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A B S T R A C T   

Post stroke depression (PSD) is a common neuropsychiatric complication following stroke closely 
associated with the immune system. The development of medications for PSD remains to be a 
considerable challenge due to the unclear mechanism of PSD. Multiple researches agree that the 
functions of gene ontology (GO) are efficient for the investigation of disease mechanisms, and 
DeepPurpose (DP) is extremely valuable for the mining of new drugs. However, GO terms and DP 
have not yet been applied to explore the pathogenesis and drug treatment of PSD. This study 
aimed to interpret the mechanism of PSD and discover important drug candidates targeting risk 
proteins, based on immune-related risk GO functions and informatics algorithms. According to 
the risk genes of PSD, we identified 335 immune-related risk GO functions and 37 compounds. 
Based on the construction of the GO function network, we found that STAT protein may be a pivot 
protein in underlying the mechanism of PSD. Additionally, we also established networks of 
Protein-Protein Interaction as well as Gene-GO function to facilitate the evaluation of key genes. 
Based on DP, a total of 37 candidate compounds targeting 7 key proteins were identified with a 
potential for the therapy of PSD. Furthermore, we noted that the mechanisms by which luteolin 
and triptolide acting on STAT-related GO function might involve three crucial pathways, 
including specifically hsa04010 (MAPK signaling pathway), hsa04151 (PI3K-Akt signaling 
pathway) and hsa04060 (Cytokine-cytokine receptor interaction). Thus, this study provided fresh 
and powerful information for the mechanism and therapeutic strategies of PSD.   

1. Introduction 

Post-stroke depression (PSD) is the most common psychiatric complication in patients survived a stroke [1], which is the second 
leading cause of death worldwide [2]. It results in severe disability, higher mortality, and lower ability for rehabilitation therapies [3]. 
With the improvement of diagnostic technology and the general extension of human lifespan, the incidence of PSD has gradually 
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increased in recent years [4]. In clinical practice, drug therapy is still the vital method for PSD. However, current treatments have 
presented with a limited efficacy with certain side effects [5]. 

Networks, such as the Protein-Protein Interaction Network (PPIN) and the gene ontology Functional Network (GOFN), have been 
widely used in various fields of researches [6,7]. Gene ontology (GO) describes the functional knowledge of genes in biological systems 
through ontology [8]. Researchers concluded that the gene ontology could greatly promote the investigation of the cardiac conduction 
system [9]. GO usually analyzes the interpretation of genes in the following three parts: cellular component (CC), biological process 
(BP), and molecular function (MF). GO-BP has been extensively analyzed on a wide range of projects, returning 2,460,741 results as of 
February 2023 with the PubMed searching for ‘Biological process’. These projects have built models that reveal the multilevel reg-
ulatory mechanisms of biological processes in cells [10], suggesting that GO-BP has a potential in explaining the onset and progression 
of the diseases to some extent. Moreover, the disease could be caused by abnormal expression of genes that disturb the BP involved. 
Compounds could bind to target proteins to weaken these abnormalities, creating new possibilities for the treatment of diseases. 

Given the huge number of drug-like molecules, to discover new drugs in traditional forms is not only time-consuming but also 
expensive. With the emergence of various computational methods, there have been great potential opportunities to integrate existing 
resources to explore therapeutic drugs [11]. Drug discovery involves the extraction of compounds that act specifically and closely on 
target proteins, for which deep learning (DL) is one of such powerful artificial intelligence (AI) tools [12]. DL has built prediction 
models of protein-protein interaction (PPI), compound property, and drug-target interaction et al. DeepPurpose (DP), one of the deep 
learning algorithms, has been used in numerous studies in the field of drug research and development [13–15]. A study used this 
algorithm to unearth 11 drugs targeting ERBB2 that have potential in treating drug-resistant melanoma [11]. Other researchers have 
used the same bioinformatic approach to identify 14 potential drugs for keloids and hypertrophic scars [14]. However, PSD has not 
been fully explored in this area currently. 

Our study recognized GO functions and compounds based on immune-related risk genes of PSD. Furthermore, we constructed 
networks of PPI, GO terms, and gene-GO function, identifying nine key genes and important immune-related GO functions for PSD. 
Pleasantly surprised, signal transducer and activator of transcription (STAT) protein might be a pivot protein that mediated multiple 
pathways to induce PSD. We discovered some new PSD candidate compounds by calculating affinity scores (AS) between compounds 
and key proteins. Subsequently, we identified that the GO function might interact with three risk-related pathways regulated by two 
important potential compounds through key proteins. We proposed for the first time that the STAT protein is related to the mechanisms 
of PSD. It is also the first time that we performed DP analysis to explore the potential PSD drugs, possibly providing references for the 
mechanism and treatments of PSD. 

2. Materials and methods 

2.1. Text mining 

PubMed data for risk genes of PSD, published before September 1st, 2022, were manually mined in PubMed (https://pubmed.ncbi. 
nlm.nih.gov/). The search terms were “((“Depression” [Mesh]) and (“Stroke” [Mesh]) OR “post stroke depression” OR “post-stroke 
depression”), and we filtered the results for “English (language)". The criteria for collecting eligible genes: The RNA and protein 
expression levels of the risk genes vary significantly (P-value <0.05) in no less than 5 PSD patients, verified by PCR, ELISA, or other 
reliable experimental methods. 

Genecards (www.genecards.com) [16] is a comprehensive database that publicly provides human genetic information. OMIM 
(https://www.omim.org/) [17] is a database that focuses on the relationship between disease phenotypes and their pathogenic genes. 
Besides, the additional databases were also used to obtain PSD data. The ImmPort Portal database [18] shared resources related to 
immunology, which were used to annotate immune genes. 

2.2. Enrichment analysis 

Databases of Gene ontology (GO, www.geneontology.org), Kyoto Encyclopedia of Genes and Genomes (KEGG, www.genome.ad. 
jp/kegg/) and Disgenet (http://www.disgenet.org/) were applied for annotation with the clusterProfiler package [19] in R software, 
based on PSD risk genes. The adjusted P value of <0.05 was considered to be statistically significant. Further, we used R package 
“ggplot” [20] to visualized the annotated results. GO functions containing at least five PSD immune-related risk genes were extracted 
for the construction of the GO function network (GOFN). 

2.3. Protein-protein interaction (PPI) network 

We acquired PPI information from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database (https:// 
string-db.org/) and generated the network with Cytoscape software, which was a software platform for the visualization of com-
plex networks and the mining of data attributes. We uploaded risk genes of PSD to the STRING platform and took the “Homo sapiens” as 
the organism. We used the MCODE app as well as Cytohubba plug-in [21] to calculate the relevant parameters of the network. In our 
study, “Betweenness”, “Degree”, and “Maximal Clique Centrality (MCC)" were taken as important parameters for the identification of 
key nodes. 
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2.4. Cumulative hypergeometric distribution 

The cumulative hypergeometric test was performed to measure the correlations in the GO function network (GOFN) and the gene- 
GO function network (GGOFN). The risk genes of PSD in the network were immune genes, among which at least five were related with 
the GO function in the network. The p value was computed with the following formula: 

P=
∑x

i=0

(
K
i

)(
M − K
N − i

)

(
M
N

)

When evaluating the correlation of pairs between random GO functions, we assumed that the entire human genome had M genes; 
two GO functions had N genes and K genes, respectively; x represented the number of genes shared between functions. 

Similarly, to identify the correlations of pairs between GO functions and risk genes, we considered that human had M PSD-risk 
genes; the given GO function had K genes; the given gene had N interacting genes (the confidence score was seted as 0.9); and x 
genes existed in both the GO function and the interaction genes. 

2.5. Drug-gene interaction and compound-gene interaction 

The TCMSP database [22] (http://tcmspw.com/tcmsp.php), a pharmacological platform that provides the relationship between 
Chinese herbal medicine, target, and disease, was used to obtain the same compound components in herbs for the treatment of stroke 
and depression. The criteria for compound screening were as follows: (1) oral bioavailability (OB) ≥ 30%, (2) drug similarity (DL) ≥
0.18, (3) half-life (HL) ≥4 [23,24]. Ultimately, we extracted compounds that potentially target hub proteins. 

The Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM) database [25] is the first online platform 
designed for the study of molecular mechanisms of traditional Chinese medicine. We inquired about all compounds targeting risk genes 
of PSD from it and extracted compounds with validated or predictive score greater than 100 (targeting hub genes) and interaction 
scores greater than 30 with at least three risk proteins. 

We filtered potential drugs targeting risk genes of PSD by Interaction Score (IC) and Query Score (QC) from the DGIdb database 
[26] (http://dgidb.genome.wustl.edu/), providing information about the relationship between genes and their known or potential 
drugs. According to IC and QC, we extracted the top ten as the potential targeted drugs separately. In addition, we also determined the 
druggability of genes using DGIdb. 

2.6. DP 

We assessed the affinity between key proteins and their potential compounds using DP [13]. Based on the protein-compound 
interaction of the DAVIS, BindingDB, or KIBA databases, we selected 14 models for affinity calculation, consisting of a combination 
of five compound codes (CNN, MPNN, Morgan, Daylight, and Transformer) and two protein coding models (CNN and AAC). We 
obtained amino acid sequences of the selected targets from Uniprot [27] (http://www.uniprot.org/), which was a world-leading 
database of protein sequence and function information. The SMILES of each compound were retrieved from the PubChem database 
(https://pubchem.ncbi.nlm.nih.gov/), while drugs without SMILES structures were removed. Subsequently, we summarized the AS 
based on the amino acid sequence and the SMILES structure that inputted into the pretrained models. Finally, the potential compounds 
were filtered based on AS≥12.1 by KIBA dataset and AS≥7.0 by BindingDB or DAVIS datasets [11,14]. 

Fig. 1. Flow chart for PSD bioinformatics.  
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(caption on next page) 
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3. Result 

3.1. Identification of risk genes of human PSD 

A catalog of 71 PSD risk genes corresponding to 69 proteins was exported by text mining(Table S1). Nearly half of the risk genes 
were immune genes (35/71). The general operation procedure in this article is shown in Fig. 1. 

Based on the significant enrichment of these genes in PSD, it could be inferred that the genes we mined should be correct (Fig. 2A; 
Table S2). Furthermore, the enrichment results(Fig. 2; Tables S2,S3,S4) were also significant in terms of inflammation, which coin-
cided with the hypothesis of the inflammatory mechanism of PSD [28]. 

3.2. Construction of the PPI network 

The PPI network consisted of 68 nodes and 705 edges (Fig. 3). The circular module on the left contained the 25 most tightly 
connected genes obtained by Cytoscape’s MCODE plugin, among which 21 were immune genes. The Cytohubba plug-in selected the 
“MCC” method to obtain hub genes (TOP10), including INS, APOE, IL-10, ALB, IL-6, TNF, IL-1β, IGF1, LEP, and MMP9, all presenting 
in the left module. All of these genes belonged to immune genes. Therefore, we focused on the exploration of these genes and immune- 
related GO functions. 

3.3. Enrichment analysis of PSD-related GO functions 

GO analysis in BP showed that genes were significantly enriched in areas related to inflammation, such as regulation of the in-
flammatory response and leukocyte migration (Fig. 2B). The immune system of stroke survivors is often activated to produce more 
inflammatory cytokines, which may suppress neurotrophic factors in the brain and result in symptoms of depression [29]. Numerous 
studies have shown that the alteration of the immune response was the mechanism that promoted PSD [3,30–32], which allowed the 
immune-related GO function to potentially modulate the pathogenesis of PSD. 

362 GO-BP functions with no less than five immune-risk genes were identified. Based on the GO functions obtained above, we 
constructed a GOFN with 335 nodes and 6176 edges (Fig. 4A). The pairs of GO functions were significantly correlated (adjusted p <
0.01). 

As in the results of the topological analysis (Fig. 4B), the degree distribution of nodes in GOFN follows a power-law distribution (y 
= 24.254x− 0.631). Some GO functions had high connectivity. The GO function with higher degree had higher betweenness(Fig. 4C), 
which means that it was closely connected to other nodes in the network. Therefore, this kind of GO function was more important for 
the occurrence of PSD. Those correlated with less than other 100 GO functions were excluded from this study. We obtained a total of 26 

Fig. 2. Enrichment results. (A)Diseases with the most significant enrichment of risk genes. (B) The most statistically significant GO functions in PSD. 
(C) Top 10 risk gene enrichment pathways. 

Fig. 3. The PPI network. The circular nodes represent immune genes, while the square ones represent others. Similarly, nodes for hub genes are 
orange, while nodes for others are green. The betweenness centrality (BC) value of the nodes in each circle decreases clockwise. The size of the node 
is positively correlated with degree. The circle on the left is the tightest module in PPIN obtained by the MCODE plug-in. 
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GO functions that were most relevant to PSD. As shown (Fig. 4D), STAT related GO functions accounted for the highest proportion (5/ 
26), respectively, positive regulation of the receptor signaling pathway via STAT (GO:1,904,894), positive regulation of the receptor 
signaling pathway via JAK-STAT (GO:0046427), positive regulation of tyrosine phosphorylation of STAT protein (GO:0042531), 
regulation of tyrosine phosphorylation of STAT protein (GO:0042509) and tyrosine phosphorylation of STAT protein (GO:0007260). 
They contained eight risk genes, occupying more than half of the hub genes, namely TNF, IL-6, LEP, IGF1, IL-1β and IL-10. Experiments 
have reported that activation of the JAK/STAT pathway induced hypoxic neuronal apoptosis after ischemic stroke, while alterations in 
JAK3 and STAT1 expression levels were associated with the occurrence of PSD [33,34]. 

3.4. Construction and analysis of GGOFN 

To understand the immune-risk genes most closely associated with the above 26 GO functions, we identified 355 pairs of gene and 
GO function (value of adjusted p < 0.01) and established GGOFN (Fig. 5A). We obtained 27 significantly associated risk genes, 
including ADIPOQ, ALB, BDNF, CCR5, CREB1, CRP, FGA, GDF-15, IFNG, IGF1, IGF1R, IL-10, IL-17A, IL-18, IL-1β, IL-33, IL-4, IL-6, INS, 

Fig. 4. Relationship among GO-BPs. (A) PSD Immune-Related GO Function Network (GOFN). The triangles represent the GO functions; the larger 
the node is, the greater the degree would be; There is a significant correlation between two GO functions at both ends of the line. (B) Degree 
distribution for all nodes in the GOFN. (C) Correlation between betweenness centrality (BC) and degree. (D) Classification of GO terms with 
neighbors greater than 100. The area ratio of each color represents the proportion of the relevant GO terms. 
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LEP, MMP9, NPY, SAA1, SERPINA3, TAC1, TNF, VEGFA. Intersecting the above genes with the hub genes filtered in the PPI network, 
we obtained the following 9 genes: ALB, IL-6, TNF, IL-1β, INS, MMP9, IL-10, LEP, and IGF1. The nine genes which were considered as 
key and druggable genes, were used to explore potential compounds and drugs. 

We analyzed the degree distribution of the genes in GGOFN (Fig. 5C). As IL-6, IL-1β, IL-10 and TNF were significantly correlated 
with almost all GO terms. The nodes with higher degree had higher betweenness(Fig. 5B), which means that these genes were closely 
connected to GO functions in this network. Eighteen immune-related risk genes, including six key genes, were significantly correlated 
with STAT-associated GO functions (Fig. 5D). Therefore, the compounds held promise for the treatment of PSD by targeting these 
genes. 

3.5. Acquisition of potential compounds or drugs 

In TCMSP, 24 compounds targeted on selected proteins met the requirements. We screened 5 predicted compounds and 41 vali-
dated compounds targeting key proteins in BATMAN-TCM. From DGIdb, we obtained 20 drugs that met the criteria, of which only two 
had a SMILES structure. 

Fig. 5. Associations between GO-BPs and genes. (A) Gene - GO function network (GGOFN). The orange oval represents the gene and those in the 
first row are key genes. The higher the degree is, the fuller the color would be. The blue rectangle represents the GO function. There is a significant 
correlation between genes and GO function at both ends of the line. (B) Fitting curve of gene degree and betweenness centrality. (C) Degree dis-
tribution of genes. (D) The dissection between STAT-associated GO functions and immune-related risk genes. Orange ovals represent genes, and 
darker ones represent key genes. The blue rectangle represents the GO function. 

T. Zhao et al.                                                                                                                                                                                                           



Heliyon 9 (2023) e18622

8

Table 1 
Total potential compounds targeting key proteins.  

Target ID Compound/Drug Database 

TNF 7124 luteolin TCMSP 
TNF 7124 piperine TCMSP 
TNF 7124 fisetin TCMSP 
TNF 7124 matrine TCMSP 
TNF 7124 paeoniflorin TCMSP 
TNF 7124 wogonin TCMSP 
TNF 7124 sophocarpine TCMSP 
TNF 7124 sophoridine TCMSP 
TNF 7124 quercetin TCMSP 
TNF 7124 astilbin TCMSP 
TNF 7124 dl-praeruptorin a TCMSP 
TNF 7124 kaempferol TCMSP 
TNF 7124 cryptotanshinone TCMSP 
TNF 7124 triptolide TCMSP 
TNF 7124 aloe-emodin TCMSP 
TNF 7124 rutaecarpine TCMSP 
TNF 7124 isovitexin TCMSP 
TNF 7124 irisolidone TCMSP 
TNF 7124 ginsenoside rh2 TCMSP 
TNF 7124 [2-(3,4-Dihydroxyphenyl)-2-hydroxyethyl]-methylazanium BATMAN(no 

evidence) 
TNF 7124 Racephedrine BATMAN(no 

evidence) 
TNF 7124 Norepinephrine BATMAN(no 

evidence) 
TNF 7124 (1R)-2-(methylamino)-1-phenylpropan-1-ol; hydrochloride BATMAN(no 

evidence) 
TNF 7124 (− )-Synephrine BATMAN(no 

evidence) 
TNF 7124 Chloroquine BATMAN 

(evidence) 
TNF 7124 Clenbuterol BATMAN 

(evidence) 
TNF 7124 Amrinone BATMAN 

(evidence) 
TNF 7124 Epinephrine BATMAN 

(evidence) 
TNF 7124 Pseudoephedrine BATMAN 

(evidence) 
TNF 7124 Ethyl pyruvate BATMAN 

(evidence) 
TNF 7124 N-[4-oxo-2-(2H-tetrazol-5-yl)chromen-7-yl]-4-(4-phenylbutoxy)benzamide BATMAN 

(evidence) 
TNF 7124 D-Glucosamine BATMAN 

(evidence) 
TNF 7124 Thalidomide BATMAN 

(evidence) 
TNF 7124 Lenalidomide BATMAN 

(evidence) 
TNF 7124 Nafamostat BATMAN 

(evidence) 
TNF 7124 Pentoxifylline BATMAN 

(evidence) 
TNF 7124 Urapidil BATMAN 

(evidence) 
TNF 7124 Pirfenidone BATMAN 

(evidence) 
TNF 7124 Celastrol BATMAN 

(evidence) 
TNF 7124 Delmitide BATMAN 

(evidence) 
TNF 7124 trans-3,4-Dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide BATMAN 

(evidence) 
TNF 7124 3-Hydroxypyridine-2-carbonyloxy-bis(3-chloro-4-methylphenyl)borane BATMAN 

(evidence) 
INS 3630 oleic acid TCMSP 
INS 3630 Norepinephrine BATMAN(no 

evidence) 

(continued on next page) 
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Table 1 (continued ) 

Target ID Compound/Drug Database 

INS 3630 m-Cresol BATMAN 
(evidence) 

INS 3630 Myristic acid BATMAN 
(evidence) 

INS 3630 3-Pyridinecarboximidamide, N-(2-hydroxy-3-(1-piperidinyl)propoxy)-, hydrochloride (1:2) BATMAN 
(evidence) 

INS 3630 INULIN DGIdb 
INS 3630 INSULIN GLARGINE DGIdb 
Il-6 3569 luteolin TCMSP 
Il-6 3569 piperine TCMSP 
Il-6 3569 fisetin TCMSP 
IL6 3569 matrine TCMSP 
Il-6 3569 paeoniflorin TCMSP 
Il-6 3569 wogonin TCMSP 
Il-6 3569 sophocarpine TCMSP 
Il-6 3569 sophoridine TCMSP 
Il-6 3569 oroxylin a TCMSP 
Il-6 3569 quercetin TCMSP 
Il-6 3569 Ibudilast TCMSP 
ALB 213 linolenic acid TCMSP 
ALB 213 beta-carotene TCMSP 
ALB 213 Erythromycin BATMAN 

(evidence) 
ALB 213 Vancomycin BATMAN 

(evidence) 
ALB 213 Ebselen BATMAN 

(evidence) 
ALB 213 Iodipamide BATMAN 

(evidence) 
ALB 213 Irium BATMAN 

(evidence) 
ALB 213 Multihance BATMAN 

(evidence) 
ALB 213 CID 50934699 BATMAN 

(evidence) 
Il-10 3586 luteolin TCMSP 
Il-10 3586 quercetin TCMSP 
Il-10 3586 astilbin TCMSP 
Il-10 3586 sesamin TCMSP 
MMP9 4318 Captopril BATMAN 

(evidence) 
MMP9 4318 Marimastat BATMAN 

(evidence) 
MMP9 4318 D-Glucosamine BATMAN 

(evidence) 
MMP9 4318 L-tert-Leucine Methylamide BATMAN 

(evidence) 
MMP9 4318 2-{[Formyl(hydroxy)amino]methyl}-4-methylpentanoic acid BATMAN 

(evidence) 
MMP9 4318 5-(4-Phenoxyphenyl)-5-(4-Pyrimidin-2-Ylpiperazin-1-Yl)pyrimidine-2,4,6(2 h,3 h)-Trione BATMAN 

(evidence) 
MMP9 4318 (2r)-2-Amino-3,3,3-Trifluoro-N-Hydroxy-2-{[(4-Phenoxyphenyl)sulfonyl]methyl}propanamide BATMAN 

(evidence) 
MMP9 4318 (3r)-4,4-Difluoro-3-[(4-Methoxyphenyl)sulfonyl]butanoic Acid BATMAN 

(evidence) 
IGF1 3479 dodecyl-dimethyl-(3-sulfopropyl)azanium BATMAN 

(evidence) 
IGF1 3479 (2S,3S,4R,5R)-N-[3-[[(4R)-4-[(3S,5S,8R,9S,10S,12R,13R,14S,17S)-3,12-dihydroxy-10,13-dimethyl- 

2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentanoyl]-[3-[[(2S,3S,4R,5R)- 
2,3,4,5,6-pentahydroxyhexanoyl]amino]propyl]amino]propyl]-2,3,4,5,6-pentahydroxyhexanamide 

BATMAN 
(evidence) 

Il-1β 3553 Ethyl (8S,9S,10R,11S,13S,14S)-17-(2,2-dichloroacetyl)oxy-11-hydroxy-10,13-dimethyl-3-oxo-7,8,9,11,12,14,15,16- 
octahydro-6H-cyclopenta[a]phenanthrene-17-carboxylate 

BATMAN 
(evidence) 

Il-1β 3553 Gallium nitrate BATMAN 
(evidence) 

Il-1β 3553 2-methyl-1-(2-propan-2-ylpyrazolo [1,5-a]pyridin-3-yl)propan-1-one BATMAN 
(evidence) 

Il-1β 3553 Celastrol BATMAN 
(evidence) 

Il-1β 3553 beta-D-Glucosamine BATMAN 
(evidence)  
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3.6. Identification of candidate compounds or drugs using DP analysis 

The AS list calculated by the pre-trained model in DP represented the binding probability between the compound and the target 
(Table 1). To identify the high-affinity compounds, the threshold was set to 7.0 for BindingDB or DAVIS and 12.1 for KIBA. We 
screened out 35 compounds and 2 drugs with verification value (Fig. 6). According to the results(Table S5), luteolin might closely 
interact with the most key proteins (TNF, IL-6, and IL-10). The AS of triptolide and TNF based on three databases were high, suggesting 
that these two compounds were highly reliable in the treatment of PSD. 

3.7. Mechanism dissection of PSD candidate compounds and relevant GO functions in pathways 

Finally, to investigate the potential mechanism of these two most promising compounds and risk GO functions, we further analyzed 
the potential association among candidate compounds, GO functions, and KEGG pathways enriched with risk genes. Pathways of 
cytokine-cytokine receptor interaction (hsa04060), PI3K-Akt signaling pathway (hsa04151) and MAPK signaling pathway (hsa04010) 
ranked first, second, and fourth in the results of KEGG enrichment (Fig. 2C). Interestingly, these three pathways had close crosstalk 
with the JAK-STAT signaling pathway. Therefore, STAT protein had the ability to participate in the PSD mechanism. In addition, the 
other three pathways and the JAK-STAT signaling pathway were regulated by many same genes, and there were common key genes in 
all four pathways (Fig. 7). Therefore, the drug candidates would also be similar. These results demonstrated the importance of GO 
terms in PSD mechanisms. Simultaneously, this study would provide a new perspective to clarify the pathogenesis and therapy of PSD. 

4. Discussion 

This study evaluated the underlying mechanism of GO functions in PSD immunity and repurposed existing compounds as novel 
options to mitigate PSD for the first time. We carefully collected candidate differentially expressed genes of PSD and focused on 
enriching immune-related risk GO functions of PSD. We constructed GOFN and found 26 GO functions closely related to the immune 
mechanism of PSD, identifying a vital protein, STAT. We also built PPIN and GGOFN, screening key genes that may act on critical GO 
functions. Furthermore, we focused on selecting the most potential compounds using DP to analyze drug-target interactions (DTI). 
Finally, we investigate the underlying mechanism between compounds and GO functions, revealing the potential therapeutic axis 
“compound-risk proteins - STAT pathway". 

Many scholars recognized that the excessive immune response was an important mechanism for inducing PSD. The change in the 
level of inflammatory cytokines was one of the main hypotheses on the mechanism of PSD, and there was an extensive cross-talk 
relationship with other hypotheses [29]. The 71 PSD risk genes we collected contained 35 immune genes, and the PPIN-extracted 
hub genes all belonged to the immune category, echoing the significance of the immune mechanism of PSD. Studies have shown 
that there was a positive correlation between serum MMP9 level and PSD in the acute stage of cerebral ischemia [35]. MMP9 over-
expression promoted the degradation of the extracellular basal layer, thereby destroying the blood-brain barrier, and inducing the 
production of inflammatory cytokines (such as IL-6, CRP), finally resulting in neuronal apoptosis [35,36]. Acute stroke rapidly acti-
vated the general immune system, accompanied by a rapid increase in the expression of pro-inflammatory cytokines, such as TNF, IL-6, 
IL-1, and IL-10, which was closely associated with the dysfunctioned hypothalamic pituitary adrenal (HPA) axis and norepinephric 
system [32,37]. It accelerated the decline of the serotonin level in related regions of the brain, thereby promoting the process of 
depression [29], which were consistent with the findings of our research. 

Fig. 6. The interaction of candidate compounds and target proteins. The blue square represents the key protein. The weak transparency of the 
proteins indicates a large degree. The circle represents compound. The pink and purple parts come from TCMSP, and DGIdb, respectively; while the 
green and yellow parts represent the verified and predicted compounds from BATMAN-TCM, respectively. The width of the line indicates the 
number of databases (DAVIS, BindingDB, and KIBA) that the AS has exceeded the threshold. The size of the circle represents the number of 
the target. 
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The GOFN showed that immune-related GO functions were significantly correlated with each other. On the basis of the topological 
properties of it, we were concerned about the potentially significant value of STAT in the PSD process. The STAT protein family consists 
of complex components. The phosphorylation of STAT protein is involved in the pathogenesis of inflammation and autoimmune 
diseases, and it is indispensable in the signal transduction of the interleukin family, such as IL-6 and IL-10 [38]. Flavonoids have been 
shown to play an anti-neuroinflammatory role by inhibiting the JAK/STAT signal pathway [39]. Furthermore, STAT expression in 
brain tissue increased after ischemia, and activated STAT phosphorylation led to overexpression of the p-STAT protein, which 
aggravated brain edema and neurological disorder [40]. Through deepening the analysis of STAT-related GO functions, we found that 
STAT interacted with other GO functions through some PSD key genes. Therefore, we speculated that the STAT protein was one of the 
most important proteins in the pathogenesis of PSD. 

The JAK-STAT signaling pathway had close crosstalk with the cytokine-cytokine receptor interaction, the PI3K-Akt signaling 
pathway and the MAPK signaling pathway, which were top pathways in the results of KEGG enrichment. Cytokines were almost 
universally recognized as important components of neuroimmunology and neuroinflammatory responses [41,42]. Both bioinformatics 
and experimental studies have shown that activation of the PI3K/Akt signaling pathway tended to induce PSD [43]. Activation of the 
PI3K/Akt pathway could serve as a biomarker for PSD, which could protect nerves during cerebral ischemia/perfusion by inducing 
proliferation and differentiation of neural stem cells [40,44]. Various compounds, such as resveratrol, kaempferol (KPF), and NYT, 
have been shown to play a neuroprotective role by regulating the PI3K/Akt related pathways to reduce inflammatory factors and 
weaken microglial polarization [40,45,46]. MAPK activation could affect pathophysiological pathways such as monoamine neuro-
transmission, which was one of the four major mechanisms hypotheses of PSD [47]. Furthermore, the MAPK pathway was involved in 
biological processes such as oxidative stress, neuronal apoptosis, and regulation of oligodendrocyte survival and differentiation 
[47–49]. Research showed that PKM2 improves post-stroke depression behavior by activating the VEGF-mediated MAPK/ERK 
pathway [48]. Furthermore, a previous study has identified that hsa04151 and hsa04010 may be deeply involved in the pathogenesis 
of PSD [50]. On the basis of the above literature, STAT was probably the key protein that mediated the pathway to induce PSD. We 
extrapolated that the mechanism with the most potential impact was risk proteins→ STAT → pathways →PSD. 

Small-molecule drugs have the following characteristics: easy to take orally, high stability, adjustable half-life, and easy pene-
tration through the cell membrane into the desired tissue [51]. These characteristics make it a potential market in the pharmaceutical 
field. By analyzing the interaction between compounds and targets, we have obtained 37 candidate compounds, of which luteolin and 
triptolide are the most valuable. Luteolin could be found in many vegetables, fruits and herbs, with plenty of biological properties, such 
as inhibiting neuroinflammation, antioxidants, and nerve protection [52]. Luteolin has been reported to inhibit the production of 
pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and inflammation-related proteins (STAT3) in cells [53]. Therefore, the potential 
mechanism of luteolin in the treatment of PSD was likely to be luteolin→ IL-6/IL-10/TNF→STAT→hsa04060/hsa04151/hsa04010. 
The application of triptolide in neurodegenerative diseases, cerebral ischemia, and other brain diseases reflected the effects of 
inhibiting the production of inflammatory cytokines (TNF-a, etc.) and inhibiting the activation of the MAPK/NF-kB pathway to protect 
nerves [54,55]. More importantly, triptolide had the characteristics of high lipophilicity and small molecular weight, making it easy to 
cross the blood-brain barrier and treat encephalopathy [56]. Therefore, we inferred the potential mechanism of triptolide was as 
follow: triptolide→ TNF→ STAT →hsa04060/hsa04151/hsa04010→ PSD. 

Fig. 7. Relationship among compounds, GO functions, and pathways. (A) JAK-STAT signaling pathway. (B) Analysis of mechanisms between latent 
compounds and GO functions in pathways. The pink rectangle represents the STAT-related GO functions/pathway; the green, blue, purple, and 
orange rectangle represents hsa04060, hsa04010, hsa04151 and the compound, respectively. The genes marked in the figure are key genes of PSD 
that make up GO functions or pathways. 
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5. Conclusion 

In this study, 71 risk genes of PSD were sorted out based on text mining. We constructed the GOFN and discovered that STAT- 
associated GO-BP seemed to play an important role in the regulation of risk-related pathways of PSD. We also identified key genes 
by constructing PPI and GGOFN, screening out 37 potential compounds for targeted therapy using DP. We have deeply dissected the 
regulatory mechanism of two potential compounds that are most significant for the targeted treatment of PSD through the risk-related 
pathway. These results allowed us to provide a reference for the exploration of novel mechanisms and therapies of PSD. Certainly, 
more confirmatory experiments are also indispensable in future. 
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