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Abstract
Myelination of Schwann cells in the peripheral nervous system is an intricate process involving myelin protein trafficking. Recently, the 
role and mechanism of the endosomal/lysosomal system in myelin formation were emphasized. Our previous results demonstrated that a 
small GTPase Rab27a regulates lysosomal exocytosis and myelin protein trafficking in Schwann cells. In this present study, we established 
a dorsal root ganglion (DRG) neuron and Schwann cell co-culture model to identify the signals associated with Rab27a during myelin-
ation. First, Slp2-a, as the Rab27a effector, was endogenously expressed in Schwann cells. Second, Rab27a expression significantly increased 
during Schwann cell myelination. Finally, Rab27a and Slp2-a silencing in Schwann cells not only reduced myelin protein expression, but 
also impaired formation of myelin-like membranes in DRG neuron and Schwann cell co-cultures. Our findings suggest that the Rab27a/
Slp2-a complex affects Schwann cell myelination in vitro.

Key Words: nerve regeneration; Schwann cells; dorsal root ganglion neurons; co-culture; myelin proteins; myelination; Rab27 effectors; Rab27a; 
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Graphical Abstract

Rab27a/Slp2-a complex affects Schwann cell myelination in vitro

Introduction
The myelin sheath in the peripheral nervous system (PNS) 
comprises a specialized Schwann cell plasma membrane, 
which serves to increase axonal impulse conduction (da Sil-
va et al., 2014; Luo et al., 2014; Nave and Werner, 2014; Miy-
amoto et al., 2016; Taveggia, 2016). Clinically, abnormal my-
elination is a feature of many peripheral neuropathies that 

can cause abnormal electrical signal conduction and lead 
to secondary axonal injury (Duncan et al., 2014; Gonzalez 
et al., 2016; Klein and Martini, 2016; Kondo and Duncan, 
2016; Schulz et al., 2016). The proper synthesis and trans-
port of myelin proteins is important for myelin biogenesis 
(Kwon et al., 2013; Heller et al., 2014; Montani et al., 2014; 
Domènech-Estévez et al., 2015; Gökbuget et al., 2015). 
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However, the mechanisms regulating myelin protein traffick-
ing remain poorly understood (White and Krämer-Albers, 
2014; Salzer, 2015; Ma et al., 2016; Rao and Pearse, 2016). 

Recently, the role and mechanisms of the endosomal/ly-
sosomal system in myelin formation were investigated (Tra-
jkovic et al., 2006; Prolo et al., 2009; Feldmann et al., 2011; 
Shen et al., 2016). Neuronal signals induce exocytose is of 
the proteolipid protein (PLP) from late endosome/lysosome 
membranes stored into the plasma membrane (Trajkovic 
et al., 2006; Shen et al., 2016). Consistent with this finding, 
myelin abnormalities are a very common phenomenon in 
many lysosomal storage diseases, including multiple sulfa-
tase deficiency, globoid cell leukodystrophy, and metachro-
matic leukodystrophy (Faust et al., 2010; Marsden and Levy, 
2010). Because lysosomes serve dual functions in many cell 
types–the degradation of proteins and storage of synthesized 
secretory products (Blott and Griffiths, 2002; de Duve, 2005; 
Zhang et al., 2007; Johnson et al., 2013; Kim et al., 2013; Hou 
et al., 2015; Shimada-Sugawara et al., 2015)–the concept of 
secretory lysosomes was proposed. 

Previous studies have shown that the Rab27 subfamily 
and their multiple effectors play a critical role in regulating 
lysosome-related organelle exocytosis (Izumi, 2007; Johnson 
et al., 2013; Shimada-Sugawara et al., 2015; Yamaoka et al., 
2015b, a). Additionally, our previous results showed that Ra-
b27a participates in lysosomal exocytosis and myelin protein 
P0 trafficking in Schwann cells. Furthermore, Rab27a-de-
ficient ashen mice demonstrate impaired demyelination of 
the injured sciatic nerve (Chen et al., 2012). In this study, 
we further investigated the mechanisms of Rab27a in the 
regulation of Schwann cell myelination by the dorsal root 
ganglion (DRG) neuron and Schwann cell co-culture system 
as a model of myelination.

Material and Methods 
Culture, isolation, and purification of Schwann cells
Animal protocols were reviewed and approved by the Ani-
mal Ethics Committee of Nantong University, China (license 
No. 2014-0001), and the experimental protocol was in ac-
cordance with the Guide for the Care and Use of Laboratory 
Animals (National Institutes of Health Publication, No. 80-
23). Precautions were taken to minimize suffering and the 
number of animals used in each experiment.

Primary cultures of Schwann cells were prepared as pre-
viously described (Brockes et al., 1981; Chen et al., 2012). 
In brief, Schwann cells were harvested from sciatic nerves 
of 1–3-day-old Sprague-Dawley rats (Experimental Animal 
Center of Nantong University, Nantong, Jiangsu Province, 
China, SPF level, no gender requirement). To inhibit fast 
proliferation of fibroblasts, the Schwann cell purification 
medium was replaced (Table 1) for 1 day, followed by a 
1-day recovery period in growth factor-free medium, then 
refreshed with Schwann cell growth medium. About 7 days 
later, when the Schwann cell cultures reached confluence, 
complement-mediated immune cytolysis was performed to 
eliminate fibroblasts by incubating the cells in 4 µg/mL of 
anti-Thy-1.1 antibody (Sigma-Aldrich, St. Louis, MO, USA) 

for 2 hours on ice and then with 1 mL of rabbit complement 
(Gibco, Carlsbad, CA, USA) for 1 hour at 37°C. Afterwards, 
> 98% pure Schwann cells were obtained and the purity was 
determined by immunocytochemistry. 

Culture, isolation, and purification of DRG neurons
DRG neurons were isolated by dissection from embryos of 
14.5-day pregnant Sprague-Dawley rats (Experimental Ani-
mal Center of Nantong University, Nantong, Jiangsu Province, 
China. SPF level). One DRG explant was placed into each 
poly-D-lysine (PDL) (Invitrogen)-coated tissue culture well 
(24-well dishes, glass cover slips covered with 10 μg/mL PDL 
before use) along with high-glucose Dulbecco’s-modified 
Eagle’s medium (DMEM-HG) (Gibco) containing 10% fetal 
bovine serum (FBS) (Gibco) and the cells were allowed to ad-
here for 24 hours. The medium was then replaced with DRG 
purification medium (Table 1) and the non-neuronal cells 
were eliminated by incubating for 3 days in DRG purification 
medium. The medium was then replaced with DRG growth 
medium followed by the addition of purified Schwann cells.

Co-culture of DRG neurons and Schwann cells
The DRG neuron and Schwann cell co-culture system was 
prepared as previously described (Eldridge et al., 1989). 
Briefly, purified Schwann cells were co-cultured and growth 
factors were removed at 4 hours prior to plating on DRG 
neurons. Then, 0.125% trypsin was used to digest Schwann 
cells into single cells, and 50,000 Schwann cells were added 
to each DRG neuron culture coverslip. DRG growth me-
dium was changed 1 day before co-culture, and half of the 
original medium was discarded after co-culture. A total of 
250 μL DMEM-HG containing 10% FBS was added to each 
well, and the cells were allowed to attach overnight. The 
DRG neuron and Schwann cell co-cultures were maintained 
in DRG growth medium for 2 days and then switched to dif-
ferentiation medium for 4 days. Finally, the co-culture system 
was maintained in myelination medium to induce myelin-
ation. Half of the medium volume was changed every 2 days. 
After 3–4 days, myelin sheaths were present. In this co-culture 
process, several specific myelination stages were identified by 
immunocytochemistry and electron microscopy. 

siRNA transfection
Schwann cells were transfected with siRNA using Lipofect-
amine™ RNAi MAX complexes (Invitrogen) at 4 or 5 days 
post-purification. ON-TARGET plus Non-targeting control 
siRNA (catalog D-0018100-01-20, GE Dharmacon, Lafay-
ette, CO, USA) served as the control. The siRNA primer se-
quences for Rab27a and siRNA Slp2-a are listed in Table 2.

Real-time quantitative PCR assay
Total RNAs were extracted using an RNeasy Mini Kit (Qia-
gen, Hilden, Germany) and cDNA was synthesized using a 
cDNA Reverse Transcription Kit (Applied Biosystems, Fos-
ter, CA, USA). Real-time quantitative PCR was performed 
using the 7300 Real-Time PCR System (Applied Biosystems). 
The primers used in this experiment are shown in Table 3. 
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Levels of mRNA were normalized by glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) as a reference. All reactions 
were repeated in triplicate.

Immunocytochemistry
The culture medium was aspirated, and the cells were 
washed with PBS and then fixed with 4% paraformaldehyde 
(PFA) for 15 minutes at room temperature and methanol 
for 10 minutes at −20°C. The non-specific antibody-binding 
sites were blocked with Immunol Staining Blocking Buffer 
(Beyotime, Haimen, Jiangsu Province, China) for 1 hour at 
room temperature, and then the cultures were incubated 
with primary antibody overnight at 4°C. Antibodies to the 
following proteins were used at the indicated concentrations: 
mouse anti-Rab27a (1:100; Abcam, Cambridge, MA, USA), 
rabbitanti-Slp2-a (1:200; Protein Tech, Chicago, IL, USA), 
mouse anti-MBP (1:200, Abcam), chicken anti-P0 (1:50; No-
vus, Littleton, CO, USA), rabbit anti-MAG (1:200; Sigma), 
and mouse anti-NF (1:600; Sigma). After washing 3 times in 
PBS to remove excess primary antibody, the cultures were 
incubated for 1 hour at room temperature with their respec-
tive fluorescence-conjugated secondary antibodies (Jackson 
Immuno Research, West Grove, PA, USA): goat anti-rabbit 
IgG-Cy3 (H + L), goat anti-mouse IgG-Cy3 (H + L), goat 
anti-rabbit IgG-Cy5 (H + L), goat anti-mouse IgG-Alexa-488 
(H + L), goat anti-rabbit IgG-Alexa-488 (H + L), and goat 
anti-chicken IgG (H + L) rhodamine, all at a dilution of 
1:1,000. After a final PBS washing, the stainings were imaged 
with a confocal microscope (TCS SP5; Leica Microsystems, 
Wetzlar, Germany).

Electron microscopy
The co-cultures were examined using electron microscopy at 
different stages as described (Einheber et al., 1995; Yuan et 
al., 2004). At the exact stage, the co-culture coverslips were 
fixed with precooled 2.5% glutaraldehyde (Sigma) and pre-
served at 4°C.

Scanning electron microscopy
The co-culture cells were washed with tannic acid and then 
post-fixed with 1% osmium tetraoxide solution (Sigma), 
dehydrated stepwise twice in increasing concentrations of 
ethanol and in Tert-butanol, and dried in a critical point 
drier (Hitachi, Tokyo, Japan). Subsequently, the samples 
were coated with gold in a JFC-1100 unit (Jeol Inc., Tokyo, 
Japan) and observed under a scanning electron microscope 
(JEM-T300, Jeol Inc.).

Transmission electron microscopy
The co-culture coverslips were embedded in 1% agar suitable 
for obtaining cross-sections of the cultures, post-fixed with 1% 
osmium tetraoxide solution (Sigma), dehydrated stepwise in 
increasing concentrations of ethanol, embedded in Epon 812 
epoxy resin (Sigma), and cut into transverse sections. Then 
the ultra-thin transverse sections were stained with lead ci-
trate and uranyl acetate. These sections were examined under 
a transmission electron microscope (Jeol Inc.).

Western blot assay
Protein was extracted from cultured cells with a buffer contain-
ing 1% sodium dodecyl sulfate (SDS, Sigma), 100 mM Tris-
HCl, 1 mM phenylmethylsulfonyl fluoride (PMSF, Sigma), and 
0.1 mM β-mercaptoethanol (Sigma). After centrifugation at 
12,000 r/min for 5 minutes, the supernatant was collected and 
the protein concentration was determined. Protein extracts 
were heat denatured at 100°C for 5 minutes, electrophoretically 
separated on 8% or 12% SDS-PAGE, and transferred to polyvi-
nylidene fluoride (PVDF) membranes (Thermo Fisher Scien-
tific Pierce, Walthan, MA, USA). The membrane was probed 
with antibodies specific to Rab27a (mouse, 1,000, abcam), 
Slac2-b (goat, 1:200, SANTA CRUZ Inc., Paso Robles, CA, 
USA), Slac2-c (rabbit, 1:200, SANTA CRUZ Inc.), Slp2-a (rab-
bit, 1:800, Protein tech Group, Inc., Chicago, IL, USA), Slp3-a 
(rabbit, 1:200, Santa Cruz Inc.), Slp4 (rabbit, 1:500, Anbo, San 
Francisco, CA, USA), MAG (rabbit, 1:800, Sigma), P0 (chicken, 
1:800, Novus, Littleton, CO, USA), and PMP22 (rabbit, 1:800, 
abcam) overnight at 4°C, followed by horseradish peroxidase 
(HRP)-conjugated secondary antibodies (1:1,000, Beyotime) 
for 1 hour at room temperature, and detected using the en-
hanced chemiluminescent substrate kit (ECL, Thermo Fisher 
Scientific Pierce, Walthan, MA, USA). The image was scanned 
with a GS800 Densitometer Scanner (Bio-Rad), and the data 
were analyzed using PDQuest 7.2.0 software (Bio-Rad). β-Actin 
(mouse, 1:5,000, Sigma) was used as an internal control (Gu et 
al., 2012; Wang et al., 2012).

Immunoprecipitation 
Cultured Schwann cells were lysed in radioimmunoprecipita-
tion assay (RIPA) buffer (Millipore, Billerica, MA, USA) and 
the lysates were incubated with 10 μg/mL mouse anti-Rab27a 
antibody (abcam) or mouse IgG control (abcam) on ice over-
night with occasional shaking. The antibody-protein complex-
es were aggregated with Protein G-Agarose (Pierce) overnight 
on ice, with occasional shaking, and then centrifuged at 8,000 
× g for 10 minutes. The pellet was washed for elimination of 
non-specific binding with 1 × RIPA buffer, eluted by 4 × SDS 
sample buffer without DL-dithiothreitol (DTT), boiled for 10 
minutes, and then processed for western blotting.

Statistical analysis
All data are expressed as the mean ± SEM. Differences be-
tween two groups were compared using the Student’s t-test. 
One-way analysis of variance followed by the Newman-Keuls 
test was used for the statistical analyses in other tests. The 
criterion for statistical significance was P < 0.05. 

Results
Identification of Slp2-a as Rab27a effector in Schwann 
cells
Complement-mediated cytolysis with anti-Thy-1.1 anti-
body was used to purify cultured primary Schwann cells 
to remove contaminating of fibroblasts. To investigate en-
dogenous expression of Rab27 protein family members in 
Schwann cells, real time-PCR and double staining were used 
to detect purified Schwann cells. As shown in Figure 1A–C, 
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Schwann cells only expressed Rab27a protein, although real 
time-PCR results also showed weak Rab27b expression. Re-
sults are consistent with previous reports that Rab27a is pri-
marily expressed outside the CNS and Rab27b is expressed 
in the central nervous system (Izumi, 2007). To identify the 
Rab27a effectors in Schwann cells, we analyzed mRNA ex-
pression of 11 different Rab27a/b effectors in Schwann cells 
according to a previous study (Izumi, 2007). As shown in 
Figure 1D, expressions of Slac2-b, Slac2-c, Slp2-a, Slp3-a, 

and Slp4 mRNA were readily visualized in Schwann cells. 
Western blotting identified high expression of only Slp2-a 
in Schwann cells (Figure 1E). Double Slp2-a and Rab27a 
immunostaining revealed co-localization of Slp2-a with 
Rab27a in cultured Schwann cells (Figure 1F). Additional-
ly, co-immunoprecipitation experiments clearly showed an 
interaction between Slp2-a and Rab27a in cultured Schwann 
cells (Figure 1G). These results suggested that Slp2-a is en-
dogenously expressed as a Rab27a effector in Schwann cells.

Myelination model of DRG neurons co-cultured with 
Schwann cells 
To examine the role of Rab27a and Slp2-a in Schwann cells 
on myelin formation in vitro, we established a myelination 
model of DRG neurons co-cultured with Schwann cells. 
Previous groups have successfully used this model to study 
PNS myelination (Johnson et al., 2001; Liu et al., 2005; 
Court et al., 2011). As shown in Figure 2, about 2 weeks af-
ter Schwann cells were added to the pure DRG neuron cul-
tures, phase-contrast and fluorescence microscopy revealed 
myelin sheaths in the co-culture. Myelin sheaths were 
identifiable by the segregation structure in compact my-
elin sheaths under phase-contrast microscopy observation 
(Figure 2A) and the segregation of MAG-positive signals 

Table 1 Different culture media for growth, purification, differentiation, and myelination of Schwann cells and dorsal root ganglion (DRG) 
neurons

Growth medium Purification medium Differentiation medium Myelination medium

DRGs Neurobasal medium (NB) (Gibco) 
containing:

1 × B27 (Invitrogen, Carlsbad, CA, USA)
50 ng/mL nerve growth factor (NGF)

(Sigma-Aldrich)
2 mM L-glutamine (Gln) (Sigma-Aldrich)
100 U/mL penicillin/streptomycin (PS) 

(Invitrogen)

NB containing:
1 × B27
50 ng/mL NGF
10 μM uridine (U) (Sigma-Aldrich)
10 μM 5-fluoro-2’-deoxyuridine 

(Fdu) (Sigma-Aldrich)
2 mM Gln
100 U/mL PS

High glucose-Dulbecco's 
modified Eagle's 
medium (DMEM-HG) 
(Gibco) containing:

1 × ITS (Sigma-Aldrich)
0.2% bovine serum 

albumin (BSA) (Sigma-
Aldrich)

50 ng/mL NGF
100 U/mL PS

DMEM-HG 
containing:

15% fetal bovine 
serum (FBS) 
(Gibco)

50 μg/mL L-ascorbic 
acid (AA) (Sigma-
Aldrich)

50 ng/mL NGF
100 U/mL PS

Schwann cells DMEM-HG containing: 
10% FBS
2 mM Forskolin (Sigma-Aldrich)
10 ng/mL human heregulin-β1 (HRG)

(PeproTech, Rocky Hill, NJ, USA)
100 U/mL PS

DMEM-HG containing:
10% FBS
10 μM cytosine-β-D-

arabinofuranoside hydrochloride 
(Cty-A) (Sigma-Aldrich)

100 U/mL PS

Table 3 Real time-PCR primers used for Rab27a/b effectors

Rab27a/b and their effectors Forward primer sequences (5′–3′) Reverse primer sequences (5′–3′)

Rab27a TTC CTG CTT CTG TTC GAC CT TGC TCAC TCG GTG TCT CAA C
Rab27b CAA CTG CAG GCA AAT GCT TA TCG ACC TTC CCAG AAT TCA C 
Exophilin3-Melanophilin/Slac2-a GCA TTG ACG GTG GTT CTT TT GGT CAC GTG GAG GAA ACT GT
Exophilin5-Slac2-b  TGC TGT AGA AAT CGG TGA G CTG AGT GGG ATG GGA GA
Exophilin8-Myrip/Slac2-c CCT TGG CTG TTG CCC TAC GGT CCT ACT CTT CGG CTT GG
Exophilin7-Sytl1/Slp1 GAC CAG GAC CTG AAG CTG AG GGA CGA GGT CAG AAC CAA AA
Exophilin4-Sytl2/Slp2-a ATG AGT GGC AGT GTG ATG AGC GTT TCA CTT GGA AAG CTT GGC AAT
Exophilin6-Sytl3/Slp3-a AGA ACA CTC TGG ACC CGA CTT CGC CTT GGG CTT CAC CT
Exophilin2-Granuphilin/Sytl4/Slp4 GCG AGT TGG TGG TTT CAT CAG TCA GTT CCA GGC ACA T
Exophilin9-Sylt5/Slp5 CAA AAC CAA GAG CAA GCA CA AGC CAG AGA CCG ACT TGA AA
Exophilin1-Rabphilin 3a GTC AAG CTC TGG CTG AAA CC GCA GCC TCC GAT GTA ATC AT
Noc2 CCC CTG TGG CTG TGT AAG AT TCT GAG GCT GTG GTT CTG TG
Munc13-4 GCG GAA ACC ACT TCT GAG AG CCA GCT  CAG GGA ATT CAT GT

Table 2 siRNA primer sequences for Rab27a and siRNA Slp2-a

Primer Sequences (5′–3′)

Rat-Rab27a-siRNA Sense: AGA CTC TGG AGT GGG GAA GdTdT
Antisense: UCU GAG ACC UCA CCC CUU 
CdTdT

Rat-Slp2-a-siRNA-1# Sense: CUG GGA CCA UUA UAA ACU AdTdT
Antisense: UAG UUU AUA AUG GUC CCA 
GdTdT

Rat-Slp2-a-siRNA-2# Sense: GGG AUA CGU UUA AGC GCA AdTdT
Antisense: UUG CGC UUA AAC GUA UCC 
CdTdT

Rat-Slp2-a-siRNA-3# Sense: GGC AUC GGG AUA CGU UUA AdTdT
Antisense: UAG UUU AUA AUG GUC CCA 
GdTdT
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Figure 1 Identification of Slp2-a as a 
Rab27a effector in cultured Schwann 
cells.
(A) Real-time PCR results show Rab27a 
(399 bp) and Rab27b (275 bp) mRNA 
expression in cultured pure Schwann 
cells. (B, C) Double-staining of Rab27a or 
Rab27b and Hoechst shows that cultured 
Schwann cells only express Rab27a pro-
tein. Scale bar: 20 µm. (D) RT-PCR results 
show mRNA levels of eleven Rab27a/b 
effectors in cultured Schwann cells. Elev-
en Rab27a/b effectors, including Slac2-b 
(407 bp), Slac2-c (566 bp), Slp2-a (713 
bp), Slp3-a (744 bp), and Slp4 (312 bp) are 
readily visualized. (E) Western blotting re-
sults show high expression of only Slp2-a 
was in cultured Schwann cells. (F) Triple 
immunostaining of Slp2-a, Rab27a, and 
Hoechst reveals co-localization of Slp2-a 
with Rab27a in cultured Schwann cells. 
Scale bar: 10 µm. (G) Co-immunoprecip-
itation experiments show that Slp2-a in-
teracts with Rab27a in cultured Schwann 
cells. 

Figure 2 Establishing a myelination model of DRG neurons co-cultured with Schwann cells.
(A) Phase-contrast microscopy at 3 and 13 days after the establishment of a DRG neuron and Schwann cell co-culture. Arrows indicate myelin 
sheath-like structures. Scale bar: 50 µm. (B) Double-staining with anti-MAG (red) and anti-NF (green) to examine myelination. Arrows indicate 
segregation of MAG staining in the neurites of DRG neurons. Scale bar: 50 µm. (C) Scanning electron microscopy shows Schwann cells surround-
ing DRG neuron neurites and the formation of myelin segments. The diameters of the myelinated axons are thicker (red arrows) than the neuritis 
of DRG neurons (green arrows). Scale bar: 30 µm. (D) Transmission electron microscopy also shows the typical compact myelin structure. Right: 
High-magnification image from inset box. Scale bar: 2 µm on the left and 0.2 µm on the right. (E) Western blot images of expression of myelin pro-
teins MAG, P0, and PMP22 at 1, 3, 7, 14, 21, 28 and 35 days after co-culture. β-Actin served as a protein loading control. Compared with purified 
Schwann cells alone, the DRG neuron and Schwann cell co-cultures induce a significant increase in all myelin proteins. DRG: Dorsal root ganglion; 
d: days.
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Figure 3 DRG neurons co-cultured with Schwann cells induce persistent up-regulation of Rab27a in Schwann cells.
(A) Rab27a and Slp2-a expression in Schwann cells, as shown by western blotting, at 1, 3, 7, 9, 11, and 13 days after co-culture. (B, C) Quantification 
of Rab27a and Slp2-a expression in Schwann cells at 1, 3, 7, 9, 11, and 13 days after co-culture as detected by western blot assay. Optical density re-
sults are presented as a fold of β-actin expression. All data are expressed as the mean ± SEM, with n = 4 cultures/group. Differences between groups 
were analyzed by one-way analysis of variance followed by the Newman-Keuls test. *P < 0.05, vs. co-culture at 1 day. d: Days.

Figure 4 Rab27a and Slp2-a siRNA reduces Rab27a and Slp2-a expressions in cultured Schwann cells. 
(A, B) Schwann cells were transfected with (A) siRNA-Rab27a and (B) three different sequences of siRNA-Slp2-a. mRNA levels of Rab27a and 
Slp2-a are significantly reduced following respective siRNA transfections. (C) Quantification of Rab27a and Slp2-a mRNA levels in transfected 
Schwann cells was detected by western blot assay. Optical density results are presented as a fold of Gapdh expression. (D, E) Schwann cells were 
transfected with (D) siRNA-Rab27a and (E) siRNA-Slp2-a sequence #3. Each siRNA dramatically reduces expression of their respective target 
genes. (F) Quantification of Rab27a and Slp2-a protein levels in siRNA-transfected Schwann cells by western blot assay. Optical density results are 
presented as a fold of β-actin expression. Data are presented as the mean ± SEM. Student’s t-test, n = 3 cultures/group. *P < 0.05, vs. control group.

Figure 5 Knockdown of Rab27a and Slp2-a in Schwann cells reduces myelin protein expression and myelin-like membrane formation in the 
DRG neuron and Schwann cell co-cultures.
(A–D) Compared with the non-targeting control siRNA, Rab27a and Slp2-a knockdown in the purified Schwann cells prior to seeding with DRG 
neurons significantly reduces mRNA levels (A) and protein expression (C) of myelin proteins MAG, P0, and PMP22 at 14 days after co-culture. 
Optical density results are presented as a fold of gapdh expression (B) and actin expression (D). (E) Double-immunostaining of MBP and NF in 
different groups at 14 days in co-culture also shows that silencing of Rab27a and Slp2-a reduces the formation of MAG-positive myelin-like mem-
branes. Scale bar: 50 µm. (F) Quantification of MBP immunofluorescence intensity in different groups at 14 days after co-culture. Student’s t-test, n 
= 3 cultures/group. All data represent mean ± SEM. *P < 0.05 (one-way analysis of variance followed by the Newman-Keuls test). DRG: Dorsal root 
ganglion; MAG: myelin associated glycoprotein; NF: neurofilament; PMP22: peripheral myelin protein 22; MBP: myelin basic protein; P0: protein 
zero; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.
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by immunostaining (Figure 2B). Scanning electron micros-
copy (Figure 2C) revealed that Schwann cells surrounded 
the DRG neuronneurites and formed myelin segments, 
with a diameter longer than that of unmyelinated neurites. 
Transmission electron microscopy also showed the typical 
compact myelin structure (Figure 2D). Myelin protein ex-
pressions, including MAG, P0, and PMP22, were detected 
by western blotting at 1, 3, 7, 14, 21, 28, and 35 days after 
co-culture. Compared with purified Schwann cells, the DRG 
neuron and Schwann cell co-culture resulted in increased 
expression of all myelin proteins, which peaked at 35 days 
(Figure 2E). These results showed that a stable and reliable 
in vitro myelination model was established.

Silencing of Rab27a and Slp2-a in the DRG neuron and 
Schwann cell co-culture reduces myelin protein expression 
and impairs formation of myelin-like membranes 
Using the DRG neuron and Schwann cell co-culture myelin-
ation model, we examined expression of Rab27a and Slp2-a 
at different time points following co-culture. As shown in 
Figure 3, western blot results showed significantly increased 
Rab27a expression at 3 days, which peaked at 7 days and 
remained increased at 13 days. However, Slp2-a expression 
remained unchanged after co-culture. 

Next, siRNA silencing of Rab27a and Slp2-a was used in 
Schwann cells to examine the roles of Rab27a and Slp2-a in 
myelination. First, the gene silencing efficiency of siRNA was 
detected using the same sequence of siRNA-Rab27a as our 
previous report (Chen et al., 2012), as well as three different 
siRNA-Slp2-a sequences. Gene silencing efficiency was then 
compared by real-time quantitative PCR. As shown in Fig-
ure 4A–C, siRNA dramatically reduced Rab27a and Slp2-a 
levels in Schwann cells. Among the three different sequences 
of Slp2-a siRNA, sequence #3 exhibited the strongest effect. 
Expressions of Rab27a and Slp2-a protein were analyzed in 
Schwann cells by western blotting. As shown in Figure 4D–
F, Rab27a and Slp2-a protein expressions were dramatically 
reduced.

Finally, purified Schwann cells were transfected with siRNA 
prior to seeding with DRG neurons, and then myelin protein 
mRNA levels and protein expressions were determined. As 
shown in Figure 5A–D, compared with the control group, 
Rab27a and Slp2-a knockdown significantly reduced both 
mRNA levels and protein expression of MAG, P0, and PMP22 
after 14 days in co-culture. Furthermore, MBP immunos-
taining after 14 days of co-culture also showed that Rab27a 
or Slp2-a silencing impaired the formation of myelin-like 
membranes (Figure 5E, F). These results suggest that the Ra-
b27a-Slp2-a complex plays an important role in Schwann cell 
myelination, especially in the early stage. 

Discussion
The onset and maintenance of myelination in the PNS 
depends on myelin protein synthesis and transport (Sal-
zer, 2015; Kondo and Duncan, 2016; Schulz et al., 2016; 
Taveggia, 2016). Our previous results indicate that Rab27a 
regulates lysosomal exocytosis and is involved in myelin 

protein trafficking in Schwann cells (Chen et al., 2012). This 
study aimed to identify the signals associated with Rab27a 
in Schwann cells. Our results demonstrated the importance 
of the Rab27a/Slp2-a complex in Schwann cell myelination. 
The underlying mechanism was determined through multi-
ple experimental approaches, showing 1) Slp2-a was endog-
enously expressed as a Rab27a effector in Schwann cells; 2) 
the in vitro Schwann cell myelination model was established 
in our experiment; 3) Rab27a expression was significantly 
increased during Schwann cell myelination; 4) silencing of 
Rab27a and Slp2-a in Schwann cells not only reduced my-
elin protein expression, but also impaired the formation of 
myelin-like membranes in DRG neuron and Schwann cell 
co-cultures.

Rab27a is associated with secretory lysosomes and intra-
cellular protein trafficking (Blott and Griffiths, 2002; Izumi, 
2007; Johnson et al., 2013; Catz, 2014; Ishida et al., 2014; 
Chen et al., 2015; Feng et al., 2016). It has been proposed 
that Rab27a regulates different membrane transport events 
by interacting with a different set of specific effectors (Li et 
al., 2014; Yasuda and Fukuda, 2014; Yamaoka et al., 2015a, 
2016; Yasuda et al., 2015; Jiang et al., 2016; Kowluru, 2016; 
Netter et al., 2016). Three groups of Rab27a effectors from a 
total of 11 Rab27a/b effectors, including synaptotagmin-like 
protein (Slp), Slp homologue lacking C2 domains (Slac2), 
and Munc13-4, have been identified in mice and humans 
(Fukuda, 2005, 2013; Izumi, 2007;  Ishida et al., 2014; Jiang 
et al., 2016; Kowluru, 2016; Netter et al., 2016). Results from 
the present study showed that Slp2-a and its binding effec-
tor Rab27a form a complex in Schwann cells. In general, 
Slp2-a can promote docking of Rab27a-containing vesicles 
to the plasma membrane in certain types of secretory cells 
(Kuroda and Fukuda, 2004; Saegusa et al., 2006; Holt et 
al., 2008; Ménasché et al., 2008; Fukuda, 2013; Yasuda and 
Fukuda, 2014; Yasuda et al., 2015). Although the Rab27a 
effector function of Slp2-a has been well established, the role 
of Slp2-a in myelination remains poorly understood. Re-
sults from the present study showed that Slp2-a silencing in 
Schwann cells not only reduced myelin protein expression, 
but also impaired formation of myelin-like membranes in 
the DRG neuron and Schwann cell co-cultures. The mech-
anisms responsible for decreased myelin protein expression 
by Rab27a and Slp2-a knockdown are not clear, but could be 
due to negative feedback of myelination.

The in vitro model of rat DRG explant and Schwann cell 
co-cultures has been used in various studies (Johnson et al., 
2001; Liu et al., 2005; Court et al., 2011; Liu and Chan, 2016) 
to determine the intrinsic molecular mechanisms respon-
sible for myelination, including the complex regulation of 
transcription factors and myelin protein during myelin for-
mation (Pereira et al., 2012; Salzer, 2015). In this study, we 
established a stable and reliable in vitro myelination model 
and transmission electron microscopy images confirmed the 
typical compact myelin structure. We also analyzed expres-
sion of several myelin proteins in this model using western 
blot analysis at different time points. 

Above all, this is the first demonstration that the Rab27a/
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Slp2-a complex affects Schwann cell myelination in vitro. 
These findings show an interesting link between myelin bio-
genesis and lysosome-related organelle exocytosis, providing 
a basis for clinical treatments of demyelinating diseases. 
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