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PEDOT is the most popularly used conductive polymer due to its high conductivity, good
physical and chemical stability, excellent optical transparency, and the capabilities of easy
doping and solution processing. Based on the advantages above, PEDOT has been widely
used in various devices for energy conversion and storage, and bio-sensing. The synthesis
method of PEDOT is very important as it brings different properties which determine its
applications. In this mini review, we begin with a brief overview of recent researches in
PEDOT. Then, the synthesis methods of PEDOT are summarized in detail, including
chemical polymerization, electrochemical polymerization, and transition metal-mediated
coupling polymerization. Finally, research directions in acquiring high-quality PEDOT are
discussed and proposed.
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1 INTRODUCTION

Conductive polymer (CP) was discovered by Hideki Shirakawa, Alan Heeger, and Alan MacDiarmid
in 1977 (Shirakawa et al., 1977; Park et al., 1980; Park, 1988). They demonstrated that the
conductivity of polyacetylene can be adjusted over a few orders of magnitude. The CPs not only
share similar electrical properties with metal or semiconductor, but also have good mechanical
properties like polymer (Heeger, 2001). Therefore, CPs have attracted wide attention in the printable
electronics, energy conversion and storage devices, biological electronics and so on (Guimard et al.,
2007; Rozlosnik, 2009; da Silva and de Torresi, 2019; Jiang et al., 2020). Up to now, four CPs
comprising polyacetylene (PA), polyaniline (PANi), polypyrrole (PPy), and polythiophene (PTh)
have been reported and studied intensively. Although CPs have decent conductivity and flexibility,
the poor stability caused by the doping state and insufficient half-life of conductivity pose an
important challenge to the commercialization of CPs (Kudoh et al., 1999). The problem was not
solved until the invention of Poly (3, 4-ethylenedioxythiophene) (PEDOT) in the late 1980s (Bayer,
1988).

Among CPs, PEDOT has drawn most of the attention in both academic and industrial
communities due to its relatively high conductivity and remarkable stability in ambient
conditions, as well as its potential to be transparent in the visible range (Bayer, 1988). A lot of
works have been done to improve the conductivity of PEDOT, the highest conductivity of
6,259 S cm−1 for thin films and 8,797 S cm−1 for single crystals have been reported (Cho et al.,
2014; Gueye et al., 2016). Conductivity is an important parameter for CPs, as it directly determines
their applications. Meanwhile, the improvement of conductivity is mainly due to the crystallinity and
doping of PEDOT, which is directly caused by the different synthesis methods. The polymerization
process of PEDOT is complicated, as it involves many oxidants and additives, thus a slight change
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might produce great influence on the properties of the final
products. Over the last decades, researchers have made huge
progress in the synthesis of PEDOT, but precisely control its
crystallinity to achieve superior performance is still a major
challenge in the field of PEDOT synthesis. In order to fully
understand the properties of PEDOT, conjugated oligomer of
EDOT are attractive materials as a model system. Oligo-EDOT
derivatives were synthesized and investigated. It was found that
the properties of the product could be tuned by the oligomer
length, end group, and monomer composition with fine control
(Spicer et al., 2017). In addition to the conductivity, the
biocompatibility and non-toxicity of PEDOT are also deeply
concerned by researchers (da Silva et al., 2018; Meng et al.,
2019; Dominguez-Alfaro et al., 2021). In recent studies, a new
type of conductive polymer-based biosensor has been obtained

through monomer modification and polymerization (da Silva
et al., 2018; Meng et al., 2020; Ritzau-Reid et al., 2020). In this
review, we summarized the most used synthesis methods of
PEDOT and their development trends. The synthesis method
and corresponding conductivity are reviewed and discussed.
Finally, the challenges and research directions are proposed.

2 SYNTHESIS METHODS FOR PEDOT

The properties of PEDOT (optical transparency, electrical
conductivity, work function) are highly dependent on the
counterion and packing of PEDOT polymer. Electronic
structure and optical absorption spectra of PEDOT for
different oxidation levels have been studied using density

FIGURE1 | Three kinds of polymerization methods for PEDOT, chemical polymerization, electrochemical polymerization, and transition metal-mediated coupling
polymerization. Reproduced with permission (Lock et al., 2006; Wen and Xu, 2017; Jiang et al., 2020).
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functional theory (DFT) and time-dependent DFT (Zozoulenko
et al., 2018). Therefore, the design and preparation of PEDOT
with excellent performance are critical to realizing its wide
application. Initially, PEDOT was prepared by oxidative
polymerization of 3, 4-ethylenedioxythiophene (EDOT). So far,
the polymerization methods of PEDOT can be classified into
three categories (Figure 1): 1) chemical polymerization; 2)
electrochemical polymerization; 3) transition metal-mediated
coupling polymerization.

2.1 Chemical Polymerization
Chemical polymerization is the most basic and commonly used
method for the synthesis of PEDOT. With continuous
development, this method has become the main method for
the preparation of PEDOT and its derivatives. The oxidative
polymerization mechanism of PEDOT can be divided into two
steps (Figure 2A) (Ha et al., 2004). First, the EDOT monomer is
oxidized to form cationic radicals followed by free radicals
dimerization. The achieved dimer consequently experiences a
deprotonation process, resulting in an active neutral dimer, which

FIGURE2 | (A) schematic diagram of oxidative polymerization mechanism of PEDOT; (B,C) PEDOT in-situ solution polymerization process; (D) flow chart of vapor-
phase polymerization; (E) schematic diagram of oCVD reactor; (F) a three-electrode device for electrochemical synthesis; (G) PEDOT is obtained by coupling
polymerization of transition metals. Reproduced with permission (Ha et al., 2004; Bhattacharyya et al., 2012; Wen and Xu, 2017; Gharahcheshmeh and Gleason, 2018;
Jiang et al., 2020).
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facilitates the dimer to react in the following oxidation process for
chain growth. The neutral PEDOT is doped by the oxidants,
anions of the oxidants are acted as counterions to stabilize the
charged PEDOT (Jiang et al., 2020). The oxidants are usually
utilized in the chemical polymerization process. However,
PEDOT can also be prepared without oxidant by acid-assisted-
polycondensation or self-polymerization of EDOT (Yin et al.,
2013; Tomšík et al., 2020). Oxidative chemical polymerization is
divided into oxidative polymerization of PEDOT dispersion and
in-situ chemical polymerization according to the different usage
of products. As for the above two methods, CPs with high
conductivity can be obtained since the oxidant can
simultaneously dope the conjugated PEDOT during the
reaction process.

2.1.1 Oxidative Chemical Polymerization of PEDOT
Dispersion
The synthesis of PEDOT by oxidative chemical polymerization
method is similar to the preparation of PPy. In this method, the
iron (III)-chloride was introduced as the oxidant, resulting in
insoluble PEDOT powders with a high conductivity (Heywang
and Jonas, 1992; Jiang et al., 2012). Furthermore, metal ions
Cerium (IV) (Corradi and Armes, 1997), Manganese (IV) (Hupe
et al., 1995), and Cooper (II) (Im et al., 2008) have also been used
as the oxidant to synthesize PEDOT. A breakthrough in
preparing highly conductive PEDOT films was achieved after
using iron (III)-sulfonates as oxidants (Jonas et al., 1990). The
sulfonates are soluble in common organic solvents like ethanol or
n-butanol, thus the PEDOT dispersions could be obtained
through mixing EDOT and Fe (III)-sulfonates in these
solvents. PEDOT with different microstructure could be
synthesized by adjusting the polymerization method. Manohar
et al., developed a reverse emulsion polymerization method,
where sodium bis(2-ethylhexyl) sulfosuccinate and FeCl3 were
used as the template and oxidant, to obtain PEDOT nanotubes
with tube diameters in the range of 50–100 nm (Zhang et al.,
2006). Zhang and collaborators proposed a facile soft-template-
assisted self-assembled method to prepare PEDOT nanofibers
and nanocubes with controlled morphology and size by simply
adding solvent and tuning the ratio of monomer and solvent (Sun
et al., 2017). Further research demonstrated that the addition of
organic bases as an inhibitor in the reaction mixture could not
only reduce the activity of the oxidant and thus slow down the
polymerization rate, but also adjust the PH of the reaction, thus
improving the pot-life and conductivity at the same time (De
Leeuw et al., 1994; Winther-Jensen et al., 2005). These
observations were mainly attributed to the formation of
toluene sulfonic acid and its anions function as the
counterions for the positively charged PEDOT. In addition,
the acidity of the reaction solution is also regulated by the
added inhibitors. The conductivity of PEDOT is also highly
related to the reaction temperature and time. In the process of
gas phase polymerization, the introduction of monomers and
additives is closely related to the ambient temperature of the
reaction. Water vapor as a proton cleaner plays a very important
role in conductivity, while the removal of protons is directly
determined by temperature (Goktas et al., 2015). Peroxides such

as hydrogen peroxide, alkyl hydroperoxides, and diacyl peroxides
can also be used as the alternative oxidants to prepare highly
conductive PEDOT (Jiang et al., 2012).

2.1.2 In-Situ Chemical Polymerization of PEDOT
In-situ polymerization refers to the oxidative chemical
polymerization of EDOT directly on the substrates under film-
forming conditions. PEDOT with regular molecular structure
and high conductivity could be obtained by in-situ
polymerization (Cho et al., 2014). The reaction mechanism of
in-situ polymerization is roughly parallel to the oxidative
polymerization (Fichou, 2008). Generally, the in-situ oxidative
polymerization is preferably performed with iron (III),
Manganese (IV), or other metal ions with a suitable higher
oxidation state. The alcohol-soluble iron salts of sulfonic acids
are ideal oxidants due to the limited solubility of EDOT in water.
The p-toluenesulfonate has been taken as a very suitable anion
and the corresponding iron (III) toluenesulfonate has become the
most widely used oxidant in the preparation of PEDOT through
in-situmethod (Hong et al., 2005). Other metal salt oxidants and
peroxides are also effective alternatives.

Solution-Cast Polymerization of PEDOT
There are three types of in-situ polymerizations: solution-cast
polymerization (SCP), vapor phase polymerization (VPP), and
oxidative chemical vapor deposition (oCVD). SCP is the simplest
method for in-situ polymerizations of PEDOT, which was first
reported by Bayer AG (Jonas et al., 1988). A typical procedure is
performed as follows: the EDOT and oxidant were firstly
dissolved in alcohol, then the mixture was cast onto the target
substrate, followed by an annealing treatment to assist the
polymerization. Finally, substrates were thoroughly rinsed to
remove excess reagents (Figures 2B,C) (Gueye et al., 2020).

Kinetic studies show that the polymerization of PEDOT is
determined by the slowest step of reaction rate, while the rate of
EDOT monomer being oxidized by oxidant to generate free
radicals is the slowest (Ha et al., 2004; Kim and Zozoulenko,
2019). Therefore, the oxidant plays a very important role in
polymerization. In particular, the solubility, oxidation strength
and stability of the oxidant have an important influence on the
polymerization process. Anions in oxidants such as Cl−, tosylate
(Tos−) and sulfonates also play important roles in the
polymerization of PEDOT. These anions can not only
neutralize the charge and further stabilize PEDOT (Brooke
et al., 2017), but also affect the reaction rate, the molecular
arrangement, as well as conductivity of PEDOT (Winther-
Jensen et al., 2008). For iron-based oxidants, the standard
electrode potential of cation reduction is constant, but the
different anions can adjust the polymerization rate. Compared
with Cl−, tosylate (Tos−) leads to lower effective oxidation
strength of the oxidant. The polymerization rate of PEDOT
can be reduced by iron p-toluenesulfonic acid (III) (Fe(Tos)3),
which leads to a longer conjugated chain and smoother
microstructure of PEDOT. Moreover, the conductivity of
PEDOT is improved (Brooke et al., 2017). The polymerization
rate is also related to the concentration of the oxidant. The
PEDOT films obtained under low oxidant concentration
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exhibit higher conductivity and lower roughness. However, a
challenge remains to prepare PEDOT films with conductivity
over 1,000 S cm−1 by optimizing oxidants. There are two reasons
that restrict the improvement of the conductivity of PEDOT. One
is the influence of protons, which can accelerate the
polymerization rate and decrease the conductivity. The
generation of protons is inevitable, as shown in Figure 2A.
The other is the side reaction caused by protons, which makes
a large number of EDOT free radicals react into dimers or trimers,
hindering the formation of long-chain PEDOT. The alkaline
inhibitor as an additive was first proposed by De Leeuw et al.
(1994). Imidazole was utilized as an alkaline inhibitor in the
synthesis of PEDOT, which can increase the polymer chains by
slowing down the reaction rate and restricting excessive doping.
The PEDOT film achieved a high conductivity of 500 S cm−1 (Ha
et al., 2004). In addition to alkaline additives, surfactants and co-
solvents are also used as additives to assist the synthesis of high
conductivity PEDOT. The conductivity of synthesized PEDOT
can be up to 3,000 S cm−1 with polymeric surfactant
poly(ethylene glycol)-block-poly(propylene glycol)-block-
poly(ethylene glycol) (PEG-PPG-PEG) and high boiling point
cosolvent (N-methyl-2-pyrro-lidone) as additives (Gueye et al.,
2016).

Vapor-Phase Polymerization of PEDOT
VPP is another common synthesis method for in-situ
polymerizations, in which reactants participate in the reaction
under gas state. PEDOT films obtained by VPP showed excellent
photoelectric properties (Rahman et al., 2011; Howden et al.,
2013; Li et al., 2015; Brooke et al., 2017). VPP involves three steps
(Figure 2D): 1) depositing a solvent containing an oxidant and/or
additive on a substrate by solution processing method; 2)
exposing the coated substrate to EDOT monomer vapor in a
closed chamber for polymerization; 3) washing the deposited film
to remove residual oxidant and adsorbed monomer
(Bhattacharyya et al., 2012; Brooke et al., 2017). Oxidation
reaction occurs at the interface between oxidants and
monomers in gas phase. The PEDOT film-forming mechanism
could be “bottom-up” when the oxidant mixture diffuses upward
or “top-down” when the monomer diffuses downward, but this
speculation is still debated (Jiang et al., 2020).

In VPP method, the problems brought by oxidants are the
same as those in SCP, so it is necessary to use an inhibitor to
control the reaction rate. Winther-Jensen and Keld West initially
added pyridine as an alkali inhibitor in 2004. The use of pyridine
can not only slow down the polymerization rate but also eliminate
acidic side reactions. The conductivity of the finally obtained
PEDOT film is improved, and the highest conductivity exceeds
1000 S cm−1 (Winther-Jensen and West, 2004). In terms of
processing conditions, such as the pressure, temperature, and
humidity in the reaction chamber directly affect the photoelectric
properties of PEDOT. A highly ordered crystal structure can be
obtained at 60°C, which significantly improves the conductivity
(Kim et al., 2003). In terms of humidity, the existence of water is
helpful to repeat the polymerization cycle, because it can be used
as a proton scavenger on EDOT dimer (Fabretto et al., 2009;
Mueller et al., 2012; Goktas et al., 2015). The conductivity of

PEDOT was significantly improved, and the top surface of the
film was smoother. However, the existence of water also brings
serious problems to polymerization. Excessive load leads to the
formation of microcrystals in the oxidant layer, which makes the
oxidant inactive. Common oxidant salts (FeCl3 (Cho et al., 2014),
Fe(Tos)3 (Bubnova et al., 2014; Fabretto et al., 2012), Fe(OTf)3
(Massonnet et al., 2015; Brooke et al., 2018)) showed high water
affinity, which led to easy formation of hydrate crystallites. These
crystalline regions are bad for the synthesized PEDOT and
seriously affect the conductivity. To solve this problem, Zuber
et al. used an amphiphilic copolymer inhibitor of
PEG–PPG–PEG, which can inhibit the hydrate crystal growth
of oxidant (Zuber et al., 2008). The most significant benefit of the
VPP method is that the conductivity of the product is greatly
improved. The conductivity of the synthesized single crystal
PEDOT nanowires reaches the highest value at present, up to
8,797 S cm−1 (Cho et al., 2014).

Oxidative Chemical Vapor Deposition of PEDOT
The oCVDmethod is a one-step steam synthesis process in which
oxidant and monomer meet on the target substrate in a steam
state and undergo oxidative polymerization. This method can
avoid the deposition of oxidants on the substrate, and the oxidant
with good volatility can be selected. oCVD was initiated in 2006
(Lock et al., 2006) and fiber-shaped PEDOT with high
conductivity was obtained. As shown in Figure 2E, to prevent
the accumulation of oxidant, the substrate in the reactor is
inverted above the oxidant crucible. Since the commonly used
solid oxidants have low volatility, and oCVD requires oxidants to
have certain volatility, the choice of oxidants is limited. Although
Fe(Tos)3 is widely used in VPP, it cannot be used in oCVD
because of its poor volatility. Therefore, metal halogen salts with
good volatility (e.g., FeCl3 (Gharahcheshmeh and Gleason, 2018),
CuCl2 (Im et al., 2008)) have become the mainstream in oCVD.
In order to better control the concentration of the oxidant, liquid
oxidants such as antimony pentoxide (SbCl5) (Nejati et al., 2014)
and vanadium trioxide (VOCl3) (Nejati and Lau, 2011) have been
developed for oCVD method in recent years. Compared with the
solid oxidant, the surface concentration and flow rate of liquid
oxidant VOCl3 can be conveniently adjusted during the reaction
(Gharahcheshmeh and Gleason, 2018). The orientation of
PEDOT (face-on and edge-on) has a strong correlation with
the conductivity. Grissom and his colleagues used liquid and solid
oxidants, respectively. Liquid oxidants can easily adjust the
saturation ratio of oxidants (OSR). PEDOT obtained using
liquid oxidants has face-on orientation, while PEDOT
obtained using solid oxidants has edge-on orientation
(Gharahcheshmeh et al., 2019). The PEDOT film with face-on
orientation exhibits the highest in-plane electrical conductivity of
2,800 S cm−1 and the largest optical bandgap of 2.9 eV. In
addition to liquid oxidants, volatile oxidants such as halogen
gases have also been reported. The conductivity of the prepared
Br-PEDOT film without post-treatment is 380 S cm−1 at 80°C,
which is significantly higher than that of the PEDOT film
obtained with ferric chloride as the oxidant at the same
temperature, and the Br-PEDOT film is more stable (Chelawat
et al., 2010). However, halogen gases have been shown to damage
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the apparatus through corrosion during the reaction. In VPP, the
conductivity of PEDOT film can be greatly improved by using
some additives. However, the lack of suitable volatile additives
limits the further increase in conductivity in oCVD. Therefore, it
is necessary to optimize the deposition parameters such as
substrate temperature, pressure, and vapor flow to improve the
performance of PEDOT films in oCVD. Ugur et al. (2015)
reported that the grain size of PEDOT can be adjusted by
adjusting the substrate temperature.

2.2 Electrochemical Polymerization
Electrochemical polymerization (Figure 2F) to prepare PEDOT
was first demonstrated in 1988 (Heywang et al., 1988), and its
concept is similar to that of oxidative chemical polymerization.
The biggest difference with oxidative chemical polymerization is
that no oxidants are used. In electro-polymerization, EDOT is
oxidized by an applied potential and polymerization takes place at
the electrode. Electro-polymerization requires a three-electrode
system (counter electrode, reference electrode, and working
electrode) and electrolyte solution. The electrolyte solution
usually contains small molecules as electrolytes, and the
commonly used electrolytes are lithium perchlorate (LiClO4),
1-butyl-3-methylimidazolium hexaphonate (BMIMPF6), and
lithium bis (trifluoromethosulfonyl) amide (LiTFSI) (Zotti
et al., 2003; Culebras et al., 2014). In the process of electro-
polymerization, the anions of electrolyte are doped into PEDOT
as counterions to stabilize the charge in PEDOT. Furthermore,
anions greatly affect the morphologies, photoelectric properties,
and mechanical properties of PEDOT films (Zotti et al., 2003;
Poverenov et al., 2010; Culebras et al., 2014). Therefore, the
electrolyte can be changed to introduce different counterions,
and then the conductivity of PEDOT film can be adjusted. The
maximum conductivity of PEDOT obtained by electro-
polymerization is about 2,000 S cm−1 by adjusting electrolytes
(Culebras et al., 2014). The doping and dedoping of PEDOT films
can be realized by changing the applied potential and direction of
the electro-polymerization reaction. Accordingly, the
optoelectronic properties (e.g., ionic/electric conductivity,
transparency, and Seebeck coefficient) can be tuned (Bubnova
et al., 2012; Nguyen and Lee, 2016; Teran and Reynolds, 2017; van
de Burgt et al., 2017; Jiang et al., 2020).

2.3 Transition Metal-Mediated Coupling
Polymerization
Inspired by the role of transition metals in the coupling
polymerization of thiophene polymers, Yamamoto et al. used
transition metal nickel complexes to prepare neutral PEDOT

using (Figure 2G) (Yamamoto and Abla, 1999). The PEDOT
obtained by this method is in black, insoluble in water, and non-
conductive. Therefore, this method is not widely used.

3 CONCLUSION AND OUTLOOK

PEDOT, as a very unique CP, possesses high conductivity, high
environmental stability, high visible spectrum transparency, and
multi-purpose processing ability, which makes it has great
application potential in many fields. In this review, we mainly
summarized the polymerization methods of PEDOT, such as
chemical polymerization (E.g., SCP, VPP, oCVD),
electrochemical polymerization, and transition metal-mediated
coupling polymerization. The factors affecting the performance
of PEDOT were briefly analyzed. The development of PEDOT
conductivity under different polymerization methods was
summarized. The existing problems and solutions of PEDOT
under different polymerization methods were discussed.
Although great progress has been made in the synthesis of
PEDOT, there are still great challenges in the synthesis of high
quality PEDOT. First, the conductivity of synthesized PEDOT is
not high enough, and how to improve the conductivity of
synthesized PEDOT to 104 S cm−1 or even higher remains a
challenge. Although many strategies have been used to
improve the conductivity, the PEDOT cannot be mass-
produced and the preparation conditions are harsh. In
addition, the conductive mechanism of the synthesized
PEDOT deserves further study to fundamentally optimize the
conductivity of PEDOT. Finally, for different synthesis methods,
we should develop new application directions and reach the full
potential of PEDOT.
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