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Predicting the protein sequence information of enzymes and non-enzymes is an
important but a very challenging task. Existing methods use protein geometric
structures only or protein sequences alone to predict enzymatic functions. Thus,
their prediction results are unsatisfactory. In this paper, we propose a novel
approach for predicting the amino acid sequences of enzymes and non-enzymes
via Convolutional Neural Network (CNN). In CNN, the roles of enzymes are predicted
from multiple sides of biological information, including information on sequences and
structures. We propose the use of two-dimensional data via 2DCNN to predict the
proteins of enzymes and non-enzymes by using the same fivefold cross-validation
function. We also use an independent dataset to test the performance of our model,
and the results demonstrate that we are able to solve the overfitting problem. We
used the CNN model proposed herein to demonstrate the superiority of our model
for classifying an entire set of filters, such as 32, 64, and 128 parameters, with the
fivefold validation test set as the independent classification. Via the Dipeptide
Deviation from Expected Mean (DDE) matrix, mutation information is extracted
from amino acid sequences and structural information with the distance and
angle of amino acids is conveyed. The derived feature maps are then encoded in
DDE exploitation. The independent datasets are then compared with other two
methods, namely, GRU and XGBOOST. All analyses were conducted using 32, 64
and 128 filters on our proposed CNN method. The cross-validation datasets
achieved an accuracy score of 0.8762%, whereas the accuracy of independent
datasets was 0.7621%. Additional variables were derived on the basis of ROC AUC
with fivefold cross-validation was achieved score is 0.95%. The performance of our
model and that of other models in terms of sensitivity (0.9028%) and specificity
(0.8497%) was compared. The overall accuracy of our model was 0.9133%
compared with 0.8310% for the other model.
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INTRODUCTION

Enzymes are at the core of biological processes because their
reactions are vital biological activities. Enzymes catalyze and
spread to all parts of organisms and are involved in all
biochemical reactions. Therefore, no metabolism can be
reasonably assumed to occur if enzymes are absent. Enzymes
are important because living organisms cannot survive with-
out enzymatic reactions and biotechnological industries cannot
generate products without enzymatic support. A key goal of
contemporary molecular biology is to understand the laws
governing the three-dimensional protein structures of amino
acid sequences (R. Apweiler, et al., 2004). Experimentally and
theoretically, proteins can be considered as enzymes and non-
enzymes. A critical problem in the post-genome era is the
prediction and classification of the primary sequences of
proteins (Altschul et al., 1997). The number of proteins
available in public and private databases is growing
exponentially, and new methods for understanding and
classifying them must be established. The enormous task of
determining the functions of proteins has led to the
development of more advanced methods for automated
protein classification for any protein entry (Altschul et al.,
1997; Altschul et al., 1997a; Jones, 1999). An automated
measurement method for evaluating protein function based
on its sequence is one of the key problems in bioinformatics.
This task is a time-consuming, and a faster classification
method is obviously needed. Structural protein groups are
closely associated with the composition of amino acids. They
have marked the beginning of using algorithms aimed solely at
predicting amino acid compositions of structural protein types
(A. Krizhevsky, et al., 2012). Aside from amino acid
compositions, prediction accuracy is high when the sequence
order is considered along the primary protein structure (N.
Srivastava,et al., 2014).

The prediction of protein functions is becoming increasingly
relevant as it enables the properties of novel proteins to be
calculated. Protein function is determined by the arrangement
of proteins and the sequence of amino acids. For example, the
protein structure, that is, the protein’s 3D structure, is a very
strong indicator of protein function (Illergård et al., 2009).
Given that protein structure is related to amino acid sequences,
more details can be directly derived from amino acid sequences
(Dehzangi et al., 2017). For example, sequence homology is
vital in predicting protein functions. If proteins have a similar
ancestral sequence (Lee et al., 2007), then their protein
sequences are homologous. Given that proteins with similar
sequences often perform similar functions (Blomberg et al.,
1999), the recent use of convolutional neural networks (CNN)
in genomics for sequence problems has ushered in the era of
deep learning in computational biology. DeepBind and
DeepSEA have been successfully used in modelling protein
binding sequences with an efficiency superior to that of the best
available conventional learning technologies (Zeng et al., 2016).
In a previous study, we analyzed the findings by using the
receiver operator characteristic and area under the roc curve
score for enzyme protein data settings. Compared with the

ECFP method for fingerprinting and graph convolution, our
one-dimensional CNN approach was superior to SMILES
representation (Kearnes et al., 2016). Numerous significant
structures (i.e., motifs), such as protein sites, have been
identified by one-dimensional CNN by using learning filters
(Bengio et al., 2013). Important functional substructures
(i.e., where a protein can bind) may also be omitted from
“chemical motive”. Normal machine learning processes are
limited by predefining features, by affecting prediction
accuracy during the proper selection of functions, and by
restricting model adjustments or modifications to flexibility
(i.e., all preprocessing steps must be repeated). These
drawbacks can be overcome by deep learning techniques
that seamlessly extract inputs by using conventional
gradient-based methods or by differentiating when their
interpretability is required (Shrikumar et al., 2017). Shared
data availability and ever-compute capacity outperform
conventional approaches by profound deep learning
methods, such as CNNs. By using convolutional filters,
pooling, and completely linking layers, these deep learning
methods imitate how the brain functions by leading the
resulting network to concentrate on features that are
essential to the resolution of controlled tasks. Several
scholars have recognized the importance of proposing an
approach for classifying transport protein category from
their molecular functions on the basis of DDE profiles and
biochemical properties, thereby providing a powerful
prediction template. Le et al. (Ho, Q. T., et al., 2018, Le
et al., 2019; Le and Nguyen, 2019) evaluated the
classification performance of the Rab protein molecular
functions and the identification of SNARE proteins. A deep
CNN profile can obviously enhance various traditional
methods for prediction measurement of protein functions.
However, all DDE information must be incorporated into
deep CNN better to avoid missing important information.
Enzyme is a special type of protein, and sequence alignment
typically tests the similarities among amino acid sequences.
Protein prediction computing methods can be employed to fill
the gap between sequence data and the unfamiliar
characteristics of these proteins. The prediction of protein
functions is generally considered an issue of multilabel
classification. Researchers have tried numerous methods to
address this problem (Wang, Z et al., 2011). As an example,
a simple local alignment search tool (i.e., BLAST), which
searches remote counterparts and uses the information of
these homologous proteins to predict query sequence
function, is the first widely used method for predicting
protein functions. The most difficult method involves the
direct use of protein sequences without any other resource
for protein function prediction (Le et al., 2017). Several
researchers are currently developing methods for enzyme
classification. Jensen et al. (L. J. Jensen, et al., 2002)
predicted the first classes of enzymes by using
physical–chemical sequence-based characteristics and CNN
(L. J. Jensen, et al., 2002). One-dimensional convolution is
utilized to determine amino acid sequence-related features (Y.
Li and Shibuya, 2015), whereas two-dimensional convolution is
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associated with position-specific scoring matrixes (M. Spencer,
et al., 2014) or other function maps. The work of A. Ghulam
et al. demonstrates (Ghualm et al., 2020) analysis a profound
learning model based on a two-dimensional neural network
(2D-CNN-PSPD) with prediction of a pathway protein
domain. A. Ghulam et al. have suggested a model for
composition (DPC) function extraction profile dipeptide
deviation (DDE) model.

In this study, we proposed the use of a CNN and a
classification level learning for predicting secondary
protein structures. In protein sequence function prediction
using deep learning techniques, especially CNNs, are used
because they automatically utilize features after the data are
translated into a suitable image format. Although the model
proposed herein was evaluated in predicting enzymatic
activity, this method was applied in predicting enzyme-
specific proteins (E. I. Zacharaki, 2017). In the following
sections, the implementation of the system is described.
Moreover, the representation of protein structures, the
configuration of the CNN method, and the network output
fusion mechanism are discussed. The assessment and its
results are then discussed and debated. The protein
enzymes discussed in this work were from the UniProt
Bio-database (https://www.uniprot.org/UniProt). An NCBI
Protein database (https://www.ncbi.nlm.nih.gov/protein)
entry indicates both an enzymatic protein and a non-
enzymatic protein. The collected data from each DDE
vector are standardized with a 400-length profile. The
DDE model shows how score matrix functions can be
created by the 400 vectors of the original protein profiles.
All values are then synchronized with the same amino value,
followed by a sequence-length dividing the amino acid
frequency. Finally, all practical values are scaled using
several formulas. The vector profiles are obtained from the
mean and standard deviations of 400. The efficiency of this
approach is compared with that of normal DDE by using real
and simulated data sets for controlling overfitting. Moreover,
this proposed approach is compared with a two-dimensional
CNN (2DCNN), an approach that treats the DDE as images
with vector profiles. The proposed CNN is then trained to
enhance the predictive efficiency of our model in reducing
overfitting. The optimization is based on the implementation
of a stochastic gradient reduction. Network outputs are used
as class probabilities following SoftMax standardization at
the test stage. The Rectified Linear Unit (ReLU) activation
function is also launched to incorporate nonlinearity to
reflect the results well. The data are split into 5 -fold
cross-validation. The data are tested separately and then
cross-validated. The experiment is conducted according to
a running model with age 80 to identify the best model with
considerable results. A comparison of our proposed model
with two other machine learning classifications, including
GRU, reveals that our findings are consistent with those of a
previous research that implemented XGBOOST. The
performance of our proposed approach is considerably
better than that of the other models (Figure 4). In
summary, the results of this study demonstrate the

precision, sensitivity, precision, and precision of MCC and
ROC (AUC) of the proposed method in predicting secondary
protein structures. The accuracy of this method on the
uniform data set accuracy of the training set is 0.8762%.
For non-normalized data collection, the test accuracy is 97.3.
The training accuracy is 98.72. The proposed model is built
into an independent data set via fivefold cross-validation.

MATERIALS AND METHODS

CNN Proposed Method
We use new techniques to summarize the extracted features of
proteins. The features are 400 vectors score matrix of the same
amino acids that include the Convolutional neural network with
DDE. This method has been effectively applied by several
bioinformatics researchers. A number of scholars have
proposed theories to explain conduct experiments on some of
the commonly used machine learning algorithms, such as k-NN
(Keller et al., 1985), Random Forests (Breiman 2001), and
support vector machine (Chang and Lin, 2011; Cheng et al.,
2019) but we have used GRU and XGBOOST classifiers for
comparison results. Other comparing the proposed method
with 2DCNN might seem counterintuitive because 2DCNN is
an approach that treats DDE vector score matrix as images with
vector profiles. The new techniques for using DDE vector profiles
are used to summarize the same amino acids to generate a 20 ×
20-dimentional vector and a neural convolutive 2D network. We
implemented the DDE vector profiles method with a different
vector score matrix and then set the cross-validation datasets as
training datasets. An independent dataset means the data test is
used as an input within 2DCNN. Our proposedmethod identified
high-performance enzyme and non-enzyme proteins. The flow
diagram and analysis of the study are presented in Figure 1. It
includes various phases starting with data collection,
preprocessing, and then feature extraction set development.
Most experiments are performed via a 2DCNN method. A
flow chart of the analysis is shown in Figure 1, and the details
of the proposed method are defined as follows.

Learning and Classification Using CNN
Network
The proposed computational methods are based on 2DCNN
learning and classification to resolve most problems in deep
learning, machine learning, and data mining (Gao et al.,
2019). Several algorithms are used to make a computer know
what is required from 2DCNN experiment tools. Our proposed
deep learning architecture includes a 2DCNN for extracting
features to identify enzymatic proteins (Le et al., 2019). This
deep learning architecture is a deep architecture of neural
networks that can efficiently deal with sequential data in
various fields (E. I. Zacharaki, 2017). Only the hidden layer of
the essential gap can be seen between these two networks. A CNN
method has several hidden layers from which deep characteristics
and secret patterns can be identified. Herein, many hidden layers
are built in a deep network to be fair for our research question.
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Convolutional Neural Network Structure
This study was conducted using 2DCNN (Torrisi et al., 2019;
Cheng et al., 2019). CNN is successfully implemented in various
applications. Figure 1 reveals that 2DCNN is comprised of 2D
layers. The input layer parameters are included in the DDE vector
profiles of 20 × 20matrices. The transport of enzymatic proteins is
identified by using their DDE vector profiles as features vectors.
We then trained our CNN to improve our model’s predictive
efficiency and control overfitting. We used input as image of the
window size by 20 × 20 length vectors profile features that result
from the data. We assumed that in the layers to implement CNN,
the DDE vector profiles of the 20 × 20matrices look like an image

pattern. Consequently, the input in the CNN model (M.S.
Klausen, et al., 2019; Jones, 1999; Jones and Kandathil, 2018)
is like DDE vector profiles or an image pattern. More hidden
layers can quickly be used to distinguish non-enzyme and enzyme
proteins in the CNN network. The combined filter layers (with
32, 64, and 128 filters) and additional parameters in this analysis
are listed in Table 1.

For three consecutive convolutional computational blocks,
batch normalization, and rectified linear unit activation (Nair
and Hinton, 2010), optional (the dropout ratio is set) and max-
pooling layers are used in the architecture proposed by the CNN
system to completely connect the layers (Qi et al., 2018). These
effects are less shocking if local features are taken into account;
the co-evolutionary layer tests the neuronal output related to local
input regions. A 2D convolution between a series of filters is
added to each input channel. By summing the results across every
channel, the 2D activation maps are calculated, and then each
filter is stacked to generate a 3D output volume. Batch
standardization normalizes every function map channel by
spatial locations and batch instances by averaging. In ReLU,
the activation function, as with the max (0, x) threshold, is an
element-sensitive activation. The drop-out layer is used by chance
to lower the overfitting of CNN devices during preparation. The
dropout is evaluated by conducting content analyses to validate
and separate sets for the set purpose. The bundling layer conducts

FIGURE 1 | Proposed framework model.

TABLE 1 | Parameters of the CNN model settings.

Parameter name Recommendation

Learning rate 0.001
Activation function ReLU
Cost function Cross-entropy
Optimizer Adam
Dropout rate 0.4
Width 3
Depth 128
Epoch 80
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a down-sampling procedure in the spatial dimensions to capture
the key global elements with a fixed length. The last layer is totally
connected, and the class values are predicted.

Normalizes every function map channel by spatial locations
and batch instances by averaging. In ReLU, the activation
function, as with the max (0, x) threshold, is an element-
sensitive activation. The drop-out layer is used by chance to
lower the overfitting of CNN devices during preparation. The
dropout is evaluated by conducting content analyses to validate
and separate sets for the set purpose. The bundling layer conducts
a down-sampling procedure in the spatial dimensions to capture
the key global elements with a fixed length. The last layer is totally
connected, and the class values are predicted.

Training Cross-Validation and Independent
as Test Sets
All analyses are conducted using the expected CNN output as a
probability vector. Each enzyme group identifies mechanisms
through which the CNN’s output is determined by employing a
loss feature that imposes a penalty on classification errors. The
CNN parameters are trained to minimize this average loss over
the noted (workout) samples. The SoftMax loss function (i.e., the
SoftMax operator followed by the logistic loss function) is used to
evaluate probability distribution across groups. Optimization is
based on a stochastic gradient downgrade implementation. At the
test point, network outputs are used as class probabilities
following SoftMax standardization.

Multiple Layers Generating for Deep Neural
Network
This study is conducted using CNN, which is the largest deep neural
network. CNN is effectively used in many fields, in computer vision,
especially where the input typically is a 2D pixel image density
matrix (Lakhani and Sundaram, 2017). Herein, the 2D structure of
the CNN input image architecture (Krizhevsky et al., 2012; Yasaka
et al., 2018) is used, and the equivalent 2DDE vector–matrix inputs
with a dimension of 20 × 20 are conveniently manufactured. The
model 2DCNN aims to accumulate the hidden figures in the profiles
of the vector m instead of 2D. The DDE feature profiles are then
connected from the input layer to the output layer through a few
hidden layers to the 2DCNN architecture. Figure 1 explains the
mechanism by which a DDE-vector profile is embedded in a CNN
model and then transferred through a series of convolutive,
nonlinear, down sampled, and completely connected layers and,
eventually, outputs.

The traditional CNN architecture (Wellem, et al., 2018) is
typically adopted to develop the deep enzyme architecture we
have designed in CNN. Seven secret layers, including a 2D
convolution layer, a single activation feature, a pooling layer, a
flattening layer, and completely connected layers are used in our
model. The first layer in a CNN is an overlapping layer. In
particular, a DDE profile in the first layer of our CNN is a method
for performing 2D convolution, with some existing parameters,
such as nxn kernel size, f filters, 1X1 steps and 1X1 zero padding.
The respective motif features were filtered through convolutional

operations. We also introduce an activation function for ReLU to
integrate non-linearity so that the model can better reflect our
performance. Additional 2DCNN max-pooling layers are added
to minimize matrix size and remove non-maximum values and
overfit power, including 1X1 additional path measurements. We
add flattening layers to flatten the input before applying the fully
connected layers. The sigmoid activation function is used
following this step to determine whether or not every neuron
can be activated.

CNN method consists of several layers with various
parameters and output types. They are composed of 2D zero
padded layers, 2D converting layers, and 2D max packing layers
and filters with different numbers. To construct a high-quality
model, we specify several layers with various parameters in the
hidden layer. Figure 1 provides an explanation for 2D converting
layers, 2D max packing layers, and 2D zero padding layer, as well
as complete 2D pooling layer. For these layers and parameters,
the following can be specified.

Zero Padding 2D Layer
In zero padding layer, we set and add the values at the beginning
and end of the 20 20 matrices. The zero padding layers allow us to
apply the filter to the border of the output values. The matrix is
shifted to a dimension of 20 20, and zero padding is applied to this
matrix. Zero padding is a mechanism that enables one to
maintain the original size of the input. With each
convolutional layer, just as we determine how many filters to
have and the size of the filters, we may also decide whether or not
to use the padding.

Convolution 2D Layer
In 2D matrix convolution, 3 × 3 sizes are added. We have
studied the kernel sliding windows with tiny 3 × 3 matrices
and turn to other matrices until the end. The phase of 2D
convolutional layers is shown in Figure 1. It has a dense layer,
a dense output layer, and three convolutional layers. The
input size of the images coming into this CNN is defined as
20 × 20, and the filter size of the first convolutional layer is 3 ×
3, which is defined in Keras with parameter kernel size. The
5 × 5 size is defined by the second conv layer, whereas the
third conv layer is defined by 7 × 7.

2D Layers of Max Pooling
Usually, these layers stand after convolution layers. The
maximum pool layers have several parameters, i.e., loop size
and stride. In this study, we use two measures to build the 2D
layers of max pooling. The goal of using max pooling layers is to
delete all maximum values in that filter and to reduce time
consumption in the next layer.

Flatten Layers
Layers are applied to flatten the data to turn the data matrix into a
vector. Application layers are also used in the output layers.
Between the convolutional layer and the fully connected layer is a
“flat” layer. Flattening transforms a 2D feature matrix into a
vector that can be fed into a fully connected neural network
classifier.
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Dense Layers
The layer is validated using a regular, fully connected neural
network. Provided that all nodes in the previous layer are
interconnected, nodes with completely connected networks can
quickly learn from the previous nodes. Therefore, our model will
learn a lot of data and perform better. Using sequential (dense)
layers, one or more completely connected layers can be added.
With a dropout layer, we can usually follow each fully linked layer
and learn more about dropout in our Neural Network
Hyperparameter Guide by using sequential (dropout) layers.

Dropout Layers
Dropout layers are added to improve our model’s predictive
efficiency and avoid overfitting. In this work, the drop-off values
are integer values between 0 and 1. Dropout layers are used to
mask portions of their output through random means to avoid
overfitting (Srivastava, A., et al., 2014). This occurs when the
remaining neurons are multiplied by 1/p (where p represents the
likelihood of an element being dropped) and by removing the
random part of hidden neurons. For our implementation, the
dropout ratio is set at 0.4.

Rectified Linear Unit (ReLU)
ReLU is the activation function used to discriminate against
enzyme proteins during CNN implementation. For all deep
neural networks, ReLU is the primary activation function. The
characteristic of ReLU activation is defined as:

f(x) � max(0, x) (1)

where x is the number of neural network inputs.

Softmax
Several aspects of this study warrant further discussion. Some of
these aspects are the use of SoftMax activation function to examine
circumstances under which the final output layer consists of two
neurons corresponding to the two classification effects. The two
neurons are fully bound to the previous layer. Tensorflow (Abadi,

2016) and TF. Learn (Tang, 2016). Overall, these studies support the
validity of implementing the deep learning CNN architecture.
SoftMax (normalized exponential function) is composed of linked
layers that are a formula-defined logistic function:

σ(z)i � ezi

∑k
k�1ezi

, (2)

where z is the K-dimensional vector input vector, the
K-dimensional vector r(z) is the actual range (0, 1) values, and
the jth class is the expected likelihood of the sample vector of x.

A possible interpretation of this finding is that various layers
and the overall number of trainable 147,682 parameters found in
2DCNN are shown in Table 2. At present we determine the same
number of layers and the majority of the parameters in each layer
across all five classification challenges. There was only one non-
shared parameter among the five classes, and that was the dropout
value. As such, each of them has a separate optimal dropout value.
So, five complexes categorization can produce a dropout value of
0.2, 0.1, 0.1, 0.2, and 0.1. Ourmodel is consistent with all complexes
of the electron transport chain due to this.

Data Collection
The protein enzyme entries of theUniProt Bio-database (https://www.
uniprot.org/uniprot) in this paper are evaluated. The collection of
enzymatic protein and not enzymatic proteins are in taken fromNCBI
Protein database (https://www.ncbi.nlm.nih.gov/protein) entrance.
First, data are collected from the UniProt database, a detailed tool
for detecting enzyme protein or non-enzyme protein (Poux et al.,
2014). The entire sequencewith the annotation “protein level proofs” is
selected. Subsequently, sequences of the similarities are deleted to
prevent overfitting the dataset problem. The collected sequences are
from the data sets for preprocessing data: cross-validation and
independent data sets. Table 3 lists all data sets with cross-
validation and independent datasets used in this study.

Dipeptide Deviation Extraction Mean (DDE
Models)
The data of every DDE vector feature profile with a size of 400 are
normalized. The DDE model shows how the 400 vector features
score matrix functions from the original protein profiles can be
generated. All values are first synchronized with the same amino
value. The amino acid frequency is then divided by sequence
length. Finally, all functional values are scaled using the following
formula: X. Means and standard deviations generated from 400
vector features are obtained from vector score feature profiles. All
vector profiles are configured into the DDE and then 2D method.
Dipeptide composition (Bhasin and Raghava, 2004) has been
used in predicting different types of protein sequence functions
(Dhanda et al., 2013).

TABLE 2 | Used all model layers and trainable parameters in 2DCNN.

Layer (type) Output shape Param #

conv2d_4 (Conv2D) (None, 1, 20, 32) 5,792
leaky_re_lu_5 (LeakyReLU) (None, 1, 20, 32) 0
max_pooling2d_4 (MaxPooling2 (None, 1, 10, 32) 0
dropout_5 (Dropout) (None, 1, 10, 32) 0
conv2d_5 (Conv2D) (None, 1, 10, 64) 18,496
leaky_re_lu_6 (LeakyReLU) (None, 1, 10, 64) 0
max_pooling2d_5 (MaxPooling2 (None, 1, 5, 64) 0
dropout_6 (Dropout) (None, 1, 5, 64) 0
conv2d_6 (Conv2D) (None, 1, 5, 128) 73,856
leaky_re_lu_7 (LeakyReLU) (None, 1, 5, 128) 0
max_pooling2d_6 (MaxPooling2 (None, 1, 3, 128) 0
dropout_7 (Dropout) (None, 1, 3, 128) 0
flatten_2 (Flatten) (None, 384) 0
dense_3 (Dense) (None, 128) 49,280
leaky_re_lu_8 (LeakyReLU) (None, 128) 0
dropout_8 (Dropout) (None, 128) 0
dense_4(Dense) (None, 2) 258

TABLE 3 | Statistics of all retrieved Enzyme Protein and Non-enzyme proteins.

Used data points Training Independent

Enzyme protein 652 501 129
Non-enzyme proteins 1,108 859 249
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Therefore, we have also created a novel amino acid
composition-based function descriptor, namely, Dipeptide
Deviation from Expected Mean (DDE), for the effective
separation of enzymes and non-enzymes from protein
sequence structures (Saravanan and Gautham, 2015). The
vectors of the function differentiate the distance between a real
sequence and a representation of a binomial and uniform
distribution theoretical sequence. DDE does not focus on
alignment of protein relationships but enables end-users to
imagine interrelationships within a set of proteins without
having a prior assumption of those proteins (Carr et al., 2010).
Previous studies (Chen et al., 2014; Saxena et al., 2018) reported
differences in the composition of dipeptides between enzymes
and non-enzymes. We use the composition aspect of dipeptides
to calculate the variance of dipeptide frequencies from expected
mean values. Concerning the variance from the predicted mean,
we call this behavior DDE. Three parameters were determined to
generate the DDE function vector: Scale of the composition of
dipeptide (Dc), mean theoretical value (Tm), and variance
theoretical value (Tv).

These three parameters and DDE are determined. DC 1) is the
dipeptide composition calculation for dipeptide I in peptide P:

Dc(i) � ni
N
. (3)

A total of 400 possibilities (20 × 20 regular amino acids) are
available for dipeptides. However, not all of them will happen in

all sequences. Dipeptide I exists at frequency N, and N is at l-1
(i.e., in P, the number of potential dipeptides). TM 1) indicates the
theoretical average:

TM(i) � Ci1

CN
× Ci2

CN
(4)

where Ci1 is the number of the first amino acid codons, andCi2 is the
number of the second amino acid codons in the specified dipeptide i.
The total number of codons possible is the CN minus three stop
codons (i.e., 61). Given that TM (i) measurement is not based on
peptide P, all 400 dipeptides are pre-computed at once by the TM[i]
method. TV (i) provides the theoretical variation of dipeptide I:

Tv(i) � TM(i)(1 − TM(i))
N

. (5)

The theoretical mean of I as determined using Eq. is TM(i) 2,
and N is again l-1, the P number of dipeptides. Finally, it
calculates DDE(i) as

DDE(t) � Dc(i) − Tm(i)����
TV(i)

√ . (6)

For each of the 400 dipeptides, DDE is computed. The 400-
dimensional function vector is

DDEp � {DDE(i),...,...DDE(n)}, where, i � 1, 2, ..., 400. (7)

FIGURE 2 | Training and validation accuracy and loss predicted score.

TABLE 4 | CNN identification of the optimal parameter for various models.

Cross-validation Independent

Model ACC Sensi Speci MCC ACC Sensi Spec MCC
DDE-CNN 0.8762 0.9028 0.8497 0.7545 0.7621 0.7621 0.7621 0.5276
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EVALUATION AND PERFORMANCE

The data presented herein provide evidence the superior
predictive test performance of our proposed method in terms
of accuracy, sensitivity, precision, MCC, and ROC (AUC)
(i.e., the coefficient of similarity of Matthew). In our
definitions, TP, FP, TN, and FN stand for true positive, false
positive, true negative, and false negative. The threshold is based
on sensitivity, characteristics, precision, and MCC, and the
threshold is chosen to maximize the balance between
sensitivity and specificity.

Sensitivity � TP

TP + FN
(8)

Specificity � TN

TN + FN
(9)

Accuracy � TN + TN

TP + FN + TN + FN
(10)

MCC � TP × TN − FP + FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ (11)

RESULTS

Assessment of Predictive Ability
One iteration of each batch of cross-validation data updates the
model parameters during the training process and, at this stage,
will reliably achieve training cross-validation. Only the
independent collection is used to assess test accuracy at the
end of each training cycle without intervening in model
parameters. As shown in Figure 2, the training’s precision
steadily converged with the number of training periods.
Therefore, model training is adequate for 150 epochs. The
detailed testing of the model’s generalization skill is always less
than the precision of the teaching.

In Figure 2, the blue line bubbles indicates improvements in
the iteration times and the accuracy of the training. The blue line
depicts the number of iterations and the improvement in the
accuracy of the experiment’s cross-validation in preparation.
Only after the data are educated can the corresponding
parameters be calculated. The precision of the test set is then
obtained. During the workout, the iteration process influences
the parameter description, which in turn influences the results of
the test. The difference in prediction precision is seen in the
figure with the number of iterations. A loss function, which
assigns a penalty to classification errors, may be used to calculate

FIGURE 3 | CNN model ROC (AUC), precision and recall.

FIGURE 4 | Comparison of CNN with GRU and XGBoost.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7593848

Sikander et al. Prediction of Functions of Enzymes Proteins

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


the model output. The test loss value for each cycle is shown in
Figure 2.

We test the model on the structures of both normalized and
non-normalized data. The structured information includes
equivalent numbers of individual class instances. Cross-
validation data sets have a 400 length DDE vector and
separate datasets that include 400 length features on the same
data points. Test precision on the uniform data set is 0.85.6, and
training exactness is 98.72. Test accuracy is 97.3 for a non-
normalized data set. The precision of the training is 98.72.
The difference between the two is minimal. We then plot the
training and testing learning curves of the model to obtain more
details.

Figure 2 demonstrates the model’s training accuracy on the
structured data and in checking individual learning sets. The
normalized learning curve indicates that it has reached the
maximum precision in approximately 150 epochs. Although

the accuracy of the non- normalized learning curve took
several years, it did not attain the accuracy of the normalized
learning curve. We have selected 1,360 enzymes from the PDB
database, excluding enzymes that generate several responses and
are linked to many enzymatic functions. The number of samples
per class is listed in Table 1. The data set has been divided into
five folds.

For the training set, four folds and one test set are used. For
preparations and validations, three folds of the training set are
used. Cross-validation is performed to change the model
parameters. The test output is calculated after selecting the
model parameters. We compare the proposed model with the
architecture two of Evangelia in this experiment. The same and
training sets are used in both approaches. The median values are
slightly different (Table 4) because the number of search samples
and comparative experiments are required. The red figures in
Table 4 show the proportion of each enzyme successfully

TABLE 5 | Comparison with different filters.

Filter cross-validation Independent

Sens Spec Acc MCC Sens Spec Acc Mcc
32 0.899 0.876 0.888 0.778 0.799 0.810 0.805 0.614
32–64 0.895 0.858 0.877 0.756 0.763 0.828 0.795 0.596
32–64–128 0.894 0.862 0.878 0.759 0.793 0.855 0.824 0.657

TABLE 6 | Efficiency of different methods in terms of various feature extraction schemes.

Cross-validation Independent

Classifiers ACC Sensi Speci MCC ACC Sensi Spec MCC
CNN 0.8762 0.9028 0.8497 0.7545 0.7621 0.7621 0.7621 0.5276
GRU 0.8584 0.8757 0.8411 0.7481 0.9001 0.9459 0.8540 0.8034
XGBOOST 0.8088 0.7530 0.8646 0.6445 0.9055 0.8111 1 0.8242

FIGURE 5 | validation accuracy of different optimizers in this study (The epoch ranges from 0 to 150).
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predicted; these figures are the true positive rate. The accuracy of
Evangelia and SRN is 90.83 and 92.08%, respectively.

CNN Model Predictive Ability of ROC (AUC)
Curves
In predicting enzyme protein sequences, we define both the positive
and negative data for non-enzyme proteins. The data set and
training data set are all independent proteins of this kind. We
performed fivefold cross-validations to build our model with
considerable success into our independent data set. We split the
data into 5-fold sections of the same data set, followed by the
independent data set as the test data. The other cross-validation
datasets are used as the training data. The original dataset is reused to
test the independent experimental data set. The identification
performance of our proposed model is shown in Table 3.

In the enzyme protein sequence, we defined positive data and
negative data for non-enzyme proteins. The data set and training
dataset are all independent proteins of this kind. We used five-
fold cross-validations to build our model with considerable
success into our independent dataset. It implies we have split
data into ten 5-fold sections of the same, followed by independent
as test data, and then the other cross -validation datasets as
training data. To order to test the experimental independent

dataset, the original dataset was reused our proposed model
identification performance as shown in table 4.

The ideal subset of features is considered as class labels, which
are inserted as variables in the CNN classifier, and the
independent test data sets are expected to have enzymatic
proteins. AUC, ACC, Sn, Sp, and MCC values are determined
via the fivefold cross-validation. The ROC curve and
precision–recall are drawn to determine the model’s predictive
efficiency (Figure 3).

Improvement in the Performance and
Prevention of Overfitting in Identifying
Enzyme and Non-enzyme Proteins
The amount of time used in the experiment substantially
influences the performance result. Our findings are consistent
with previous results showing the best time from the first to the
150 epoch. We encourage further research examining the best
model with considerable performance to conduct our experiment
following a running model with 150 epochs. In this section, we
used different parameter then achieved the results of the analysis
summarized in Table 5. When attempting to change the dropout
value from 0 to 1. As shown in table. The aim is to improve the
performance of the neural network and ensure overfitting within

FIGURE 6 | Confusion matrices of: (A) independent test (B) cross-validation test.

TABLE 7 | Existing method comparison accuracy and ROC(AUC).

S.no Previous method Accuracy ROC(AUC) References

1 SVM classifier. jackknife cross-validated 76.46% 0.8019 Zhang et al. (2020)
2 Jackknife test in identifying 62.86% 0.7898 Niu et al. (2015)
3 Support Vector Machines (SVM) and NN 73.5% — Amidi et al. (2016)
4 Proposed 2DCNN with DDE Cross-validation 0.8762%, Independent 0.7621%.% 0.95% —
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the data sets. We can see that the results improved and compared
to the other performers and reached Sens 0.899, Spec 0.876, Acc
0.888, and MCC 0.778 based on cross-validation. The respective
Sens 0.799, Spec 0.810, Acc 0.805, Mcc 0.614 based using test
independent sets. These output values are 80.5%, 61.4%,
respectively based on MCC, in separate datasets. Hence, this
dropout value is used to build our final model.

Comparison of the Proposed System With
Other Classifiers
These findings are less surprising because we have used the same data
set and compared the other major classifiers with our method. A
possible reason for this discrepancy might be that we have used the
results from both cross-validation and independent data sets and the
comparison. We have used GRU (Baccouche et al., 2020) and
XGBOOST (Pang et al., 2019). The performance at the same
stage of the proposed method and the other classifiers is
summarized in Table 6. Results show that both the cross-
validation and independent data sets perform better than the
other methods. Several findings of this comparison, such as the
results of cross-validation and independent data sets, must be
discussed in detail. Our method predictions results are consistent
with previous results showing ROC AUC based on comparison of
other twomachine learning classifiers, such as GRU (Baccouche et al.,
2020) and XGBOOST XGBOOST (Pang et al., 2019). According to
the results of our comparison, the performance of our proposed
method is considerably better than that of other methods (Figure 4).

ROC (AUC Curves With Various
Dimensional Reduction Methods
DDE features extraction is often used for experiments that involve
different experiment data sets. We encode the features of enzymatic
proteins from the fasta format by using the vectors matrix with the
DDE function with a length of 400.We then use different data sets to
implement the DDE process experiment. After removing redundant
and unnecessary information, we obtain vector matrix features with
a length of 400. Optimum parameters are calculated in DDE, after
then we used a DDE function to with selected features. We then
introduce the CNN model classification for the predicting the
functions of enzymatic protein sequences.

Hyperparameter Optimizer Performance
The hyperparameters used differ fromparameters of amodel trained
in architectural context propagation. The choice of such
hyperparameters depends on a number of factors if a profound
learning model is created. The performance of the model is greatly
affected. For example: the number of overlapping layers, the number
of filters in each layer, the number of epochs, the dropout rate and
the optimizers, which affect the profound learning model. We need
to define a number of parameters to speed up the workout and avoid
duplication in order to change hyperparameters. As Chollet
(F.Chollet, 2015) has suggested, every step of the above
mentioned method for tuning hyperparameters is incorporated as
follows into the process of tuning:

Different optimizers: Rmsprop, Adam, Nadam, Sgd and
Adadelta optimized the validity precision of different
optimizers in this trial dependent on CNN networks. For each
optimization phase, the prototype was reset, i.e. a new network
was created to allow the different optimizers to be comparable
equally. In general, the results are illustrated in Figure 5 And we
wanted to build our final model for Adam, an optimizer with
consistent results. In the same field, Adam is also a preferred
optimizer (N.Q.K. Le et al., 2018). As per Figure 5. We have
found that our validation accuracy compared to the training
accuracy did not improve after the 150th epoch. Therefore, at the
150th level, we agreed to complete our preparation to cut down
on training time and to avoid overfitting. Then we tuned for the
best outcomes of this data set the other hyperparameters within
our model (e.g. learning rate, batch rate or drop-out rate).

Confusion Matrices Predicted Lables
Overfitting is the big challenge in all matters of machine
learning that our classification will only work well in our
training sets, only if an undefined dataset gets worse. We
have therefore also used an autonomous test to make sure
our concept fits also in a blind dataset. As noted in the previous
section, 151 enzymes and 249 non-enzymes were in our
independent dataset. None of the samples appeared in the
exercise set. In the Fig two matrices of uncertainty are shown as
informative results. As shown in Figure 6 and consistent with
our independent test results’ cross-validation findings. To be
more detailed, our model achieved accuracy 80.5% in
independent datasets outcomes. Compared to the cross-
validation result, there are not enough variations, and it
should illustrate that there was not any overfitting in our
model. The use of dropouts in our CNN structure and the
overfitting was shown to be effective (N. Srivastava et al.,
2014).

Comparison With Previous Methods
Previous research (Zhang et al., 2020) has supported the
hypothesis that used a feature selection approach to
construct a support vector machine (SVM)-based predictor
to classify human enzymes using the amino acid composition
(AAC), the composition of -spaced amino acid pairs
(CKSAAP) and chosen informative amino acid pairs. To
train and test the proposed model, a training dataset with
1,117 human enzymes and 2099 non-enzymes was created, as
well as a test dataset with 684 human enzymes and 1,270 non-
enzymes. A protein-protein interaction (PPI) network-based
approach for predicting enzyme families was created in this
study. As an example, the jackknife test had a success rate of
62.86 percent in identifying enzyme family class (Niu et al.,
2015). The positive results suggest that the predictor described
in this work might be beneficial in enzyme research as shown
in table 7. The approach was used to estimate the enzymes-
specific protein domain association prediction and the
accuracy was 0.8762% percent, which is a significant
increase above the accuracy obtained in our earlier work
73.5% percent in (Amidi et al., 2016) when just structural
information was used.
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DISCUSSION

Enzymatic and Non-enzymatic protein sequence datasets are
used as cross-validation and independent experiment datasets.
By using the vector matrix with the DDE function with a length of
400, we encoded enzymatic protein features from the fasta
format. We obtained vector matrix features with a length of
400 after removing redundancies and unnecessary materials. We
used the proposed CNN model to show a superior model for the
entire set of filters, such as 32, 64, and 128 parameters, by using a
fivefold validation test set as independent classification. We
conducted all analyses using these filters in our proposed
CNN method, which achieved a cross-validation accuracy
score of 88.8%. Independent validation accuracy was 80.5%.
Additional variables were derived on the basis of ROC AUC
with fivefold cross-validation ROC (AUC) of 0.95%. We
compared the performance of our proposed model with that
of other models. The sensitivity of our model was 0.9028%,
specificity was 0.8497% metrics, and overall accuracy was
0.9133–0.8310% MCC score.

CONCLUSION

We used the CNN method proposed herein to differentiate
explicitly enzyme proteins and other protein functions. The
use of CNN in computational biology, particularly in protein
function prediction, may also improve our results. A structure-
based analysis of protein function shows ties concealed at the
sequence level and provides a framework for understanding
biological complexities on a molecular basis. The novel and
innovative approach proposed herein is for describing 3D
structures as a “batch of atoms (amino acids)” with
geometrical characteristics and for exploiting the derived
feature maps encoded with the DDE. We show that a DDE
features extraction model with a different vector score matrix
choice is generally more effective in reducing the chance of
overfitting. Given the prediction for enzymatic activities is
measured, the tool is the proteins based on the enzyme. The
profound information model used to predict protein functions
can provide rapid notes on extensive datasets, which opens up
opportunities for applications, such as pharmacological target
identification. However, there may still not be enough data
available to accurately analyze the efficiencies and the
confusing factors of evolutions in creating the system of non-

homologous proteins. This system promises to accurately predict
the functions of structural proteins.

DATA AVAILABILITY STATEMENT

The data sets analyzed are open to the public through this study.
The complete datasets can be found in the NCBI protein database
for enzymatic protein. Then, in the data availability directory, we
have applied all our data preprocessing to our fasta protein data
collection and then can be removed similarity from the CD HIT
web tool (http://weizhong-lab.ucsd. Furthermore, on request
from the respective author, the code used to help the studying
findings is available. The protein enzyme entries of the UniProt
Bio-database (https://www.uniprot.org/uniprot?) in this paper
are evaluated. The collection of enzymatic protein and not
enzymatic proteins are in taken from NCBI Protein database
(https://www.ncbi.nlm.nih.gov/protein) entrance. First, data are
collected from the UniProt database, a detailed tool for detecting
enzyme protein or non-enzyme protein. Further inquiries can be
directed to the corresponding author.

ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation and
institutional requirements. Written informed consent for
participation was not required for this study in accordance
with the national legislation and the institutional requirements.

AUTHOR CONTRIBUTIONS

YW, RS, and XW jointly contributed to the design of the study. YW
conceptualized the review and finalized themanuscript. RSwrote the
initial manuscript. XW helped to draft the manuscript. AG revised
the manuscript and polished the expression of English. All of the
authors have read and approved the final manuscript.

FUNDING

This work was supported by the National Natural Science
Foundation of China (No. 61872281).

REFERENCES

Abadi, M. (2016). “TensorFlow: Learning Functions at Scale,” in Proceedings of the
21st ACM SIGPLAN International Conference on Functional Programming,
Nara Japan, September 18 - 24, 2016 (ACM) 51 (1), 1, 2016 . ICFP’16doi:10.1145/
3022670.2976746

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al.
(1997a). Gapped BLAST and PSI-BLAST: a New Generation of Protein Database
Search Programs.Nucleic Acids Res. 25 (17), 3389–3402. doi:10.1093/nar/25.17.3389

Altschul, S., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al.
(1997). Gapped BLAST and PSI-BLAST: a New Generation of Protein Database

Search Programs. Nucleic Acids Res. 25 (17), 3389–3402. doi:10.1093/nar/
25.17.3389

Amidi, A., Amidi, S., Vlachakis, D., Paragios, N., and Zacharaki, E. I. (2016). “A
Machine Learning Methodology for Enzyme Functional Classification
Combining Structural and Protein Sequence Descriptors,” in International
Conference on Bioinformatics and Biomedical Engineering, Granada, Spain,
April 20-22, 2016 (Cham: Springer), 728–738. doi:10.1007/978-3-319-
31744-1_63

Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger,
E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A., O’Donovan, C.,
Redaschi, N., and Yeh, L. S. (2004). UniProt: the Universal Protein Knowledgebase.
Nucleic Acids Res. 32 (1), D115–D119. doi:10.1093/nar/gkh131

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 75938412

Sikander et al. Prediction of Functions of Enzymes Proteins

http://weizhong-lab.ucsd
https://www.uniprot.org/uniprot?
https://www.ncbi.nlm.nih.gov/protein
https://doi.org/10.1145/3022670.2976746
https://doi.org/10.1145/3022670.2976746
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1007/978-3-319-31744-1_63
https://doi.org/10.1007/978-3-319-31744-1_63
https://doi.org/10.1093/nar/gkh131
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Baccouche, A., Garcia-Zapirain, B., Castillo Olea, C., and Elmaghraby, A. (2020).
Ensemble Deep Learning Models for Heart Disease Classification: A Case Study
from Mexico. Information 11 (4), 207. doi:10.3390/info11040207

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation Learning: A
Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35 (8),
1798–1828. doi:10.1109/tpami.2013.50

Bhasin, M., and Raghava, G. P. S. (2004). ESLpred: SVM-Based Method for
Subcellular Localization of Eukaryotic Proteins Using Dipeptide
Composition and PSI-BLAST. Nucleic Acids Res. 32, W414–W419.
doi:10.1093/nar/gkh350

Blomberg, N., Gabdoulline, R. R., Nilges, M., andWade, R. C. (1999). Classification
of Protein Sequences by Homology Modeling and Quantitative Analysis of
Electrostatic Similarity. Proteins 37 (3), 379–387. doi:10.1002/(sici)1097-
0134(19991115)37:3<379:aid-prot6>3.0.co;2-k

Breiman, L. (2001). Random Forests. Machine Learn. 45 (1), 5–32. doi:10.1023/a:
1010933404324

Carr, K., Murray, E., Armah, E., He, R. L., and Yau, S. S.-T. (2010). A RapidMethod
for Characterization of Protein Relatedness Using Feature Vectors. PLoS ONE 5
(3), e9550. doi:10.1371/journal.pone.0009550

Chang, C.-C., and Lin, C.-J. (2011). Libsvm. ACM Trans. Intell. Syst. Technol. 2 (3),
1–27. doi:10.1145/1961189.1961199

Chen, H., Xie, W., He, H., Yu, H., Chen, W., Li, J., et al. (2014). A High-Density
SNP Genotyping Array for Rice Biology and Molecular Breeding.Mol. Plant 7,
541–553. doi:10.1093/mp/sst135

Cheng, J., Choe, M. H., Elofsson, A., Han, K. S., Hou, J., Maghrabi, A. H. A., et al.
(2019). Estimation of Model Accuracy in CASP13. Proteins 87 (12), 1361–1377.
doi:10.1002/prot.25767

Chollet, F. (2015). Keras: Deep Learning Library for Theano and Tensorflow.
Available at: https://keras.io/k.

Dehzangi, A., López, Y., Lal, S. P., Taherzadeh, G., Michaelson, J., Sattar, A., et al.
(2017). PSSM-suc: Accurately Predicting Succinylation Using Position Specific
Scoring Matrix into Bigram for Feature Extraction. J. Theor. Biol. 425, 97–102.
doi:10.1016/j.jtbi.2017.05.005

Dhanda, S. K., Gupta, S., Vir, P., and Raghava, G. P. S. (2013). Prediction of IL4
Inducing Peptides. Clin. Dev. Immunol. 2013 (1), 1–9. doi:10.1155/2013/263952

Gao, R., Wang, M., Zhou, J., Fu, Y., Liang, M., Guo, D., et al. (2019). Prediction of
Enzyme Function Based on Three Parallel Deep CNN and Amino Acid
Mutation. Ijms 20 (11), 2845. doi:10.3390/ijms20112845

Ghualm, A., Lei, X., Zhang, Y., Cheng, S., and Guo, M. (2020). Identification of
Pathway-specific Protein Domain by Incorporating Hyperparameter
Optimization Based on 2D Convolutional Neural Network. IEEE Access 8,
180140–180155. doi:10.1109/access.2020.3027887

Illergård, K., Ardell, D. H., and Elofsson, A. (2009). Structure Is Three to Ten Times
More Conserved Than Sequence-A Study of Structural Response in Protein
Cores. Proteins 77 (3), 499–508. doi:10.1002/prot.22458

Jensen, L. J., Skovgaard, M., and Brunak, S. (2002). Prediction of Novel Archaeal
Enzymes from Sequence-Derived Features. Protein Sci. 11 (12), 2894–2898.
doi:10.1110/ps.0225102

Jones, D. T., and Kandathil, S. M. (2018). High Precision in Protein Contact
Prediction Using Fully Convolutional Neural Networks and Minimal Sequence
Features. Bioinformatics 34 (19), 3308–3315. doi:10.1093/bioinformatics/
bty341

Jones, D. T. (1999). Protein Secondary Structure Prediction Based on Position-
specific Scoring Matrices 1 1Edited by G. Von Heijne. J. Mol. Biol. 292 (2),
195–202. doi:10.1006/jmbi.1999.3091

Kearnes, S., McCloskey, K., Berndl, M., Pande, V., and Riley, P. (2016). Molecular
Graph Convolutions: Moving beyond Fingerprints. J. Comput. Aided Mol. Des.
30 (8), 595–608. doi:10.1007/s10822-016-9938-8

Keller, J. M., Gray, M. R., and Givens, J. A. (1985). A Fuzzy K-Nearest Neighbor
Algorithm. IEEE Trans. Syst. Man. Cybern. 15 (4), 580–585. doi:10.1109/
tsmc.1985.6313426

Klausen, M. S., Jespersen, M. C., Nielsen, H., Jensen, K. K., Jurtz, V. I., Sønderby, C.
K., et al. (2019). NetSurfP-2.0: Improved Prediction of Protein Structural
Features by Integrated Deep Learning. Proteins 87, 520–527. doi:10.1002/
prot.25674

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet Classification
With Deep Convolutional Neural Networks,” in Advances in Information
Processing Systems 25, Lake Tahoe Nevada, December 3—6, 2012 (Curran

Associates Inc), 1097—1105. Available online at: https://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
(Accessed Jan 22, 2018).

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet Classification with
Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 25,
1097–1105.

Lakhani, P., and Sundaram, B. (2017). Deep Learning at Chest Radiography:
Automated Classification of Pulmonary Tuberculosis by Using Convolutional
Neural Networks. Radiology 284 (2), 574–582. doi:10.1148/radiol.2017162326

Le, N.-Q. -K., Ho, Q.-T., and Ou, Y.-Y. (2018). Classifying the Molecular Functions
of Rab GTPases in Membrane Trafficking Using Deep Convolutional Neural
Networks. Anal. Biochem. 555, 33–41. doi:10.1016/j.ab.2018.06.011

Le, N.-Q. -K., Ho, Q.-T., and Ou, Y.-Y. (2017). Incorporating Deep Learning with
Convolutional Neural Networks and Position Specific Scoring Matrices for
Identifying Electron Transport Proteins. J. Comput. Chem. 38 (23), 2000–2006.
doi:10.1002/jcc.24842

Le, N. Q., Ho, Q. T., and Ou, Y. Y. (2018). Classifying the Molecular Functions of
Rab GTPases in Membrane Trafficking Using Deep Convolutional Neural
Networks. Anal. Biochem. 555, 33–41. doi:10.1016/j.ab.2018.06.011

Le, N. Q. K., and Nguyen, V.-N. (2019). SNARE-CNN: a 2D Convolutional Neural
Network Architecture to Identify SNARE Proteins from High-Throughput
Sequencing Data. PeerJ Comp. Sci. 5, e177. doi:10.7717/peerj-cs.177

Le, N. Q. K., Yapp, E. K. Y., Ou, Y.-Y., and Yeh, H.-Y. (2019). iMotor-CNN:
Identifying Molecular Functions of Cytoskeleton Motor Proteins Using 2D
Convolutional Neural Network via Chou’s 5-step Rule. Anal. Biochem. 575,
17–26. doi:10.1016/j.ab.2019.03.017

Lee, D., Redfern, O., and Orengo, C. (2007). Predicting Protein Function from
Sequence and Structure. Nat. Rev. Mol. Cel Biol 8 (12), 995–1005. doi:10.1038/
nrm2281

Li, Y., and Shibuya, T. (2015). “Malphite: A Convolutional Neural Network and
Ensemble Learning Based Protein Secondary Structure Predictor,” in 2015 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM),
Washington, DC, USA, 9-12 Nov. 2015 (IEEE), 1260–1266. doi:10.1109/
BIBM.2015.7359861

M. Torrisi, G. Pollastri, N. A. Shaik, K. R. Hakeem, B. Banaganapalli, and R. Elango
(Editors) (2019). Essentials of Bioinformatics, Volume I: Understanding
Bioinformatics: Genes to Proteins (Cham: Springer International Publishing),
201–234.

Nair, V., and Hinton, G. E. (2010). “Rectified Linear Units Improve Restricted
Boltzmann Machines,” in Proceedings of the 27th International Conference on
International Conference on Machine Learning (ICML’10),, Haifa Israel, June
21—24, 2010 (Toronto, ON: Department of Computer Science, University of
Toronto), 807–814.

Niu, B., Lu, Y., Lu, J., Chen, F., Zhao, T., Liu, Z., et al. (2015). Prediction of
Enzyme’s Family Based on Protein-Protein Interaction Network. Cbio 10 (1),
16–21. doi:10.2174/157489361001150309122016

Pang, L., Wang, J., Zhao, L., Wang, C., and Zhan, H. (2019). A Novel Protein
Subcellular Localization Method with CNN-XGBoost Model for Alzheimer’s
Disease. Front. Genet. 9, 751. doi:10.3389/fgene.2018.00751

Poux, S., Magrane, M., Arighi, C. N., Bridge, A., O’Donovan, C., and Laiho, K.
(2014). Expert Curation in UniProtKB: a Case Study on Dealing with
Conflicting and Erroneous Data. Database 2014, bau016. doi:10.1093/
database/bau016

Qi, Zhao., Lyu, S., Zhang, B., and Feng, W. (2018). Multiactivation Pooling Method
in Convolutional Neural Networks for Image Recognition, Wireless Commun.
Mobile Comput. 2018, 8196906. doi:10.1155/2018/8196906

Saravanan, V., and Gautham, N. (2015). Harnessing Computational Biology for
Exact Linear B-Cell Epitope Prediction: a Novel Amino Acid Composition-
Based Feature Descriptor.Omics: a J. Integr. Biol. 19 (10), 648–658. doi:10.1089/
omi.2015.0095

Saxena, R. K., Rathore, A., Bohra, A., Yadav, P., Das, R. R., Khan, A. W., et al.
(2018). Development and Application of High-Density Axiom Cajanus SNP
Array with 56K SNPs to Understand the Genome Architecture of Released
Cultivars and Founder Genotypes. Plant Genome 11, 180005–180010 180005.
doi:10.3835/plantgenome2018.01.0005

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning Important Features
through Propagating Activation Differences. CoRR. Available at: http://arxiv.
org/abs/1704.02685.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 75938413

Sikander et al. Prediction of Functions of Enzymes Proteins

https://doi.org/10.3390/info11040207
https://doi.org/10.1109/tpami.2013.50
https://doi.org/10.1093/nar/gkh350
https://doi.org/10.1002/(sici)1097-0134(19991115)37:3<379:aid-prot6>3.0.co;2-k
https://doi.org/10.1002/(sici)1097-0134(19991115)37:3<379:aid-prot6>3.0.co;2-k
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1371/journal.pone.0009550
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1093/mp/sst135
https://doi.org/10.1002/prot.25767
https://keras.io/k
https://doi.org/10.1016/j.jtbi.2017.05.005
https://doi.org/10.1155/2013/263952
https://doi.org/10.3390/ijms20112845
https://doi.org/10.1109/access.2020.3027887
https://doi.org/10.1002/prot.22458
https://doi.org/10.1110/ps.0225102
https://doi.org/10.1093/bioinformatics/bty341
https://doi.org/10.1093/bioinformatics/bty341
https://doi.org/10.1006/jmbi.1999.3091
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1109/tsmc.1985.6313426
https://doi.org/10.1109/tsmc.1985.6313426
https://doi.org/10.1002/prot.25674
https://doi.org/10.1002/prot.25674
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1148/radiol.2017162326
https://doi.org/10.1016/j.ab.2018.06.011
https://doi.org/10.1002/jcc.24842
https://doi.org/10.1016/j.ab.2018.06.011
https://doi.org/10.7717/peerj-cs.177
https://doi.org/10.1016/j.ab.2019.03.017
https://doi.org/10.1038/nrm2281
https://doi.org/10.1038/nrm2281
https://doi.org/10.1109/BIBM.2015.7359861
https://doi.org/10.1109/BIBM.2015.7359861
https://doi.org/10.2174/157489361001150309122016
https://doi.org/10.3389/fgene.2018.00751
https://doi.org/10.1093/database/bau016
https://doi.org/10.1093/database/bau016
https://doi.org/10.1155/2018/8196906
https://doi.org/10.1089/omi.2015.0095
https://doi.org/10.1089/omi.2015.0095
https://doi.org/10.3835/plantgenome2018.01.0005
http://arxiv.org/abs/1704.02685
http://arxiv.org/abs/1704.02685
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Spencer, M., Eickholt, J., and Jianlin Cheng, J. (2014). A Deep Learning
Network Approach to Ab Initio Protein Secondary Structure Prediction.
Ieee/acm Trans. Comput. Biol. Bioinform 12 (1), 103–112. doi:10.1109/
TCBB.2014.2343960

Srivastava, A., Singhal, N., Goel, M., Virdi, J. S., and Kumar, M. (2014).
Identification of Family Specific Fingerprints in β-lactamase Families. The
Scientific World Journal.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: a Simple Way to Prevent Neural Networks from Overfitting.
J. machine Learn. Res. 15 (1), 1929–1958.

Srivastava, Nitish., Hinton, Geoffrey., Krizhevsky, Alex., Sutskever, Ilya., and
Salakhutdinov, Ruslan. (2014). Dropout: a Simple Way to Prevent Neural
Networks from Overfitting. J. Mach. Learn. Res. 15, 1929–1958.

Taju, S. W., Le, T. T. N. Q., Kusuma, R. M. I., Ou, Y. Y., Kusuma, R. M. I., and Ou,
Y. Y. (2018). DeepEfflux: a 2D Convolutional Neural Network Model for
Identifying Families of Efflux Proteins in Transporters. Bioinformatics 34 (18),
3111–3117. doi:10.1093/bioinformatics/bty302

Tang, Y. (2016). TF. Learn: TensorFlow’s High-Level Module for Distributed
Machine Learning. CoRR. Chicago: Uptake Technologies, Inc..

Wang, Z., Zhang, X.-C., Le, M. H., Xu, D., Stacey, G., and Cheng, J. (2011). A
Protein Domain Co-occurrence Network Approach for Predicting Protein
Function and Inferring Species Phylogeny. PloS one 6 (3), e17906.
doi:10.1371/journal.pone.0017906

Yasaka, K., Akai, H., Abe, O., and Kiryu, S. (2018). Deep Learning with
Convolutional Neural Network for Differentiation of Liver Masses at
Dynamic Contrast-Enhanced CT: a Preliminary Study. Radiology 286 (3),
887–896. doi:10.1148/radiol.2017170706

Zacharaki, E. I. (2017). Prediction of Protein Function Using a Deep Convolutional
Neural Network Ensemble. PeerJ Comp. Sci. 3, e124. doi:10.7717/peerj-cs.124

Zeng, H., Edwards, M. D., Liu, G., and Gifford, D. K. (2016). Convolutional Neural
Network Architectures for Predicting DNA-Protein Binding. Bioinformatics 32
(12), i121–i127. doi:10.1093/bioinformatics/btw255

Zhang, L., Dong, B., Teng, Z., Zhang, Y., and Juan, L. (2020). Identification of
Human Enzymes Using Amino Acid Composition and the Composition Of-
Spaced Amino Acid Pairs. Biomed. Research International 2020, 9235920.
doi:10.1155/2020/9235920

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Sikander, Wang, Ghulam and Wu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 75938414

Sikander et al. Prediction of Functions of Enzymes Proteins

https://doi.org/10.1109/TCBB.2014.2343960
https://doi.org/10.1109/TCBB.2014.2343960
https://doi.org/10.1093/bioinformatics/bty302
https://doi.org/10.1371/journal.pone.0017906
https://doi.org/10.1148/radiol.2017170706
https://doi.org/10.7717/peerj-cs.124
https://doi.org/10.1093/bioinformatics/btw255
https://doi.org/10.1155/2020/9235920
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Identification of Enzymes-specific Protein Domain Based on DDE, and Convolutional Neural Network
	Introduction
	Materials and Methods
	CNN Proposed Method
	Learning and Classification Using CNN Network
	Convolutional Neural Network Structure
	Training Cross-Validation and Independent as Test Sets
	Multiple Layers Generating for Deep Neural Network
	Zero Padding 2D Layer
	Convolution 2D Layer
	2D Layers of Max Pooling
	Flatten Layers
	Dense Layers
	Dropout Layers
	Rectified Linear Unit (ReLU)
	Softmax

	Data Collection
	Dipeptide Deviation Extraction Mean (DDE Models)

	Evaluation and Performance
	Results
	Assessment of Predictive Ability
	CNN Model Predictive Ability of ROC (AUC) Curves
	Improvement in the Performance and Prevention of Overfitting in Identifying Enzyme and Non-enzyme Proteins
	Comparison of the Proposed System With Other Classifiers
	ROC (AUC Curves With Various Dimensional Reduction Methods
	Hyperparameter Optimizer Performance
	Confusion Matrices Predicted Lables
	Comparison With Previous Methods

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


