279 (26.1)

T2 617 (57.7)

T3 133 (12.4)

T4 38 (3.6)

TX 3 (0.3)

M

M0 891 (83.3)

M1 22 (2.1)

MX 157 (14.7)

N

N0 502 (46.9)

N1 358 (33.5)

N2 120 (11.2)

N3 73 (6.8)

NX 17 (1.6)

TNM stage

I 181 (16.9)

II 606 (56.6)

III 241 (22.5)

IV 20 (1.9)

X 11 (1.0)

NA 11 (1.0)

PAM50

Basal-like 137 (12.8)

HER2-enrich 62 (5.8)

Luminal A 415 (38.8)

Luminal B 187 (17.5)

Normal-like 22 (2.1)

NA 247 (23.1)
aThe cutoff of age was the median age of TCGA patients with breast cancer; NA 
means information not available; TCGA, The Cancer Genome Atlas. 

http://timer.comp-genomics.org/
http://timer.comp-genomics.org/
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stromal score, no remarkable difference in survival was found 
between the two group of patients (p = 0.680, Figure 1B). 
Even though there was no significant difference between the 
two ESTIMATE score groups, the higher score contributed 
to a slightly better prognosis (p = 0.230, Figure 1C). To fur-
ther analyze the difference between immune score groups, 
we compared the high-score group with the low-score group 
by differential gene expression analysis. Finally, we found 
616 DEGs that included 65 down-regulated genes and 551 
up-regulated genes (Figure 1D).

3.2 | Construction of the 25-gene prognostic 
signatures model

To identify potential gene prognostic signatures in DEGs, we 
built the LASSO Cox regression model, and the value of λ was 
0.01534 (Figure 1E). A final prognostic signature model was 
consisted including 25 genes (Table 2), and the model was used 
to evaluate the prognosis of the training, external validation, 
and internal validation cohorts. The mRNA expression levels of 
these 25 prognostic signatures in TCGA is shown in Figure 1F.

F I G U R E  1  Construction of the 25-gene prognostic signatures model based on the ESTIMATE algorithm using the LASSO Cox regression 
model. The OS in the high or low immune score group (A), stromal score group (B), and ESTIMATE score group (C) of patients with breast cancer 
from TCGA. D, Volcano plot constructed from the immune score shows down-regulated and up-regulated DEGs. E, Prognostic signatures were 
selected using the LASSO Cox regression and the left line shows the optimal values (λ = 0.01534). F, mRNA expression levels in TCGA patients. 
Red and blue respectively represented high and low risk score group in the risk item (divided by the median risk score).
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3.3 | Survival validation of the 25-
gene prognostic signatures model and 
subgroup analysis

Based on the 25-gene prognostic signatures model, we cal-
culated each patient's risk score and grouped them accord-
ing to the median risk score. In the training cohort (TCGA), 
there was a significant difference between the OS of the 
low-risk and high-risk score group, and the low-risk group 

demonstrated a longer OS. Furthermore, similar to the train-
ing cohort, lower scores were associated with better prognosis 
in the external (GSE88770) and internal validation cohorts. 
To further evaluate the survival validation of the model, we 
constructed ROC curves. In the training, external validation 
and one of the internal validation cohorts, the area under the 
curve (AUC) values of the 3-year cohort were 0.777, 0.843, 
and 0.820, the 5-year AUC cohort values were 0.741, 0.717, 
and 0.856, and the 10-year AUC cohort values were 0.771, 
0.709, and 0.779, respectively. (Figure 2A-I, Table S1). In 
addition, the subgroups analysis of patients with different 
PAM50 subtypes in TCGA indicated that a lower risk score 
predicted better OS. Good predicting function was found 
in the Basal-like (p  =  0.0038), Luminal A (p  <  0.0001), 
Luminal B (p = 7e-04) and Normal-like (p = 0.041) breast 
cancer patients. Although there were no significant differ-
ences between the two groups of the HER2-enrich subtype 
(p = 0.070), the low-risk score group still had a better OS 
than the high-risk score group (Figure 3A-E).

3.4 | A nomogram with better 
predictive value

To determine whether the risk stratification formed by the 
25-gene prognostic signatures model is an independent prog-
nostic determinant, and to look for other clinicopathological 
independent prognostic factors, we performed univariate and 
multivariate Cox regression analyses in the TCGA cohort. 
The clinicopathological factors included gender, age, pri-
mary site of tumor (T), regional lymph node (N), metasta-
sis (M), and TNM stage (Table 3). We confirmed that age, 
TNM stage and the risk score were independent prognostic 
factors for breast cancer. To enhance the clinical value of 
the 25-gene prognostic signatures model, we constructed a 
nomogram combining the risk score and clinicopathological 
independent prognostic factors. The nomogram was used to 
predict patient OS at 3-year, 5-year, and 10-year. We found 
that a lower score means a longer OS (Figure  4A). The 
3-year, 5-year, and 10-year calibration curves coincided well 
with the median line (Figure 4B-D), and the C-index of the 
nomogram was 0.82824083. This indicates that the nomo-
gram has a strong predictive value for patient OS. What is 
more, compared to the 25-gene prognostic signatures model 
or other clinicopathological independent prognostic factors, 
this nomogram was a better predictor (Table 4).

3.5 | Functional enrichment analysis 
correlated with DEGs

To further explore the function of DEGs, we conducted GO 
analysis and KEGG pathway analysis. We listed the top 10 

T A B L E  2  Information of the 25-gene prognostic signatures.

Gene Full name Coefficient

BCL2A1 B-cell Lymphoma 2-Related 
Protein Al

−0.094812912

BIRC3 Baculoviral IAP Repeat 
Containing 3

−0.011143758

CHI3L1 Chitinase 3 Like 1 −0.00455589

CXCL1 C-X-C Motif Chemokine 
Ligand 1

−0.007613345

EL0VL2 Elongation of Very Long-Chain 
Fatty Acids Elongase 2

−0.041806646

F5 Coagulation Factor V −0.020145838

GBP2 Guanylate Binding Protein 2 −0.052726578

GPR55 G Protein-Coupled Receptor 55 −0.013097709

IGFALS Insulin Like Growth Factor 
Binding Protein Acid Labile 
Subunit

−0.019624008

IL10 Interleukin 10 0.258800653

JCHAIN Joining Chain of Multimeric 
IgA And IgM

−0.046765922

KLHDC7B Kelch Domain Containing 7B −0.057177035

KLRB1 Killer Cell Lectin Like 
Receptor Bl

−0.198897444

KYNU Kynureninase 0.025439689

MATK Megakaryocyte-Associated 
Tyrosine Kinase

−0.038183565

NCF2 Neutrophil Cytosolic Factor 2 −0.004022496

NKAIN1 Sodium/Potassium Transporting 
ATPase Interacting 1

−0.025904294

NPY1R Neuropeptide Y Receptor Y1 −0.002076418

NXNL2 Nucleoredoxin Like 2 −0.042055956

RIMS1 Regulating Synaptic Membrane 
Exocytosis 1

0.010435445

S1OOB S100 Calcium Binding Protein B −0.005558833

STX11 Syntaxin 11 −0.048805878

TMEM273 Transmembrane Protein 273 0.139700396

TOX Thymocyte Selection 
Associated High Mobility 
Group Box

−0.004077689

VAV1 Vav Guanine Nucleotide 
Exchange Factor 1

0.058218322

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE88770
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terms among biological processes, cell components, molecular 
functions and KEGG pathway (Figure 5A-D). We found that 
biological processes of DEGs were significantly associated 
with an immune response, such as T cell activation, regulation 
of lymphocyte activation, and lymphocyte proliferation. In 
addition, there was also a degree of immune correlation in the 
cellular component, molecular function and KEGG pathway, 
including immunological synapse, immune receptor activity, 
cytokine−cytokine receptor interaction and so on.

3.6 | Association between prognostic 
signatures and tumor immune infiltrating cells

We used TIMER2.0 to predict the relationship between 
expression of prognostic signatures and six types of 
immune cells. The heatmap shows that TOX, VAV1, 
BCL2A1, STX11, IL10, NCF2, GBP2, F5, and KYNU 
were strongly correlated with six kinds of immune cells 
including macrophages, B cells, CD8+T cells, CD4+T 

F I G U R E  2  Survival verification of the risk score. The risk score distribution of the training cohort (A), the external validation cohort (D) 
and the internal validation cohort (G). The Survival curves of the training cohort (B), the external validation cohort (E), and the internal validation 
cohort (H). The ROC curves for 3, 5, and 10 years survival of the training cohort (C), the external validation cohort (F), and the internal validation 
cohort (I).
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cells, dendritic cells and neutrophils, especially den-
dritic cells and neutrophils. In contrast, some genes 
had limited connections to immune cells, including 
NKAIN1, RIMS1, ELOVL2, NPY1R, IGFALS, and 
NXNL2. Moreover KLRB1, BIRC3, GPR55, MATK, 
S100B, KLHDC7B, CHI3L1, and CXCL1 were associ-
ated with certain immune cells, such as CD4+T cells, 
neutrophils, and dendritic cells. But in other immune 

cells, such as macrophage, there was a lower correla-
tion. (Figure 6).

4 |  DISCUSSION

The tumor microenvironment is extremely complex, includ-
ing not only epithelial cells, vascular cells, stromal cells, but 

F I G U R E  3  Kaplan-Meier survival analysis of different PAM50 subtypes in TCGA. The subtypes included Basal-like (A), Luminal A (B), 
Luminal B (C), Normal-like (D), and HER2-enrich (E) breast cancer. The p < 0.05 was considered statistically significant.
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also a large number of infiltrating immune cells. Infiltrating 
immune cells, which function in an environmentally depend-
ent manner, have been shown to play an antitumor role in 
some tumors and are closely related to tumor growth, inva-
sion, and metastasis.9 In breast cancer, many studies have 
been conducted in terms of the correlation between the tumor 
immune cell infiltration and clinical outcome, and it has been 
reported that high levels of immune cell infiltration are asso-
ciated with better outcomes.10-12 In addition, the infiltration 
of lymphocytes in breast cancers is highly correlated with the 
sensitivity to chemotherapy.13 Therefore, here we focused on 
the infiltration immune cells to build a prognostic model for 
patients with breast cancer.

The ESTIMATE algorithm is a way to use gene expres-
sion characteristics to infer the proportion of stromal cells 
and immune cells in a tumor sample. Based on the immune 
signature (141 genes) and stromal signature (141 genes), the 
immune score and stromal score were obtained for each sam-
ple to predict the infiltration of stromal and immune cells in 
tumor tissues. And the ESTIMATE score, that combined im-
mune and stromal scores, was calculated to infer tumor purity 
in tumor tissue. The predictive power of the ESTIMATE al-
gorithm has been demonstrated in a variety of tumors.14

Our study focused on the immune score of the ESTIMATE 
algorithm. The TCGA cases were grouped according to their 
immune scores, and the results showed that patients with 
high scores had better OS compared to those with the low 
scores. In addition, the related DEGs were obtained. The 25-
gene prognostic signatures model was constructed with the 
LASSO Cox regression model, and the risk score calculated 
by this prognostic model was negatively correlated with sur-
vival. Furthermore, we found that the risk score could be used 
as an independent prognostic factor for breast cancer patients.

Existing studies have confirmed an important role of immune 
cells including T lymphocytes, macrophages, and dendritic 

cells in the growth, progression, prognosis, and treatment of 
breast cancer patients.15-21 Therefore, through TIMER2.0, we 
identified the correlation between prognostic signatures and 
tumor immune cell infiltration, and the result was consistent 
with the regulation of DEGs. Compared with the low immune 
score group, TOX, VAV1, BCL2A1, STX11, IL10, NCF2, 
GBP2, F5, KYNU, KLRB1, BIRC3, GPR55, MATK, S100B, 
KLHDC7B, CHI3L1, and CXCL1 were up-regulated genes in 
the high immune score group, and had a better correlation with 
immune cells. On the contrary, NKAIN1, RIMS1, ELOVL2, 
NPY1R, IGFALS, and NXNL2 were all down-regulated genes 
and poorly correlated with immune cells.

Some of the prognostic signatures that showed a remark-
able correlation coefficient with immune cells have been 
shown in prior studies to play an important role not only 
in the occurrence and development of tumors, but also in 
the regulation of the immune system. BCL2A1 is an apop-
tosis modulator that is overexpressed as a nuclear factor 
kappa B target gene in many cancer cells and contributes 
to tumor progression. Combined with the results of our 
analysis (Figure  6), BCL2A1 showed a chemotactic role 
for T lymphocytes, dendritic cells, and neutrophils. In fact, 
BCL2A1 plays a crucial role in lymphocyte development, 
mast cell mediated allergic reactions, and lymphocyte and 
macrophage activation, especially the up-regulation of 
BCL2A1 to regulate the CD40 survival signaling pathway 
of B lymphocytes.22,23 BIRC3 is a multifunctional pro-
tein that regulates immunity, apoptosis, metastasis, and 
other functions. It not only has an obvious chemotaxis ef-
fect on immune cells, such as B lymphocytes, T lympho-
cytes, and neutrophils, but also participates in the TNFR2/
BIRC3-TRAF1 signaling pathway, that is a novel NK cell 
immune checkpoint for cancer.24 Il-10 is a cytokine that 
induces an immune response and an anti-inflammatory 
microenvironment that promotes tumor growth by helping 

Univariate Multivariate

Characteristics HR CI 95 p value HR CI 95
p 
value

Gender (male vs 
female)

1.21 0.17–8.68 0.848

Age (≤58 vs >58) 1.75 1.27–2.42 0.001 1.58 1.1–2.28 0.014

T(T1-2vs3-4) 1.76 1.22–2.53 0.002 0.95 0.58–1.55 0.841

N (N0 vs N1-3) 2.2 1.54–3.14 0.000* 1.51 0.97–2.35 0.069

M (M0 vs M1) 4.88 2.91–8.17 0.000* 1.83 0.94–3.55 0.075

TNM stage (I-II vs 
lll-IV)

2.62 1.87–3.66 0.000* 1.83 1.08–3.12 0.025

Risk score (low vs 
high)

4.22 2.94–6.07 0.000* 4.07 2.7–6.13 0.000*

HR, Hazard Ratio; CI 95, 95% confidence interval.
*p < 0.001. 

T A B L E  3  Univariate and Multivariate 
Cox regression analyses in TCGA.
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tumor cells evade immune surveillance. It can be used as 
an indicator to evaluate the efficacy of neoadjuvant che-
motherapy in patients with HER2-enrich breast cancer.25 
The CHI3L1 gene product is a glycoprotein that can be ex-
pressed and secreted by both tumor cells and immune cells. 
CHI3L1 can promote tumor progression by upregulation 

of pro-inflammatory mediators, like CCL2, CXCL2, and 
MMP-9. Tumor-recruited M2 macrophages can secret 
CHI3L1 to promote the metastasis of gastric cancer and 
breast cancer, and elevated serum levels of CHI3L1 glyco-
protein are associated with poor prognosis in patients with 
metastatic breast cancer.26,27 CXCL1 is significantly cor-
related with T lymphocyte infiltration, during the progres-
sion of breast cancer CXCL1 is up-regulated by Th17 cells 
and can promote the growth and development of breast can-
cer.28 GBP2 contributes to better clinical outcomes in rap-
idly proliferating breast tumors and may serve as a marker 
for an effective T cell response.29 TOX is closely related to 
depletion of CD8(+) T cells. It is expressed in most circu-
lating effector cell memory CD8(+) T cell subsets, and the 
knockout of TOX in human tumor-infiltrating CD8(+) T 

F I G U R E  4  The nomogram combining the risk score and clinicopathological prognostic factors from breast cancer patients from TCGA. A, A 
nomogram to predict 3, 5, and 10 years survival for breast cancer patients. Calibration curves of the nomogram for 3 (B), 5 (C), and 10 (D) years 
survival.

T A B L E  4  C-index analysis of models.

Model C-index

Age 0.63787373

TNM stage 0.68429704

25-gene prognostic signatures 0.77813022

Nomogram 0.82824083
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cells can lead to down-regulation of PD-1, TIM-3, TIGIT, 
and CTLA-4, suggesting that the TOX can promote T cell 
failure by up-regulating immune checkpoint proteins in tu-
mors. In addition, TOX expression in tumor-infiltrating T 
cells can be used to stratify patients during antitumor ther-
apy, including anti-PD-1 immunotherapy.30,31 Other genes 
in our model are also associated with physiological and 
pathological processes in tumors.

According to our study, there are unique correlations be-
tween various genetic prognostic signatures and types and 
numbers of immune cells. This may indicate the unique func-
tions of these genes in the tumor immune microenvironment, 
suggesting that immune infiltration may influence the occur-
rence and development of tumors through specific pathways. 
Consideration of these results may provide new directions for 
immunotherapy of breast cancer patients.

Of many prognostic indicators of breast cancer have been re-
ported, the Oncotype DX Recurrence Score is the most widely 
used test to clinically assess the risk of recurrence in patients 
receiving endocrine therapy.32 Similar tests include Prosigna,33 
Breast Cancer Index,34 and EndoPredict.35 In addition, 

MammaPrint has been shown to improve the prediction of clin-
ical outcomes in patients with early breast cancer.36 These in-
dicators are more limited to a certain subtype or stage of breast 
cancer and are used to screen patients who can be exempted 
from chemotherapy. However, the data of our prediction model 
is based on the total population of breast cancer patients, from 
which the high-risk population is screened. The selection of 
prognostic signatures is closely related to immune infiltration, 
which is helpful to find the target of immunotherapy.

We have identified the following limitations of this study. 
First of all, our study was mainly based on the overall data of 
TCGA for breast cancer, although it had an optimistic predictive 
effect in most molecular subtypes of breast cancer, its predictive 
effect in breast cancer subtypes needed to be confirmed by in-
creasing the sample size of each subtype. Second, the study was 
performed as a retrospective analysis, and prospective cohort 
studies are required to verify our findings. Furthermore, our 
study needs to be validated by clinical specimens and we will 
further explore it in our future work. Finally, in the process of 
clinical application, choosing an appropriate cutoff of risk score 
is a problem that needs to be further discussed.

F I G U R E  5  Functional enrichment analysis for DEGs. The top 10 terms among the biological process (A), the cell component (B), the 
molecular function (C), and the KEGG pathway (D).
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In summary, our study constructed a 25-gene prognostic 
signatures model that associated with immune infiltration. 
And it can be used as an independent prognostic factor for 
predicting clinical outcomes in patients with breast cancer.
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