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Abstract

For decades, genetic aberrations including chromosome and molecular abnormalities are important diagnostic and
prognostic factors in acute myeloid leukemia (AML). ATRA and imatinib have been successfully used in AML and chronic
myelogenous leukemia, which proved that targeted therapy by identifying molecular lesions could improve leukemia
outcomes. Recent advances in next generation sequencing have revealed molecular landscape of AML, presenting us with
many molecular abnormalities. The individual prognostic information derived from a specific mutation could be modified by
other molecular lesions. Therefore, the genomic complexity in AML poses a huge challenge to successful translation into
more accurate risk stratification and targeted therapy. Herein, a summary of these mutations and targeted therapies are
described. We focus on the prognostic information of recent identified molecular lesions and emerging targeted therapy.
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Background
Acute myeloid leukemia (AML) is a heterogeneous dis-
ease, characterized by multiple somatically acquired driver
mutations, coexisting competing clones, and disease evo-
lution over time [1, 2]. Specific chromosomal aberrations
and translocations have provided fundamental informa-
tion in the evaluation of patients and guide for rational
management. With advances in Next-generation sequen-
cing (NGS) technologies, a detailed knowledge of the
molecular landscape of AML has been discovered, with a
better understanding in disease pathogenesis, classification
and new therapeutic strategies [3–5]. More recently,
German–Austrian AML Study Group revealed the cyto-
genetics and clinical data in 1540 patients with AML from
three prospective trials (AML-HD98A, AML-HD98B and
AMLSG-07-04). A total of 5234 AML driven mutations
were identified and classified into non-overlapping 11
subtypes, which enabled us a better understanding of
genomic landscape of AML from a macro perspective [1].
Encouraging efficacy of targeted therapy have brought
about huge advance to AML treatment (details in Table 1)
[6, 7]. A summary of these mutations and targeted therapy
is described in the following sections (Fig. 1). Since fusion

genes like PML-RARα, AML-ETO, CBFβ-MYH11 and
MLL have been investigated for a long time, we wouldn’t
discuss them here in our review.

Nucleophosmin 1 (NPM1)
NPM1 mutations are reported in approximately one-third of
AML adults, and more than half of them are with normal
cytogenetics (CN-AML). It often co-occurs with mutations
in epigenetic modifiers such as DNA methyltransferase 3A
(DNMT3A), Ten-eleven translocation gene-2(TET2) and
Isocitrate dehydrogenase1/2 (IDH1/2) mutations [6]. Nu-
merous studies have confirmed that NPM1 mutations are an
independent predictor of high CR rate and favorable progno-
sis in younger adults with AML, specifically in those without
FMS-related tyrosine kinase 3-internal tandem duplications
(FLT3-ITD) mutations [8, 9]. Recent studies have indicated
that AML patients with NPM1 mutation and FLT3-ITD low
allelic ratio may also have a more favorable prognosis regard-
less of chromosomal status, who should not be routinely
assigned to allogeneic hematopoietic stem cell transplant
(allo-HSCT) in the first complete remission [10, 11]. Patients
harboring NPM1 mutations, even with high allelic ratio
FLT3-ITD mutations have better prognosis than those with
FLT3-ITD mutations alone [12]. In this setting, the latest
ELN and NCCN risk stratification systems both classify
NPM1 mutations with high allelic ratio FLT3-ITD mutations
as intermediate risk group [13, 14]. However, the coexisting
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DNMT3A and FLT3-ITD mutations may predict the worst
prognosis among AML patients with NPM1 mutation [1,
15]. It remains confirmed whether high NPM1-mutant allele
burden at diagnosis predicts unfavorable outcomes in large
prospective cohorts [16]. In elderly patients, NPM1 muta-
tions are associated with a better CR rate, the prognosis of
which has not been systematically confirmed. Most trials
showed older CN-AML patients with NPM1 mutations have
favorable treatment response and survival rate, while the
prognosis of them is inferior to younger patients on the
whole [17, 18]. However, several researches did not find fa-
vorable outcome of NPM1 mutation in older patients.
Which may be related to different treatment regimens [19].
As for therapies, in the E1900 trial, patients with NPM1 mu-
tant AML exposed to high dose daunorubicin (90 mg/m2)
derived an increase in median overall survival (OS) com-
pared with Standard dose daunorubicin (45 mg/m2) therapy

(16.9 m vs 75.9 m) [20]. Besides, whether patients with
NPM1 mutation will benefit from all-trans retinoic acid or
arsenic acid treatment remains further discussion [21, 22].

Signaling and kinase pathway mutations
In addition to mutations in NPM1, mutations leading to
aberrant activation and proliferation of cellular signaling
pathways, including FLT3, KRAS, NRAS, PTPN11, NF1, and
KIT, are present in approximately two-thirds of AML cases.

FLT3
Mutations in FLT3 mostly involves internal tandem duplica-
tions within the juxta membrane region (FLT3-ITD) and
point mutations in the tyrosine kinase domain (FLT3-TKD).
Previous studies have confirmed that, FLT3-ITD mutations
are associated with higher relapse rate and poorer overall
survival, particularly with a high ratio of mutant allelic

Table 1 therapeutic targeting of individual AML mutations

Mutation Therapeutic target Inhibitors (phase of clinical trials)

FLT3 FLT3 FLT3 tyrosine kinase inhibitors: sorafenib (III), midostaurin (approved),
quizartinib (III), crenolanib (III), gilteritinib (III), lestaurtinib (III)
Other TKIs: ponatinib (I/II)

IDH1/2 IDH1 Ivosidenib (approved), IDH-305(I), BAY1436032(I),
FT-2102(I/II), AG-881(I)

IDH2 Enasidenib (approved), AG-881(I)

BCL-2 venetoclax (III)

KIT KIT TKIs: imatinib, dasatinib (III), ponatinib

sorafenib, sunitinib, quizartinib

TP53 TP53 PANDAS

BCL-2 venetoclax

MDM2 MDM2 inhibitors: RG7112 (I)

Others decitabine

SF3B1 SF3b complex H3B-8800 (I)

MDM2 mouse double minute 2 homolog, SF3B1 splicing factor 3B subunit 1

Fig. 1 Distribution of recurrent AML mutations by functional group. A summary of the most frequent recurrent mutations in AML are listed in
this figure. Other mutation as Cohesin complex are not discussed in detail in the manuscript. Mutational frequencies of each subgroup are
derived from integration of data from several researches [1, 6, 8]
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burden [23, 24]. In recent years, with great efforts in develop-
ing protein kinase inhibitors targeting FLT3 mutations the
prognosis of patients with FLT3-ITD mutation has been sig-
nificantly improved. Generally, the first generation of FLT3
inhibitors mainly include sorafenib, sunitinib, midostaurin
and lestaurtinib. Because of having broad inhibiting targets
besides FLT3-ITD mutation, it may improve the prognosis
in AML without FLT3-ITD mutation. A phase II SORMAL
clinical trial from Germany demonstrated that sorafenib
could improve 3-year EFS in full set of primary AML (40%
vs 22%, HR= 0.64, n= 267) [25]. A phase III international
prospective RATIFY study confirmed that, addition of
midostaurin to standard induction chemotherapy could
significantly increase OS vs placebo among AML adults with
FLT3 mutation (median OS of 74.7 m vs 25.6 m, HR= 0.78,
n= 717) [26]. These results attribute a lot on the approval of
midostaurin by FDA in newly diagnoses AML with
FLT3-ITD mutation. According to the latest ELN and
NCCN guideline for AML, midostaurin combining with
chemotherapy was recommended as the first line treatment
in adult FLT3 mutated AML [13, 14]. Second-generation
small molecule FLT3 inhibitors such as quizartinib
(AC-220), crenolanib (CP-868596), and gilteritinib
(ASP-2215), have shown potent activity. Overall response for
single agent FLT3 kinase inhibitor in treating FLT3-ITD mu-
tated relapsed or refractory (R/R) AML is 40-50% in phase I
and II clinical trials [27–29]. The efficacy of quizartinib was
tested in patients with R/R FLT3-ITD mutated AML com-
pared to salvage chemotherapy in a QuANTUM-R Trial.
The median OS was 27 weeks and 20.4 weeks for patients
treated with quizartinib and salvage chemotherapy, respect-
ively [30]. It is the first phase III trial to demonstrate im-
proved OS with FLT3 inhibitors in the R/R FLT3-ITD
mutated AML setting. Also encouraging, interim study re-
sults of a phase I study of the combination of gilteritinib with
induction chemotherapy reported an composite complete re-
mission rate of 91.3% in newly diagnosed AML with
FLT3-mutation (n= 23) [31]. Adding crenolanib to standard
induction chemotherapy in patients with FLT3-mutated
AML may be associated with low relapse rate when HSCT is
routinely taken. In addition, for the patients did not undergo
HSCT, only one (1/7) of them has relapsed, suggesting that
standard chemotherapy plus crenolanib may also provide
durable remissions without HSCT [32]. FLT3 inhibitors such
as quizartinib and sorafenib target the inactive conformation
of the kinase domain and only inhibit FLT3-ITD. Other in-
hibitors such as crenolanib, gilteritinib, and midostaurin tar-
get both the active and inactive conformation and show
activity against both FLT3-ITD and TKD mutations [33].
Currently, several trials have been initiated to investigate the
role of FLT3 inhibitors in maintenance therapy, eradiating
MRD, and the combination regimen with chemotherapy
(NCT02421939, NCT02752035, NCT02927262, NCT0307
0093).

Kit
The receptor tyrosine kinase KIT is frequently mutated
in Core-binding factor AML (CBF-AML), which is de-
fined by the occurrence of t (8;21) or inv.(16)/t (16;16)
rearrangements. It has been demonstrated that the fre-
quency of inv.(16)/t (16;16) AML in CBF leukemia is
higher in Caucasian than in Chinese and Japanese [34].
The main mutational clusters in CBF-AML are com-
monly observed in KIT exon 8 and exon 17. It has been
reported that mutations in KIT exon 17 or delayed re-
duction of RUNX1-RUNX1T1 transcripts conferred a
higher risk of relapse and inferior OS in AML with t
(8;21) [35]. Recently, several researches confirmed that t
(8;21) AML patients with KIT mutations have a lower
responsive rate after relapse. The prognostic impact of
KIT mutations in inv.(16)/t (16;16) AML remains con-
troversial [36]. Our recent study found that t (8;21)
AML patients bearing KIT-D816 mutations have lower
remission rates than those with wild-type KIT [37].
Patients with CBF-AML may benefit from high dose
Cytarabine [38]. That is quite different from patients
with NPM1 mutation who benefited from escalating
dosage of anthracyclines, which have been mentioned
above. The CALGB10801 trial indicated that adding
multikinase inhibitors with activity against KIT muta-
tions to chemotherapy, like dasatinib, could result in the
similar 2 years DFS and OS in CBF-AML patients with
kit mutation compared to those without, suggesting that
dasatinib might improve the prognosis of in CBF-AML
patients with KIT mutations [39]. Unfortunately, for pa-
tients with high-risk CBF-AML in CR1, dasatinib alone
failed to prevent relapse due to molecular primary resist-
ance or recurrence. Clinical trials about dasatinib under-
taken by Shanghai Ruijin Hospital and our hospitial in
China (ChiCRT-IPR-15006862 and NCT03560908) and
other centers (NCT00850382) are ongoing.

Mutations in transcription factors
Mutations in transcription factors occur in 20- 25% of
patients with AML, including myeloid transcription fac-
tors, Runt-related transcription factor 1 (RUNX1) and
CCAAT/enhancer binding protein α (CEBPA).

RUNX1
RUNX1 mutations were reported in 5% to 10% of AML,
and more in patients with secondary AML evolving from
myelodysplastic syndrome [40, 41]. The 2016 revised
WHO AML classification system has added mutated
RUNX1 as a provisional entity [42]. Studies have con-
firmed RUNX1 mutations an independent predictor of
poorer prognosis [40, 41]. Concomitant mutations with
ASXL1, SF3B1, SRSF2, PHF6 have been reported to have
negative impact on OS, whereas patients with the geno-
type RUNX1mut/IDH2mut had better clinical outcome
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[40]. In addition, mutation burden and wild-type allele
loss of RUNX1 as well as additional mutations also have
impact on prognosis of adult RUNX1-mutated AML. Both
wild-type loss and > 1 RUNX1mut showed adverse impact
on prognosis compared with 1 RUNX1mut (OS 5 m vs
22 m, P = 0.002; 14 m vs 22 m, P = 00.048). Concomitant
ASXL1 mutation and ≥ 2 additional mutations correlated
with shorter OS (10 m vs 18 m, P = 0.028; 12 m vs 20 m,
P = 0.017) [43].

CEBPA
Mutated CEBPA gene occur in 5-14% of AML patients,
mainly in CN-AML, and was related to better prognosis.
Recent studies showed that, the favorable impact of mu-
tant CEBPA on prognosis is associated with biallelic mu-
tations [44, 45]. The 2016 revision to the WHO
classification system redefined the provisional WHO
2008 entity AML with CEBPA mutations to those with
biallelic mutations [42]. Although the response rate for
CEBPA double mutants is up to 90%, with estimated
5 years OS ranging between 50 and 70%, relapse still re-
mains the major cause of treatment failure. The esti-
mated cumulative incidence of relapse (CIR) of CEBPA
dm patients after 5 years is up to 58% for intensive
chemotherapy [46]. Richard, et al. analyzed 124 AML
patients with CEBPA dm who achieved CR1. They found
that the relapse-free survival (RFS) was significantly
higher in patients receiving HSCT in CR1 compared
with chemotherapy, whereas the OS was not different,
which might be associated with a high second CR rate
after salvage therapy [46].

Mutations in epigenetic modifiers: Regulation of DNA
methylation and chromatin modification
In recent years, the discovery of epigenetic regulators has
provided great insight into the pathogenesis of AML.
Mutations in these genes such as IDH1/2, DNMT3A,
TET2, Additional sex comb-like 1(ASXL1), and Enhancer
of zeste homolog 2(EZH2), which appear to impact on
DNA methylation or histone posttranslational modifica-
tions, may serve as prognostic markers for risk stratifica-
tion and therapeutic decision [47–49].

IDH1/2
Mutations in genes encoding IDH1 and IDH2 gene mainly
involves IDH1-R132, IDH2-R140, and IDH2-R172, and
IDH1 and IDH2 mutations rarely co-occur. IDH1-R132 or
IDH2-R140 frequently occur in AML patients with normal
cytogenetics and advanced age, with concurrent mutations
of NPM1 [50]. While IDH2-R172 may represent a distinct
genomic subgroup, which mutual exclusivity with NPM1
and with a distinct DNA methylation profile [51]. Experi-
mental evidence demonstrates that IDH1/2 mutation oc-
curs in the origin of clone, which is insufficient to induce

leukemic transformation alone. Early data suggested that
IDH mutations were associated with adverse prognosis,
while recent results from a large cohort suggested that IDH
mutations of different sites and additional co-occurring mu-
tations may result in different outcomes [2, 51]. Several evi-
dences showed that IDH1 and IDH2-R172 mutation may
predict a worse clinical outcome especially in CN-AML,
while the IDH2-R140 concomitant NPM1 mutation may be
associated with better prognosis in AML [51–53]. Clearly,
the prognostic impact of IDH1/2 mutations in AML has far
been conflicting, and more efforts are needed for further
study. Several small molecule inhibitors of IDH (AG-120,
IDH-305 and FT-2102 for IDH1; AG-221 for IDH2;
AG-881 for IDH1/2) have demonstrated potent preclinical
activity, most of which are currently undergoing clinical tri-
als and the early results are promising. The first-in-human
phase I/II clinical trial of AG-221 (NCT01915498) for pa-
tients with IDH2-mutant advanced hematologic malignan-
cies reported an objective response rate (ORR) of 40.3%
(71/176) in R/R AML patients, with 19.3% CR rate and a
median response duration of 5.8 months [54]. Interim study
results of AG-120 reported an 41.9% ORR, including a
24.0% CR in IDH1-mutant R/R AML (n = 179) [55]. Based
on its convincing therapeutic effects and great tolerance,
ivosidenib (AG-120) and enasidenib (AG-221) had been ap-
proved by FDA for treatment in adult patients with R/R
IDH1 and IDH2 mutant AML respectively. Studies investi-
gating IDH inhibitors as monotherapy or combination regi-
men are still ongoing (NCT02632708, NCT02677922,
NCT01915498, NCT02577406, NCT02719574, NCT03127
-735, NCT02492737). Moreover, patients with IDH muta-
tions are found to be more responsive to B-cell CLL/lymph-
oma 2 (BCL-2) inhibitor [56].

DNMT3A, TET2 and ASXL1
Mutations in epigenetic regulators also include DNMT3A,
TET2 and ASXL1, namely DTA mutations. These muta-
tions are most common in people harboring age-related
clonal hematopoiesis. Nowadays, no consensus has been
reached on the prognosis of DNMT3a mutation. Some
studies reported its poor prognosis [57], while others failed
to find adverse impact [58]. Current researches suggested
that DNMT3a mutation conferred adverse prognosis in
AML patients with NPM1 mutation [59]. AML patients
harboring NPM1, FLT3-ITD and DNMT3a mutations are
associated with the worst prognosis [1]. Most recently, the
latest ELN and NCCN risk stratification systems both clas-
sify ASXL1 mutations as adverse-risk AML subtypes. How-
ever, ASXL1 mutations should not be used as an adverse
prognostic marker if they cooccur with favorable-risk AML
subtypes [14, 60]. A recent series of studies demonstrated
that, DNMT3A, occurred at a very early stage among
genetic abnormalities, possessing a selective proliferative
advantage which might be preleukemic events [61–63].
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And in vivo experiments showed that mutated ASXL1 low-
ered the threshold of meningioma-1 driven engraftment, al-
though it was insufficient to lead to blood malignancies
[64]. Results from a systematic study involving 482 AML
patients younger than 65 years old showed that DTA muta-
tions remained detectable even during CR, and the persist-
ing rates were 78.7% for DNMT3A, 54.2% for TET2, and
51.6% for ASXL1. The detection of persistent mutations
did not correlate with an increased relapse rate with in a
follow up period of 4 years (P = 0.29) [65, 66]. But a recent
report revealed that the persistence of pre-leukemic muta-
tion including DNMT3a might contribute to the inferior
outcome of AML patients. Thus, the role of DNMT3a mu-
tation during CR still needs further investigation [67].

RNA splicing factor mutations
RNA splicing factor mutations
Mutations in splicing factors accounts for 10% of AML
patients, which are defined by mutations in genes regulat-
ing RNA splicing (SF3B1, SRSF2, U2AF1 and ZRSR2). They
are likely to cause aberrant splicing, affecting the transcrip-
tome and proteome of cells. Accumulating evidence shows
that spliceosome mutations are associated with older age,
less proliferative disease, low response rate to standard
treatment, and poorer survival [68]. Recent data suggested
that many spliceosome inhibitors showed therapeutic
potential in spliceosome mutant cancers. An orally available
modulator of SF3b complex, H3B-8800, exhibits
therapeutic potential of splicing modulation in
spliceosome-mutant cancers in preclinical studies [69]. One
phase I trial of H3B-8800 for patients with hematologic ma-
lignancies is currently ongoing (NCT02841540).

Mutations in tumor suppressor genes
TP53
Although a lot of mutations are predicted to be activating
or neomorphic, many of them have been demonstrated to
be loss-of-function mutations, such as mutation in tumor
protein 53(TP53), rendering them less tractable targets.
TP53 is a key tumor suppressor gene. TP53 mutations ac-
counts for 8% of patients with AML, and are associated
with complex cytogenetics, therapy-related AML, che-
moresistance, high relapse rates and poor survival [6, 58,
70]. Considering the fact that most of targeted drugs are
gene inhibitors, as loss-of-function mutations, TP53 muta-
tion is difficult to target. Although treat with intensive
chemotherapy, the overall survival time is around
4.6 months [71]. It has been reported that decitabine,
which decreases mutp53 levels, may improve the progno-
sis of patients with TP53 mutation, with a median survival
of 12.7 months [72]. Besides, TP53 mutations have been
described to be predictive for a favorable response to
MDM2 inhibitors and BCL-2 inhibitors in hematologic
malignancies [73–75]. Recently, Lu and his colleagues

from Shanghai Jiaotong University identified a small mol-
ecule from thousands of compounds that can restore mu-
tant TP53 with anti-cancer effect, which is named as
PANDAS. Compared with previous TP53-targeting
agents, PANDAS stabilizes molecular architecture of mu-
tant TP53, restores its activity and promotes tumor cell
apoptosis. The efficacy and tolerability of PANDAS, par-
ticularly in synergistic combinations, are keenly awaited.

Conclusion and prospects
The discovery of the molecular landscape of AML not only
provides us a chance to better understand the pathogenesis
of the disease, but also refines the risk stratification and
management of patients. However, evolving evidence dem-
onstrated that the individual prognostic information de-
rived from a specific mutation could be modified by other
molecular characteristic and clinical parameters. Therefore,
development of risk group classification schemes based on
comprehensive genomic assessment should be considered a
work in future. Targeted therapy to these mutations
achieved huge progress in recent years. For instance, both
IDH1/2 and FLT3 inhibitors showed promising results.
And the combination of venetoclax with azacitidine pro-
duced a median OS longer than 12 months in older AML
patients with a favorable safety profile [76, 77]. Considering
the promising preliminary results of venetoclax, we can rea-
sonably expect that the clinical outcomes for AML in older
patients will be further improved in the foreseeable future.
In addition to genetic aberrations, epigenetics or posttran-

scriptional regulations may also play a pivotal role in deter-
mining the biological behavior of AML. Current researches
demonstrated that DNA methylation patterns and long non-
coding RNAs contribute to many critical signaling pathways
in AML development, even exert effects on diagnosis classifi-
cation and outcome of AML [78, 79]. And a further under-
standing of the relationship among genetic aberrations,
DNA methylation, and long noncoding RNAs action might
pave the way to better understand and treat AML patients.
In addition, encouraging efficacy of immunotherapeutic

agents, especially the chimeric antigen receptor T (CAR-T)
cell therapy, has brought huge advance to ALL treatment in
the past decade [80–83]. However, previous trials of CAR-T
therapy for AML did not result in long-term responses and
exhibited the likelihood of hematopoietic toxicity, mainly due
to the lack of AML-specific targeted antigens [84]. Currently,
Liu and her colleagues reported on the robust anti-tumor ac-
tivity and high safety of CAR-T cells targeting two different
antigens simultaneously (CLL1-CD33 cCAR-T cells) [85].
This research unveiled a new strategy to circumvent un-
wanted off-target toxicity and contributed a significant step
forward in AML immunotherapy. We believe that rational
combination of targeted and immunotherapeutic agents will
provide new insight into AML therapies and continue to ac-
celerate progress in AML outcomes within the coming years.
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