

Citation: Balaouras G, Eusebi P, Kostoulas P (2022) Systematic review and meta-analysis of the effect of ABO blood group on the risk of SARS-CoV-2 infection. PLoS ONE 17(7): e0271451. https://doi.org/10.1371/journal.pone.0271451

Editor: Kovy Arteaga-Livias, Hermilio Valdizán National University Academic Professional School of Medicine: Universidad Nacional Hermilio Valdizan Escuela Academico Profesional de Medicina Humana, PERU

Received: August 26, 2021

Accepted: June 30, 2022

Published: July 28, 2022

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: https://doi.org/10.1371/journal.pone.0271451

Copyright: © 2022 Balaouras et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All data appear in Table 2.

RESEARCH ARTICLE

Systematic review and meta-analysis of the effect of ABO blood group on the risk of SARS-CoV-2 infection

George Balaouras¹, Paolo Eusebi₀², Polychronis Kostoulas₀¹*

1 Faculty of Public Health, University of Thessaly, Volos, Greece, 2 Department of Medicine and Surgery, University of Perugia, Perugia, Italy

* pkost@uth.gr

Abstract

We have been experiencing a global pandemic with baleful consequences for mankind, since the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first identified in Wuhan of China, in December 2019. So far, several potential risk factors for SARS-CoV-2 infection have been identified. Among them, the role of ABO blood group polymorphisms has been studied with results that are still unclear. The aim of this study was to collect and meta-analyze available studies on the relationship between SARS-CoV-2 infection and different blood groups, as well as Rhesus state. We performed a systematic search on PubMed/MEDLINE and Scopus databases for published articles and preprints. Twenty-two studies, after the removal of duplicates, met the inclusion criteria for meta-analysis with ten of them also including information on Rhesus factor. The odds ratios (OR) and 95% confidence intervals (CI) were calculated for the extracted data. Random-effects models were used to obtain the overall pooled ORs. Publication bias and sensitivity analysis were also performed. Our results indicate that blood groups A, B and AB have a higher risk for COVID-19 infection compared to blood group O, which appears to have a protective effect: (i) A group vs O (OR = 1.29, 95% Confidence Interval: 1.15 to 1.44), (ii) B vs O (OR = 1.15, 95% CI 1.06 to 1.25), and (iii) AB vs. O (OR = 1.32, 95% CI 1.10 to 1.57). An association between Rhesus state and COVID-19 infection could not be established (Rh+ vs Rh- OR = 0.97, 95% CI 0.83 to 1.13).

Introduction

Coronaviruses (COVs) are enveloped viruses with a single positive-stranded RNA genome. They belong to the subfamily Orthocoronavirinae under the family Coronaviridae and are classified into four genera: Alphacoronaviruses (α), Betacoronaviruses (β), Gammacoronaviruses (γ) and Deltacoronaviruses (δ). The viral genome normally encodes four structural proteins, spike (S), envelope (E), membrane (M), and nucleocapsid (N) [1]. The term *coronavirus* refers to the appearance of CoV visions, when observed under electron microscopy, in which spike projections from the virus membrane, give the semblance of a crown, or corona in Latin [2]. To date, seven human CoVs (HCoVs) are known. Among them, HCoV-229E and **Funding:** This work has been funded under the H2020 project: "Unravelling Data for Rapid Evidence-Based Response to COVID-19". I hereby declare that the funders had had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

HCoV-NL63 are alpha-CoVs. The other five beta-CoVs include HCoV-OC43, HCoV-HKU1, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [3]. In December 2019, a human outbreak of pneumonia, later named coronavirus disease (COVID-19), began spreading across the planet, infecting millions. The causative agent of COVID-19 was quickly identified as a novel coronavirus, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Although close evolutionary relationships to bat CoVs suggest a bat origin for SARS-CoV-2, our understanding is notably limited by the scarcity of available sequenced CoV genome [4]. As a novel beta coronavirus, SARS-CoV-2 shares 79% genome sequence identity with SARS-CoV and 50% with MERS-CoV. Its genome organization is shared with other beta coronaviruss [5].

The spike protein S appears to be critical for cellular entry because it guides the virus to attach to the host cell. The receptor-binding domain (RBD) of the spike protein S binds to Angiotensin-Converting Enzyme 2 (ACE2) to initiate cellular entry [6]. The SARS-CoV-2 virus typically causes respiratory and gastrointestinal sickness. It can be transmitted through aerosols and direct or indirect contact, as well as during medical cases and laboratory sample handling. The disease is characterized by symptoms such as high fever, chills, cough, breathing difficulty, diarrhea, myalgia, fatigue and may occasionally lead to complications like pneumonia, severe acute respiratory syndrome (SARS) and eventually death [7].

After the ABO blood group system was found by Karl Landsteiner in 1901, the search for the relationship between blood groups and various diseases has continued uninterrupted [8]. Recently, several studies have reported an association between blood group and SARS-CoV-2 infection. However, results are conflicting, perhaps due to the potential effect of multiple confounding effects, and controversy remains with respect to the role of blood type on COVID-19 infection [9]. We performed a meta-analysis to assess the association between ABO blood groups, Rhesus state and COVID-19 infection.

Materials and methods

Search strategy

A systematic online search for published literature was carried out in PubMed/MEDLINE and Scopus databases, including unpublished articles, with the MESH (medical subject heading) terms "ABO blood groups" and "COVID-19". In order to expand our search scale, we also conducted a full-text search with the relevant terms ("SARS-CoV-2 infection", "2019-nCoV infection", "novel coronavirus infection" and "ABO polymorphisms"). **The searching time period was until March 7th 2021** and we limited the search language to English, with no restrictions on country or publication state.

Study selection

We included the studies that fulfilled the following inclusion criteria: i) studies that reported an association between COVID-19 infection and ABO blood groups and/or Rhesus state; ii) case-control and cohort studies; iii) provision of original data. Excluded studies included: (i) reviews, clinical guidelines, and expert consensus; (ii) animal or in vitro cell studies; (iii) studies for which the full text was not available; (iv) studies with insufficient data.

Data extraction

Data extraction included: first author's name, publication year, title and the link of the study, case definition, the distribution numbers of participants for each blood group (along with

Rhesus state, when there was a record) and for both, SARS-CoV-2 infected and uninfected subjects. For each study, a numerical ID was used. Infection was confirmed by Polymerase Chain Reaction (PCR) and/or clinical diagnosis, although for several studies the confirmation method for SARS-CoV-2 infection was not specified. Some studies included more than one group of controls, along with the corresponding population of cases, while other studies reported more than one group of controls and cases. We included in the analysis all the comparisons regarding different subgroups of controls and cases, in order to avoid any overlapping.

Statistical analysis

For each study, we extracted the cross-classified frequencies between infection state and blood group. We used logistic regression for deriving Odds Ratios (ORs) and their asymptotic standard errors, after adjusting for multiplicity using the Benjamin-Hochberg procedure [10]. We assessed heterogeneity using the I-squared statistic. Publication bias was assessed by visual inspection of the funnel plots and further validated by Egger's test [11]. Pooled ORs estimates and 95% confidence intervals (CIs) were obtained by performing meta-analysis using the inverse variance method. Due to the amount of heterogeneity a random-effects model has been used for the ABO gene, by applying the Hartung-Knapp-Sidik-Jonkman method [12] for τ^2 . The 95% prediction intervals (PIs) were also computed. The PIs present the heterogeneity in the same metric as the original effect size measure, illustrating which range of true effects can be expected in future settings [13]. We explored the robustness of our meta-analysis results using the leave-one-out method.

Software

All models were run in R v4.0 using the meta package [14].

Results

Literature search

The literature search of the PubMed/MEDLINE and Scopus databases resulted in 589 potentially relevant studies (PubMed records = 389 and Scopus records = 200). The 351 of them were removed because they were duplicates. According to the inclusion criteria, we excluded the 216 irrelevant studies by screening abstract and title. Eventually, a total of 22 articles [15– 36] were included in this systematic review and meta-analysis (Fig 1).

Study characteristics

Twenty-two studies were identified, meeting our inclusion criteria for meta-analysis, with the majority of them being case-control studies. All studies were published in 2020, except for five studies that were published in 2021. Half of the studies were carried out in Europe and North America while the other half in Asia and Africa. A total of 84,659,546 subjects were included in this meta-analysis, with 21,462 COVID-19 infected subjects and 84,638,084 uninfected subjects. Among them, 147,302 subjects were positive for Rhesus state and 20,313 negative. Most of the participants were adult males, forty to seventy years old. In most of the studies, COVID-19 diagnosis was confirmed by a PCR test, using nasal or pharyngeal swab specimens. The main characteristics of the studies are listed in Table 1.

PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only

*Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the total number across all databases/registers).

**If automation tools were used, indicate how many records were excluded by a human and how many were excluded by automation tools.

Fig 1. The PRISMA flow-chart.

https://doi.org/10.1371/journal.pone.0271451.g001

Characteristics of the included studies

Association between blood groups and COVID-19 infection. Meta-analysis for the ABO group (Table 2 and Figs 2–7), revealed increased odds of COVID-19 infection in the (i) A group vs O (OR = 1.29, 95% Confidence Interval: 1.15 to 1.44), (ii) B vs O (OR = 1.15, 95% CI 1.06 to 1.25), and (iii) AB vs. O (OR = 1.32, 95% CI 1.10 to 1.57). Prediction intervals include the reference value of 1 for the OR in all pairwise comparisons. The visual inspection of the funnel plots (Fig 8) and the results of Egger's test showed some evidence of publication bias for the comparison between of A vs. O (p = 0.013) and A vs. B (p = 0.047). Sensitivity analysis by the leave-one-out method provided similar estimates (Supplementary Files).

Association between Rhesus status and COVID-19 infection. Meta-analysis of the association between Rhesus state and COVID-19 infection (Figs 9 and 10) in the 10 studies that included information on Rhesus, did not provide evidence of association with the COVID-19 infection (Rh+ vs Rh- OR = 0.97, 95% CI 0.83 to 1.13). The 95% PI includes the reference value of 1 for the OR in all pairwise comparisons. The leave-one-out sensitivity analysis provided similar estimates (Supplementary Files). Visual inspection of the funnel plot (Fig 5) and the results of Egger's test (p = 0.618) showed no evidence of publication bias.

Table 1. The main characteristics of the studie

Study Year	Country	Study Design	Sample Size (case/ control)	Rhesus Status (positive/ negative)	Age. years	Male% (Case/ Control)	Patients	Controls
Boudin et al, 2020	France	Retrospective Cohort	1263/406	1439/230	Median Age (IQR): 28(23– 36)/27(23–33)	87/87	Patients with COVID-19 confirmed by RT-PCR and clinical symptoms suggestive to covid-19	Tested negative for COVID-19 or no clinical symptoms
Fan et al. 2020	China	Retrospective Case-Control	105/103	ND	Mean Age ±SD: (56.8 ±18.3)/(54.0 ±15.0)	52.4/54.4	Patients with COVID-19 confirmed by RT-PCR and clinically diagnostic cases	Tested negative for COVID-19 or no clinical symptoms
Abdollahi et al. 2020	Iran	Cross-Sectional	397/500	802/95	Mean Age (SD): 58.81 (15.4)/48.53 (17.9)	63.5/46.2	Patients with COVID-19 confirmed by RT-PCR	Healthy population
Rahim et al. 2021	Pakistan	Cross-Sectional	1935/1935	ND	Mean Age ±SD: (39.73 ±15.26)/(32.36 ±8.65)	68.6/67.7	Patients with COVID-19 confirmed by RT-PCR	Healthy blood donors
Bhandari et al. 2020	USA	Retrospective Case-Control	825/396	1160/61	Mean Age ±SD: (57.64 ±18.17)/(54.21 ±20.99)	61/44	Patients with COVID-19 confirmed by RT-PCR	Patients who were hospitalized without COVID-19
Barnkob et al. 2020	Denmark	Retrospective Cohort	7422/ 466232 7422/ 2204742	ND	Median Age (IQR): 52 (40– 67)/50 (36–64)	32.9/32	Patients with COVID-19 confirmed by RT-PCR	Tested negative for COVID-19/ Healthy population
Kibler et al. 2020	France	Retrospective Cohort	22/680	352/350	Mean Age ±SD: (82±8.4)/ (82±6.9)	31.8/45	Patients with COVID-19 confirmed by RT-PCR and typical symptoms and characteristic imaging findings on chest computed tomography (CT)	Patients who were hospitalized without COVID-19
Muniz-Diaz et al. 2021	Spain	Retrospective Cohort	854/75870 965/52584	ND	Median Age (IQR): 45.0 (36.0-53.0)/ 45.0 (32.0- 53.0)	39.5/51.5 59.07/ 49.85	COVID-19 blood donors confirmed by RT-PCR /transfused patients with COVID-19	Healthy blood donors/Patients transfused without COVID-19
Valenti et al. 2020	Italy	Case-Control	505/890 505/18097	ND	Median Age (IQR): 69.0 (59.0–77.0)/ 72.1 (58.2– 82.5)	ND	COVID-19 patients.SARS-CoV-2 viral RNA polymerase-chain- reaction (PCR) test from nasopharyngeal swabs or other relevant biologic fluids	Healthy blood donors/transfused patients
El-Shitany et al. 2021	Saudi Arabia and Egypt	Retrospective Cross-Sectional	726/707	1185/248	ND	15.2/16.5	COVID-19 recovered patients. confirmed by RT-PCR and biochemical and clinical symptoms	Healthy population
Khalil et al. 2020	Lebanon	Retrospective Case-Control	146/6479	ND	Mean Age ±SD. (IQR): (41.9±18.52). (28–57) CO	66.4 CO	Patients with COVID-19 confirmed by RT-PCR	Patients who were hospitalized without COVID-19
Wu et al. 2020	China	Retrospective Case-Control	187/1991	ND	≥40: 63.1% CO	51.9 CO	Electronic medical records of patients with COVID-19	Patients who were hospitalized without COVID-19
Gamal et al. 2021	Italy	Retrospective Case-Control	1600/27715	25206/4104	ND	ND	Patients with COVID-19 confirmed by RT-PCR	Healthy blood donors
Franchini et al. 2021	Italy	Case-Control	447/16911	ND	Mean Age ±SD: (477 ±121)/(471 ±143)	86.1/61.0	Blood donors clinically recovered from COVID-19 (SARS-CoV-2 RT-PCR nasal swabs and clinically)	Healthy blood donors

(Continued)

Study Year	Country	Study Design	Sample Size (case/ control)	Rhesus Status (positive/ negative)	Age. years	Male% (Case/ Control)	Patients	Controls
Chegni et al. 2020	Iran	Case-Control	76/ 80982137	ND	>59: 53.2% CO	77.7 CO	COVID-19 patients. confirmation method was not specified	Healthy population
Zalba- Marcos et al. 2020	Spain	Retrospective Cohort	225/182384	ND	Mean Age (SD) of 44% 70.1 (15.1) CO	64 CO	Patients with COVID-19 confirmed by RT-PCR	Healthy population
Dzik et al. 2020	USA	Case-Control	957/5840	ND	ND	ND	Patients with COVID-19 confirmed by RT-PCR	Patients who were hospitalized without COVID-19
Taha et al. 2020	Sudan	Case-Control	557/1000	1422/135	(26–35): 41.8% CO	42 CO	Patients with COVID-19 confirmed by RT-PCR	Healthy population
Solmaz et al. 2021	Turkey	Cross-Sectional	1667/ 127091	113868/ 14980	ND	ND	Patients with COVID-19 confirmed by RT-PCR	Healthy population
Ad'hiah et al. 2020	Iraq	Case-Control	300/595	ND	Mean Age ±SD: (49.7 ±12.3/29.3 ±6.9)	59.7/49.7	Patients with COVID-19 confirmed by RT-PCR	Healthy blood donors
Hoiland et al. 2020	Canada	Retrospective Cohort	95/398671 95/62246	ND	Median Age (IQR) of 60%: 66 (58–73) CO	64.2 CO	Patients with COVID-19 confirmed by RT-PCR	Healthy blood donors
Göker et al. 2020 [15]	Turkey	Retrospective Case-Control	186/1882	1868/200	Median Age (IQR): 42 (19– 92) CO	53.8 CO	Patients with COVID-19 confirmed by RT-PCR	Healthy blood donors

Table 1. (Continued)

https://doi.org/10.1371/journal.pone.0271451.t001

Discussion

The aim of the study was to assess the relationship between COVID-19 infection and different blood groups, as well as Rhesus state, using a meta-analysis method. Twenty-two studies were selected for blood type and ten for the Rhesus factor. Our results revealed that the blood groups A, B and AB are associated with an increase in the risk of COVID-19 infection in comparison with the O blood group, which seems to be protective. A mild publication bias was observed for the A and O blood group pair, through the visual inspection of the funnel plots and the results of Egger's test. Further, moderate to substantial heterogeneity, has been observed for the blood groups A and AB in comparison with the O blood group. Blood group B was characterized by the absence of heterogeneity.

Although the mechanisms that can explain the observed data have not yet been clarified, some assumptions can be made. The main one assumes that the anti-A and anti-B natural anti-bodies being produced in individuals with blood group O could potentially block viral

Blood groups / Rhesus status	Comparison	OR	95% CI	95% PI	I2	95% CI
ABO	A—AB	0.98	(082 to 117)	(048 to 198)	0.25	(0% to 56%)
	A—B	1.1	(098 to 123)	(067 to 179)	0.26	(0% to 56%)
	A—O	1.29	(115 to 144)	(079 to 21)	0.54	(25% to 71%)
	AB—B	1.11	(096 to 127)	(066 to 186)	0.03	(0% to 48%)
	AB—O	1.32	(110 to 157)	(067 to 259)	0.41	(2% to 65%)
	B-O	1.15	(106 to 125)	(087 to 153)	0	(0% to 38%)
Rhesus	Rh+ vs. Rh-	0.97	(083 to 113)	(061 to 154)	0.38	(0% to 70%)

Table 2. Meta-analysis results.

Study	ΤE	seTE		Odds Ratio		OR	95	5%-CI	Weight
Ad'hiah et al. 2020	-0.72	0.3012				0.49	[0.27;	0.88]	5.1%
Valenti et al. 2020	-0.65	0.3533				0.52	[0.26;	1.04]	4.4%
Zalba-Marcos et al. 2020	-0.53	0.4471				0.59	[0.24;	1.41]	3.3%
Abdollahi et ai. 2020	-0.51	0.3779				0.60	[0.29;	1.26]	4.0%
Taha et al. 2020	-0.41	0.3512				0.66	[0.33;	1.32]	4.4%
Dzik et al. 2020	-0.19	0.2423				0.82	[0.51;	1.32]	6.1%
Franchini et al. 2021	-0.17	0.2951				0.85	[0.47;	1.51]	5.2%
Khalil et al. 2020	-0.11	0.4667				0.89	[0.36;	2.23]	3.1%
Barnkob et al. 2020	-0.09	0.0738		H		0.91	[0.79;	1.05]	9.0%
Muniz-Diaz et al. 2021	-0.07	0.2489				0.94	[0.57;	1.52]	6.0%
Solmaz et al. 2021	-0.02	0.1193		÷		0.98	[0.78;	1.24]	8.3%
Boudin et al. 2020	0.01	0.4026				1.01	[0.46;	2.22]	3.8%
Gamal et al. 2020	0.10	0.1862		-		1.10	[0.77;	1.59]	7.1%
Rahim et al. 2021	0.12	0.1458				1.13	[0.85;	1.51]	7.9%
El-Shitany et al. 2021	0.22	0.2427				1.25	[0.77;	2.01]	6.1%
Hoiland et al. 2020	0.28	0.8098				1.33	[0.27;	6.49]	1.3%
Kibler et al. 2020	0.47	1.4112				1.60	[0.10; 2	25.45]	0.5%
Wu et al. 2020	0.58	0.4100		+		1.79	[0.80;	4.00]	3.7%
Fan et al. 2020	0.61	0.6831			-	1.83	[0.48;	6.99]	1.8%
Goker et al. 2020	0.69	0.3983				1.99	[0.91;	4.34]	3.8%
Bhandari et al. 2020	0.77	0.4183				2.15	[0.95;	4.89]	3.6%
Chegni et al. 2020	0.79	0.7115				2.21	[0.55;	8.91]	1.6%
Random effects model				4		0.98	[0.82;	1.17]	100.0%
Prediction interval							[0.48;	1.98]	
Heterogeneity: $I^2 = 25\%$, τ^2	= 0.10	71, <i>p</i> = 0.14						-	
		. ().1	0.5 1 2	10				

Fig 2. Forest plots for the ABO gene comparison of A vs. AB group.

https://doi.org/10.1371/journal.pone.0271451.g002

Study	TE	seTE	(Odds Ratio		OR	95%-CI	Weight
Hoiland et al. 2020	-0.28	0.4063				0.76	[0.34; 1.68]	2.2%
Zalba-Marcos et al. 2020	-0.25	0.3374		-=-		0.78	[0.40; 1.51]	2.9%
Dzik et al. 2020	-0.23	0.1483		=		0.79	[0.59; 1.06]	6.6%
Ad'hiah et al. 2020	-0.20	0.2573				0.82	[0.50; 1.36]	4.1%
Rahim et al. 2021	-0.18	0.1107		-+-		0.83	[0.67; 1.04]	7.5%
Franchini et al. 2021	-0.15	0.2090		- 		0.86	[0.57; 1.30]	5.1%
Barnkob et al. 2020	-0.03	0.0511		+		0.97	[0.88; 1.08]	8.9%
Abdollahi et ai. 2020	0.05	0.2429		- <u>+</u> -		1.05	[0.65; 1.69]	4.4%
Muniz-Diaz et al. 2021	0.10	0.1810		- 		1.11	[0.78; 1.58]	5.7%
El-Shitany et al. 2021	0.12	0.1922		÷		1.13	[0.77; 1.65]	5.5%
Solmaz et al. 2021	0.13	0.0913				1.14	[0.95; 1.36]	8.0%
Boudin et al. 2020	0.19	0.2579		- <u>i</u> -		1.21	[0.73; 2.01]	4.1%
Gamal et al. 2020	0.20	0.1237				1.22	[0.95; 1.55]	7.2%
Taha et al. 2020	0.21	0.2097		-		1.24	[0.82; 1.87]	5.1%
Khalil et al. 2020	0.22	0.3247		_ <u>i</u> =		1.25	[0.66; 2.37]	3.1%
Wu et al. 2020	0.25	0.2473		<u> </u>		1.29	[0.79; 2.09]	4.3%
Valenti et al. 2020	0.28	0.2543		-		1.33	[0.81; 2.19]	4.2%
Chegni et al. 2020	0.50	0.3998		- <u>-</u>		1.65	[0.75; 3.61]	2.3%
Bhandari et al. 2020	0.53	0.2634		÷ 🔳 –		1.69	[1.01; 2.84]	4.0%
Fan et al. 2020	0.54	0.4712				1.71	[0.68; 4.32]	1.8%
Goker et al. 2020	0.72	0.3417		<u> </u>		2.05	[1.05; 4.01]	2.9%
Kibler et al. 2020	1.40	1.3956				4.04	[0.26; 62.21]	0.2%
Random effects model				þ		1.10	[0.98; 1.23]	100.0%
Prediction interval							[0.67; 1.79]	
Heterogeneity: $I^2 = 26\%$, τ^2	= 0.052	22, p = 0.13			1			
			0.1	0.51 2	10			
Bhandari et al. 2020 Fan et al. 2020 Goker et al. 2020 Kibler et al. 2020 Random effects model Prediction interval Heterogeneity: $l^2 = 26\%$, τ^2	0.53 0.54 0.72 1.40	0.2634 0.4712 0.3417 1.3956 22, <i>p</i> = 0.13	0.1	0.51 2	10	1.69 1.71 2.05 4.04 1.10	[1.01; 2.84] [0.68; 4.32] [1.05; 4.01] [0.26; 62.21] [0.98; 1.23] [0.67; 1.79]	4.0% 1.8% 2.9% 0.2% 100.0%

Fig 3. Forest plots for the ABO gene comparison of A vs. B group.

Study	ΤE	seTE	Odds Ratio	OR	95%-CI	Weight
Dzik et al. 2020	-0.16	0.1060	= :	0.85	[0.69: 1.05]	6.4%
Rahim et al. 2021	-0.07	0.1189		0.93	[0.74: 1.18]	6.1%
Gamal et al. 2020	0.07	0.0745		1.07	[0.93; 1.24]	7.0%
Barnkob et al. 2020	0.12	0.0347	+	1.12	[1.05; 1.20]	7.6%
Zalba-Marcos et al. 2020	0.13	0.1924		1.14	[0.78; 1.66]	4.6%
Bhandari et al. 2020	0.14	0.2038	- <u>+</u> -	1.14	[0.77; 1.71]	4.4%
Boudin et al. 2020	0.15	0.1679	<u></u>	1.16	[0.84; 1.62]	5.1%
Hoiland et al. 2020	0.20	0.3098		1.22	[0.66; 2.24]	2.8%
Khalil et al. 2020	0.23	0.2589		1.26	[0.76; 2.09]	3.4%
Ad'hiah et al. 2020	0.23	0.2526	-	1.26	[0.77; 2.07]	3.5%
Muniz-Diaz et al. 2021	0.25	0.0986		1.28	[1.06; 1.56]	6.6%
Franchini et al. 2021	0.27	0.1429		1.31	[0.99; 1.73]	5.6%
Taha et al. 2020	0.32	0.1669	 	1.38	[1.00; 1.92]	5.1%
Solmaz et al. 2021	0.36	0.0809		1.43	[1.22; 1.67]	6.9%
Valenti et al. 2020	0.37	0.1652	<u>.</u>	1.45	[1.05; 2.01]	5.1%
Abdollahi et ai. 2020	0.42	0.2174	- <u>-</u>	1.52	[0.99; 2.33]	4.1%
El-Shitany et al. 2021	0.44	0.1784		1.55	[1.09; 2.19]	4.9%
Wu et al. 2020	0.61	0.2771	÷	1.85	[1.07; 3.18]	3.2%
Fan et al. 2020	0.67	0.4897		1.96	[0.75; 5.11]	1.4%
Chegni et al. 2020	0.70	0.3736	÷	2.02	[0.97; 4.21]	2.1%
Goker et al. 2020	0.81	0.2482		2.26	[1.39; 3.67]	3.6%
Kibler et al. 2020	1.57	0.8480		- 4.80	[0.91; 25.32]	0.5%
Random effects model			\$	1.29	[1.15; 1.44]	100.0%
Prediction interval			†		[0.79; 2.10]	
Heterogeneity: $I^2 = 54\%$, τ^2	= 0.05	26, p < 0.0)1 1 1 1			
			0.1 0.5 1 2 10			

Fig 4. Forest plots for the ABO gene comparison of A vs. O group.

https://doi.org/10.1371/journal.pone.0271451.g004

adhesion to cells, which could explain a lower risk of infection. Potential lack of such antibodies in blood groups A and B may explain the higher risk of COVID-19 infection but further studies are needed to elucidate this hypothesis [37]. Concerning the Rhesus status, there was not evidence of an association with COVID-19 infection. The visual inspection of the Rhesus factor funnel plot and the results of Egger's test showed moderate heterogeneity but no evidence of publication bias.

Study	TE	seTE	Oc	lds Ratio	D	OR	9	5% - CI	Weight
Hoiland et al. 2020	-0.56	0.8469		+		0.57	[0.11;	3.00]	1.0%
Wu et al. 2020	-0.33	0.4124	-	-		0.72	[0.32;	1.61]	3.4%
Rahim et al. 2021	-0.31	0.1417		-+		0.74	[0.56;	0.97]	10.0%
Chegni et al. 2020	-0.29	0.7480	_			0.75	[0.17;	3.23]	1.3%
Bhandari et al. 2020	-0.24	0.4315		-		0.79	[0.34;	1.83]	3.2%
El-Shitany et al. 2021	-0.10	0.2536		- 		0.91	[0.55;	1.49]	6.4%
Fan et al. 2020	-0.07	0.6981	-	-		0.94	[0.24;	3.67]	1.4%
Dzik et al. 2020	-0.04	0.2595				0.96	[0.58;	1.60]	6.2%
Franchini et al. 2021	0.02	0.3357		+		1.02	[0.53;	1.97]	4.6%
Goker et al. 2020	0.03	0.4860				1.03	[0.40;	2.67]	2.6%
Barnkob et al. 2020	0.07	0.0833		-+-		1.07	[0.91;	1.26]	12.1%
Gamal et al. 2020	0.10	0.2107		- 10		1.10	[0.73;	1.67]	7.6%
Solmaz et al. 2021	0.15	0.1330		÷		1.16	[0.89;	1.51]	10.4%
Muniz-Diaz et al. 2021	0.17	0.2925		- <u>+-</u>		1.19	[0.67;	2.11]	5.4%
Boudin et al. 2020	0.18	0.4449		-		1.20	[0.50;	2.87]	3.0%
Zalba-Marcos et al. 2020	0.28	0.5264				1.33	[0.47;	3.72]	2.3%
Khalil et al. 2020	0.34	0.5102		- <u>i</u> =		1.40	[0.52;	3.81]	2.4%
Ad'hiah et al. 2020	0.52	0.3088		-		1.69	[0.92;	3.09]	5.1%
Abdollahi et ai. 2020	0.56	0.3988		-		1.75	[0.80;	3.82]	3.6%
Taha et al. 2020	0.63	0.3658		-		1.87	[0.91;	3.84]	4.1%
Kibler et al. 2020	0.92	1.9300				- 2.52	[0.06; 1	10.72]	0.2%
Valenti et al. 2020	0.94	0.4034		-		2.55	[1.16;	5.63]	3.5%
Random effects model Prediction interval				-		1.11	[0.96; [0.66;	1.27] 1.86]	100.0%
Heterogeneity: $I^2 = 3\%$, $\tau^2 =$	0.057	1, p = 0.42			10	400			
		0.01	0.1	1	10	100			
Fig 5. Forest plots for	the A	BO gene c	omparis	son of B	s vs. AF	B group.			

Study	TE	seTE		Odds Ratio		OR	9	5%-CI	Weight
Bhandari et al. 2020	-0.63	0.3979		_ ∔:		0.53	[0.24:	1.161	3.8%
Rahim et al. 2021	-0.20	0.1482				0.82	[0.62:	1.101	8.0%
Chegni et al 2020	-0.09	0 7343				0.92	[0 22	3 861	1.5%
Hoiland et al. 2020	-0.09	0.8051	-			0.92	[0 19	4 451	1.3%
Gamal et al. 2020	-0.03	0 1861		1		0.97	10 68	1 401	7.3%
Wu et al. 2020	0.03	0.4310		<u></u>		1.03	[0.44	2 401	3.4%
Dzik et al. 2020	0.04	0.2379				1.04	[0.65:	1.651	6.3%
Fan et al. 2020	0.07	0.7108		<u>Ţ</u> ;		1.07	[0.26:	4.301	1.6%
Goker et al. 2020	0.13	0.4255		<u> </u>		1.13	[0.49:	2.611	3.5%
Boudin et al. 2020	0.14	0.3996		<u> </u>		1.15	[0.53:	2.521	3.8%
Barnkob et al. 2020	0.21	0.0743		+		1.23	[1.07;	1.43]	9.3%
El-Shitany et al. 2021	0.22	0.2433				1.24	[0.77;	2.00	6.1%
Muniz-Diaz et al. 2021	0.32	0.2501				1.37	[0.84;	2.24]	6.0%
Khalil et al. 2020	0.34	0.4710				1.41	[0.56;	3.54]	3.0%
Solmaz et al. 2021	0.38	0.1260				1.46	[1.14;	1.87]	8.5%
Franchini et al. 2021	0.44	0.2991				1.55	[0.86;	2.78]	5.2%
Zalba-Marcos et al. 2020	0.66	0.4475				1.94	[0.81;	4.67]	3.2%
Taha et al. 2020	0.74	0.3431				2.09	[1.07;	4.09]	4.5%
Abdollahi et ai. 2020	0.93	0.3838		÷		2.53	[1.19;	5.38]	3.9%
Ad'hiah et al. 2020	0.96	0.3048				2.60	[1.43;	4.73]	5.1%
Valenti et al. 2020	1.03	0.3540			-	2.79	[1.40;	5.59]	4.3%
Kibler et al. 2020	1.10	1.5800				3.00	[0.14; 6	66.37]	0.4%
Random effects model				\$		1.32	[1.10;	1.57]	100.0%
Prediction interval							[0.67;	2.59]	
Heterogeneity: $I^2 = 41\%$, τ^2	= 0.09	84, <i>p</i> = 0.02			1				
			0.1	0.512	10				

Fig 6. Forest plots for the ABO gene comparison of O vs. AB group.

https://doi.org/10.1371/journal.pone.0271451.g006

Study	ΤE	seTE		Odds Ratio		OR	9	5%-CI	Weight
Bhandari et al. 2020	-0.39	0.2298				0.68	[0.43;	1.06]	4.0%
Gamal et al. 2020	-0.12	0.1236		-		0.88	[0.69;	1.13]	8.6%
Boudin et al. 2020	-0.04	0.2530				0.96	[0.59;	1.58]	3.4%
Khalil et al. 2020	0.00	0.3309				1.00	[0.52;	1.92]	2.2%
Dzik et al. 2020	0.07	0.1410		÷		1.08	[0.82;	1.42]	7.5%
Valenti et al. 2020	0.09	0.2553		- <u>li</u>		1.09	[0.66;	1.81]	3.4%
Goker et al. 2020	0.10	0.3730				1.10	[0.53;	2.29]	1.8%
Taha et al. 2020	0.11	0.1959		- <u>1</u>		1.11	[0.76;	1.64]	5.0%
Rahim et al. 2021	0.11	0.1139		÷		1.12	[0.89;	1.39]	9.2%
Fan et al. 2020	0.13	0.5104				1.14	[0.42;	3.10]	1.0%
Barnkob et al. 2020	0.14	0.0520		+		1.15	[1.04;	1.28]	14.0%
Muniz-Diaz et al. 2021	0.14	0.1826		-		1.16	[0.81;	1.65]	5.5%
Kibler et al. 2020	0.17	1.5661				1.19	[0.06; 2	25.63]	0.1%
Chegni et al. 2020	0.21	0.4392				1.23	[0.52;	2.91]	1.3%
Solmaz et al. 2021	0.23	0.1000		÷••		1.26	[1.03;	1.53]	10.2%
El-Shitany et al. 2021	0.31	0.1929		+ i= -		1.37	[0.94;	2.00]	5.1%
Wu et al. 2020	0.36	0.2807				1.43	[0.83;	2.49]	2.9%
Abdollahi et ai. 2020	0.37	0.2519		- <u></u>		1.45	[0.89;	2.38]	3.4%
Zalba-Marcos et al. 2020	0.38	0.3380		- <u></u>		1.46	[0.75;	2.84]	2.1%
Franchini et al. 2021	0.42	0.2147		÷		1.52	[1.00;	2.31]	4.4%
Ad'hiah et al. 2020	0.43	0.2615		÷=		1.54	[0.92;	2.57]	3.2%
Hoiland et al. 2020	0.47	0.3968				1.61	[0.74;	3.50]	1.6%
Random effects model				\$		1.15	[1.06;	1.25]	100.0%
Prediction interval				+			[0.87;	1.53]	
Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	0.017	0, <i>p</i> = 0.64			1				
			0.1	0.5 1 2	10				
Eig 7 Equat alots for the ADC			of Data O	~~~~					

Fig 7. Forest plots for the ABO gene comparison of B vs. O group.

The interpretation of the overall estimates should be done with caution because of the observed heterogeneity between studies. There was variability in the design and sample size, while a considerable part of the pooled control population comes mainly from a single study [38]. Further, the COVID-19 confirmation method was either genetic, clinical, or even unreported while potential confounding factors such as age, gender, race, region, and underlying diseases that may influence the predisposition to COVID-19 infection could not be accounted for due to absence of relevant information. Finally, the observed publication bias may be due to the study language chosen, which may have led to the exclusion of other relevant studies, in other languages [9]. Nevertheless, despite the unexplained heterogeneity, subgroup and sensitivity analysis still confirmed our results.

Study	TE	seTE	Od	ds Rat	tio		OR	95%-CI	Weight
Goker et al. 2020	-0.47	0.2259					0.63	[0.40; 0.98]	7.7%
Rahim et al. 2021	-0.29	0.1380	+	•			0.75	[0.57; 0.98]	12.2%
El-Shitany et al. 2021	-0.18	0.1401	_	•			0.83	[0.63; 1.10]	12.1%
Solmaz et al. 2021	0.02	0.0777		÷			1.02	[0.88; 1.19]	16.0%
Taha et al. 2020	0.08	0.1898			-		1.09	[0.75; 1.57]	9.3%
Boudin et al. 2020	0.08	0.1631					1.09	[0.79; 1.49]	10.7%
Bhandari et al. 2020	0.09	0.2767	-		_		1.10	[0.64; 1.89]	5.9%
Abdollahi et ai. 2020	0.10	0.2196			-		1.10	[0.72; 1.70]	8.0%
Gamal et al. 2020	0.11	0.0769		÷			1.12	[0.96; 1.30]	16.1%
Kibler et al. 2020	0.61	0.5629	_				1.83	[0.61; 5.52]	1.9%
Random effects model	I			\Leftrightarrow			0.97	[0.83; 1.13]	100.0%
Prediction interval			_		•			[0.61; 1.54]	
Heterogeneity: $I^2 = 38\%$, π	$r^2 = 0.03$	355, p = 0.11	1						
		0.2	0.5	1	2	5			
Fig 9. Forest plot for the Rh	esus stat	us.							

https://doi.org/10.1371/journal.pone.0271451.g010

In conclusion, this meta-analysis provides evidence for an increased risk of COVID-19 infection for blood groups A, B and AB compared to blood group O, while an association between Rhesus state and COVID-19 infection could not be established.

Supporting information

S1 Checklist. PRISMA 2020 checklist. (PDF)

S1 Table. Leave-one-out method results for ABO blood group. (XLSX)

S2 Table. Leave-one-out method results for Rhesus. (XLSX)

Author Contributions

Conceptualization: George Balaouras, Polychronis Kostoulas.

Data curation: George Balaouras, Paolo Eusebi.

Formal analysis: Paolo Eusebi.

Funding acquisition: Polychronis Kostoulas.

Methodology: George Balaouras, Paolo Eusebi.

Project administration: Polychronis Kostoulas.

Resources: Polychronis Kostoulas.

Software: Paolo Eusebi.

Supervision: Polychronis Kostoulas.

Visualization: George Balaouras.

Writing - original draft: George Balaouras.

Writing - review & editing: Paolo Eusebi, Polychronis Kostoulas.

References

- Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin Med J (Engl). 2020; 133:1015–24. <u>https://doi.org/10.1097/CM9.00000000000722</u> PMID: 32004165
- 2. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology [Internet]. June 2016; 24(6):490–502. Available at: https://doi.org/10.1016%2Fj.tim.2016.03.003
- Ye ZW, Yuan S, Yuen KS, Fung SY, Chan CP, Jin DY. Zoonotic origins of human coronaviruses. Int J Biol Sci. 2020; 16:1686–97. https://doi.org/10.7150/ijbs.45472 PMID: 32226286
- Banerjee A, Doxey AC, Mossman K, Irving AT. Unraveling the Zoonotic Origin and Transmission of SARS-CoV-2. Trends in Ecology & Evolution [Internet]. March 2021; 36(3):180–4. Available at: https://doi.org/10.1016/j.tree.2020.12.002 PMID: 33384197
- Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021; 19:141–54. https://doi.org/10.1038/s41579-020-00459-7 PMID: 33024307
- 6. Pillay TS. Gene of the month: the 2019-nCoV/SARS-CoV-2 novel coronavirus spike protein. J Clin Pathol. 2020; 73:366–9. https://doi.org/10.1136/jclinpath-2020-206658 PMID: 32376714
- Pal M, Berhanu G, Desalegn C, Kandi V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus. 2020; 12:e7423. https://doi.org/10.7759/cureus.7423 PMID: 32337143
- Wu BB, Gu DZ, Yu JN, Yang J, Shen WQ. Association between ABO blood groups and COVID-19 infection, severity and demise: A systematic review and meta-analysis. Infect Genet Evol. 2020; 84:104485. https://doi.org/10.1016/j.meegid.2020.104485 PMID: 32739464
- Liu N, Zhang T, Ma L, Zhang H, Wang H, Wei W, et al. The impact of ABO blood group on COVID-19 infection risk and mortality: A systematic review and meta-analysis. Blood Rev. 2020;:100785. https://doi.org/10.1016/j.blre.2020.100785 PMID: 33309392
- Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological) [Internet]. January 1995; 57(1):289–300. Available at: https://doi.org/10.1111%2Fj.2517-6161.1995.tb02031.x
- Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple graphical test. BMJ [Internet]. September 1997; 315(7109):629–34. Available at: <u>https://doi.org/10.1136/bmj.315</u>. 7109.629 PMID: 9310563
- IntHout J, Ioannidis JP, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for random effects metaanalysis is straightforward and considerably outperforms the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014; 14:25. https://doi.org/10.1186/1471-2288-14-25 PMID: 24548571
- IntHout J, Ioannidis JPA, Rovers MM, Goeman JJ. Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open [Internet]. July 2016; 6(7):e010247. Available at: <u>https://doi.org/10.1136/</u> bmjopen-2015-010247 PMID: 27406637
- 14. Schwarzer G, others. meta: An R package for meta-analysis. R news. 2007; 7(3):40-5.
- Göker H, Aladağ-Karakulak E, Demiroğlu H, Ayaz CM, Büyükaşik Y, İnkaya AC, et al. The effects of blood group types on the risk of COVID-19 infection and its clinical outcome. TURKISH JOURNAL OF MEDICAL SCIENCES [Internet]. June 2020; 50(4):679–83. Available at: https://doi.org/10.3906/sag-2005-395 PMID: 32496734
- Hoiland RL, Fergusson NA, Mitra AR, Griesdale DEG, Devine DV, Stukas S, et al. The association of ABO blood group with indices of disease severity and multiorgan dysfunction in COVID-19. Blood Advances [Internet]. October 2020; 4(20):4981–9. Available at: https://doi.org/10.1182/bloodadvances. 2020002623 PMID: 33057633
- 17. Ad'hiah AH, Allami RH, Mohsin RH, Abdullah MH, AL-Sa'ady AJR, Alsudani MY. Evaluating of the association between ABO blood groups and coronavirus disease 2019 (COVID-19) in Iraqi patients.

Egyptian Journal of Medical Human Genetics [Internet]. September 2020; 21(1). Available at: https://doi.org/10.1186%2Fs43042-020-00097-x

- Solmaz İ, Araç S. ABO blood groups in COVID-19 patients; Cross-sectional study. Int J Clin Pract. 2021; 75:e13927. https://doi.org/10.1111/ijcp.13927 PMID: 33296536
- Taha SAH, Osman MEM, Abdoelkarim EAA, Holie MAI, Elbasheir MM, Abuzeid NMK, et al. Individuals with a Rh-positive but not Rh-negative blood group are more vulnerable to SARS-CoV-2 infection: demographics and trend study on COVID-19 cases in Sudan. New Microbes and New Infections [Internet]. November 2020; 38:100763. Available at: https://doi.org/10.1016%2Fj.nmni.2020.100763
- Dzik S, Eliason K, Morris EB, Kaufman RM, North CM. COVID-19 and ABO blood groups. Transfusion. 2020; 60:1883–4. https://doi.org/10.1111/trf.15946 PMID: 32562280
- Zalba MS, Antelo ML, Galbete A, Etayo M, Ongay E, García-Erce JA. Infection and thrombosis associated with COVID-19: Possible role of the ABO blood group. Med Clin (Engl Ed). 2020; 155:340–3.
- 22. Chegni H, Pakravan N, Saadati M, Ghaffari AD, Shirzad H, Hassan ZM. Is There a Link between COVID-19 Mortality with Genus, Age, ABO Blood Group Type, and ACE2 Gene Polymorphism?. Iran J Public Health. 2020; 49:1582–4. https://doi.org/10.18502/ijph.v49i8.3910 PMID: 33083341
- 23. Franchini M, Glingani C, Fante CD, Capuzzo M, Stasi VD, Rastrelli G, et al. The protective effect of O blood type against SARS-CoV-2 infection. Vox Sanguinis [Internet]. September 2021; 116(2):249–50. Available at: https://doi.org/10.1111/vox.13003 PMID: 32950039
- Gamal N, Villa E, Rolli M, Pecorari M, Mirabella G, Bertellini E, et al. Subjects with blood group O are not at lower risk to acquire SARS-CoV-2 infection. Vox Sang. 2021; 116:471–2. <u>https://doi.org/10.1111/</u> vox.13062 PMID: 33326616
- Wu Y, Feng Z, Li P, Yu Q. Relationship between ABO blood group distribution and clinical characteristics in patients with COVID-19. Clin Chim Acta. 2020; 509:220–3. https://doi.org/10.1016/j.cca.2020.06. 026 PMID: 32562665
- 26. Khalil A, Feghali R, Hassoun M. The Lebanese COVID-19 Cohort; A Challenge for the ABO Blood Group System. Front Med (Lausanne). 2020; 7:585341.
- 27. El-Shitany NA, El-Hamamsy M, Alahmadi AA, Eid BG, Neamatallah T, Almukadi HS, et al. The Impact of ABO Blood Grouping on COVID-19 Vulnerability and Seriousness: A Retrospective Cross-Sectional Controlled Study among the Arab Community. Int J Environ Res Public Health. 2021;18.
- Valenti L, Villa S, Baselli G, Temporiti R, Bandera A, Scudeller L, et al. Association of ABO blood group and secretor phenotype with severe COVID-19. October 2020; 60(12):3067–70. Available at: https://doi.org/10.1111%2Ftrf.16130
- Muñiz-Diaz E, Llopis J, Parra R, Roig I, Ferrer G, Grifols J, et al. Relationship between the ABO blood group and COVID-19 susceptibility, severity and mortality in two cohorts of patients. Blood Transfus. 2021; 19:54–63. https://doi.org/10.2450/2020.0256-20 PMID: 33196417
- Kibler M, Dietrich L, Kanso M, Carmona A, Marchandot B, Matsushita K, et al. Risk and Severity of COVID-19 and ABO Blood Group in Transcatheter Aortic Valve Patients. J Clin Med. 2020;9. <u>https:// doi.org/10.3390/jcm9113769 PMID: 33266474</u>
- Barnkob MB, Pottegård A, Støvring H, Haunstrup TM, Homburg K, Larsen R, et al. Reduced prevalence of SARS-CoV-2 infection in ABO blood group O. Blood Adv. 2020; 4:4990–3. https://doi.org/10.1182/ bloodadvances.2020002657 PMID: 33057631
- 32. Bhandari P, Durrance RJ, Bhuti P, Salama C. Analysis of ABO and Rh Blood Type Association With Acute COVID-19 Infection in Hospitalized Patients: A Superficial Association Among a Multitude of Established Confounders. J Clin Med Res. 2020; 12:809–15. https://doi.org/10.14740/jocmr4382 PMID: 33447315
- Rahim F, Amin S, Bahadur S, Noor M, Mahmood A, Gul H. ABO / Rh-D Blood types and susceptibility to Corona Virus Disease-19 in Peshawar Pakistan. Pakistan Journal of Medical Sciences [Internet]. December 2021; 37(1). Available at: https://doi.org/10.12669/pjms.37.1.3655 PMID: 33437242
- Abdollahi A, Mahmoudi-Aliabadi M, Mehrtash V, Jafarzadeh B, Salehi M. The Novel Coronavirus SARS-CoV-2 Vulnerability Association with ABO/Rh Blood Types. Iran J Pathol. 2020; 15:156–60. https://doi.org/10.30699/ijp.2020.125135.2367 PMID: 32754209
- Fan Q, Zhang W, Li B, Li DJ, Zhang J, Zhao F. Association Between ABO Blood Group System and COVID-19 Susceptibility in Wuhan. Front Cell Infect Microbiol. 2020; 10:404. https://doi.org/10.3389/ fcimb.2020.00404 PMID: 32793517
- Boudin L, Janvier F, Bylicki O, Dutasta F. ABO blood groups are not associated with risk of acquiring the SARS-CoV-2 infection in young adults. Haematologica. 2020; 105:2841–3. https://doi.org/10.3324/ haematol.2020.265066 PMID: 33256383

- **37.** Pourali F, Afshari M, Alizadeh-Navaei R, Javidnia J, Moosazadeh M, Hessami A. Relationship between blood group and risk of infection and death in COVID-19: a live meta-analysis. New Microbes New Infect. 2020; 37:100743. https://doi.org/10.1016/j.nmni.2020.100743 PMID: 32837730
- Golinelli D, Boetto E, Maietti E, Fantini MP. The association between ABO blood group and SARS-CoV-2 infection: A meta-analysis. PLoS One. 2020; 15:e0239508. https://doi.org/10.1371/journal.pone. 0239508 PMID: 32946531