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BACKGROUND With an increasing interest in using large claims databases in medical practice and research, it is a

meaningful and essential step to efficiently identify patients with the disease of interest.

OBJECTIVES This study aims to establish a machine learning (ML) approach to identify patients with congenital heart

disease (CHD) in large claims databases.

METHODS We harnessed data from the Quebec claims and hospitalization databases from 1983 to 2000. The study

included 19,187 patients. Of them, 3,784 were labeled as true CHD patients using a clinician developed algorithm with

manual audits considered as the gold standards. To establish an accurate ML-empowered automated CHD classification

system, we evaluated ML methods including Gradient Boosting Decision Tree, Support Vector Machine, Decision tree, and

compared them to regularized logistic regression. The Area Under the Precision Recall Curve was used as the evaluation

metric. External validation was conducted with an updated data set to 2010 with different subjects.

RESULTS Among the ML methods we evaluated, Gradient Boosting Decision Tree led the performance in identifying

true CHD patients with 99.3% Area Under the Precision Recall Curve, 98.0% for sensitivity, and 99.7% for specificity.

External validation returned similar statistics on model performance.

CONCLUSIONS This study shows that a tedious and time-consuming clinical inspection for CHD patient identification

can be replaced by an extremely efficient ML algorithm in large claims database. Our findings demonstrate that ML

methods can be used to automate complicated algorithms to identify patients with complex diseases.
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ABBR EV I A T I ON S

AND ACRONYMS

AUPRC = area under the

precision recall curve

AUROC = area under the

receiver operating

characteristic curve

CHD = congenital heart disease

GBDT = gradient boosting

decision tree

ML = machine learning

SVM = support vector machine

VSD = ventricular septal defect
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H arnessing large claims databases in
medical practice and research has
potential and merits. These data-

bases provide large samples and less referral
bias than other sources of information. Effi-
cient identification of patients with the dis-
ease of interest is the first and an essential
step. For complex disease, it usually requires
substantial time-consuming work including
development of hierarchical algorithm for
disease classification and validation through
tedious manual audits. For example, congen-
ital heart disease (CHD) presents great vari-
eties in cardiac lesion manifestation and
diagnostic and treatment regimens. There are 24
CHD classification codes based on the International
Classification of Diagnosis (ICD)-version 9. The up-
coming ICD 11 will have even more diagnostic codes.1

All these portend great challenges in identifying CHD
patients in large claims databases. To overcome the
obstacle for using large claims database in CHD
research, we have developed an empirical algorithm
based on clinician expertise and substantial clinician
audits.2 To verify the algorithm, substantial manual
audits were done. Out of the original 61,386 patients
in the database, data files for 17,474 patients were
manually reviewed by 2 cardiologists (A.J.M. and
A.S.M.). To make sure that the algorithm performs
well with different patient profiles, the subsets of pa-
tients selected for audits cover all categories of sub-
jects, including those excluded, with severe and
other CHD, with unspecified defects, hospitalized
(operated and unoperated), and outpatients. It has
been proven to be valid and has been well established
in literature to classify CHD patients based on claim
and hospitalization data.2-8 However, the algorithm
is extremely time-consuming to implement and
therefore calls for an automated process. We now
turn to machine learning (ML) methods to learn the
latent rules that can automate the clinician
decision-making process.

ML approaches such as tree-based models9 and
deep learning10 are able to identify complex data
patterns among variables by exploring the manifold
of high order of complex interactions. These ML
methods have potential to help physicians to explain
the complex cardiovascular disease mechanisms.11

Effectively using these ML algorithms, we can
generate more accurate prediction and classification,
and benefit cardiovascular medicine and beyond.12-14

Previous studies have used ML in medical field for
tasks such as patient classification15 or predicting
emergency admission.16,17
In this study, we aim to apply existing ML ap-
proaches to large claims databases to accurately
identify CHD patients. We evaluated a variety of ML
approaches including both generalized linear ap-
proaches such as regularized logistic regression and
completely nonlinear approaches such as decision
tree and gradient tree boosting on the CHD pheno-
typing task.

METHODS

DATA SOURCE. In Quebec (Canada) where universal
health care is provided, every resident is assigned a
unique Medicare number and all health services
rendered are systematically recorded in administra-
tive databases until death. In this study, 3 adminis-
trative databases were merged by the unique patient
Medicare number and used: the physician’s services
and claims database (Regie de l’Assurance Maladie du
Quebec) from l983 to 2000, the hospital discharge
summary database (Med-Echo) from l987 to 2000,
and the demographics and vital status database from
1983 to 2000. Demographic information included age,
sex, and death information. The gold standard labels
for CHD patients were generated using our clinician-
developed, hierarchical algorithm for CHD classifica-
tion to derive the Quebec CHD database.2

STUDY POPULATION. As illustrated in Figure 1, a to-
tal of 61,386 Quebec residents were diagnosed with at
least 1 CHD between 1983 and 2000. Of them, 42,199
were diagnosed by a cardiovascular (CV) specialist
(cardiologist, thoracic surgeon, cardiac surgeon, car-
diovascular and thoracic surgeon). We opted to
exclude these patients whose diagnosis was coded by
a CV specialist because our preliminary analyses
showed that having at least 1 CHD-related diagnosis
by CV specialist was a strong predictor of correct
identification of true CHD patients, and therefore
lessened the utility of ML tools. In fact, 99.95% of
patients whose CHD diagnosis was made by a CV
specialist were true CHD patients, whereas only
19.72% of patients whose diagnosis was made by a
non-CV specialist were true CHD patients. Thus, the
study population included 19,187 patients with at
least 1 CHD-related ICD-9 diagnosis and/or a surgical
procedure between 1983 and 2000, whose CHD diag-
nosis was not made by a CV specialist, but rather by a
primary physician (general practitioner, pediatrician,
internist) or other physicians (all other fields of
practice). Figure 1 depicts our study design.

OUTCOME. The study outcome was the binary label
of CHD diagnosis. Using the clinician-developed al-
gorithm, we generated the gold standard binary labels



FIGURE 1 Study Population Derivation
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for the true CHD diagnosis with 1 for true CHD pa-
tients and 0 for non-CHD patients. We used these
labels to train our ML models on the training set
(where the labels were known to each model) and
then evaluated these trained models on a separate
testing set (where the labels were unknown to the
model) to evaluate their diagnostic accuracy. Among
the study cohort, 3,784 patients out of 19,184 in total
were identified as true CHD patients.

FEATURES. Congenital heart lesions occur during
embryonic development and consist of abnormal
formations of the heart walls, valves, or blood ves-
sels. They are generally classified into 24 different
types.2 For example, transposition of great artery is 1
type of CHD diagnosed with ICD-9 codes of 745.10,
745.11, 745.12, and 745.19. Types of CHD lesions, CHD-
related surgical procedures from which a specific CHD
diagnosis could be inferred, source of the CHD diag-
nosis (outpatient or hospitalization records), and
specialty of the physicians who made the diagnosis
were also factors affecting the accuracy of CHD di-
agnoses.2 To decrease data sparsity and take into ac-
count the varying accuracies in diagnosing CHD
lesions by ICD codes, procedural codes, data source,
and physician specialties, we grouped all relevant ICD
codes by the 24 CHD lesion types.2 Details could be
found in Table 1. CHD-related surgical procedures
were grouped into 4 complexity levels.18 Physicians
were classified and grouped into: 1) primary physi-
cians referring to general practitioner, family physi-
cian, pediatrician, and internist; and 2) other
physicians referring to allergist, pathologist, anes-
thetist, microbiologist, biochemist, general surgeon,
orthopedic surgeon, etc.18 To decrease data sparsity
due to the long follow-up period of the study (up to
18 years) and capture multiple diagnoses/surgical
procedures over time, for each type of CHD lesions,
we calculated the yearly average number of diagnoses
by data source and physician specialty groups,
yielding a total of 72 features of which 48 were from
outpatient records and rest from hospitalization re-
cords. For CHD-related surgical procedures at each
complex level, we also calculated the average yearly
counts, yielding additional 4 features (Table 2).

It is worth noting that using the same database, we
have observed a temporal change in the prevalence of
CHD diagnoses and rates of congenital and valvular



TABLE 1 Congenital Heart Disease-Related ICD-9 Codes

No. Disease ICD-9 Codes

1 Endocardial cushion defect 7456

2 Tetralogy of Fallot 7452

3 Univentricular heart 7453

4 Transposition complex including complete
and congenitally corrected

7451

5 Truncus arteriosus 7450

6 Ebstein anomaly 7462

7 Hypoplastic left heart syndrome 7467

8 Atrial septal defect 7455

9 Ventricular septal defect 7454

10 Patent ductus arteriosus 7470

11 Aortic coarctation 7471

12 Unspecified defect of septal closure 7459

13 Anomalies of the pulmonary artery 7473

14 Anomalies of the pulmonary valve 7460

15 Congenital tricuspid valve disease 7461

16 Congenital aortic stenosis 7463

17 Congenital aortic insufficiency 7464

18 Congenital mitral stenosis 7465

19 Congenital mitral insufficiency 7466

20 Anomalies of great veins 7474

21 Other unspecified anomalies of the heart 7469

22 Other unspecified anomalies of the heart 7468

23 Other unspecified anomalies of the aorta 7472

24 Other unspecified anomalies of the circulation 7479
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surgical operations over the past decades.2,7,18 Thus,
the inference of using CHD-related ICD and surgical
procedures for CHD diagnosis should consider the
calendar year of the diagnoses and operations. In
light of this, we included patient’s year of birth and
age at the first record of CHD (ICD code or surgical
procedure) as 2 additional features for phenotype
CHD. Together with sex, a total of 3 features for de-
mographics were created and included in the models.
Given the goal of our study was to compare the per-
formance of different ML methods, all the models
used the same set of features, that is, all the 79 fea-
tures listed in Table 2.

CHD-DIAGNOSTIC MODEL CONSTRUCTION. Gradient
boosting decision tree (GBDT), support vector ma-
chine (SVM), decision tree, and regularized logistic
regression were chosen for identifying CHD patients
in this study considering several factors including the
specific research objectives, the nature of the data
set, available computational resources and inter-
pretability. Detailed explanations were included in
Supplemental Appendix 1.

For GBDT model, we selected the optimal tree
depth and the total number of boosting trees in a grid
search that maximize the 5-fold cross-validation
performance. If the number of trees increases, the
model could fit the data better. However, if the
number of trees is too large, the model tends to
overfit. The tree depth represents the maximum order
of interactions that the model can capture, that is, the
model complexity. The number d of splits in each
tree, or equivalently the interaction depth, controls
the complexity of the boosted ensemble, in which
d splits can capture at most the interactions of order
d-1.19 A tree depth of 2 means that there is no inter-
action between features, while tree depth of 3 sug-
gests interaction between features up to second
orders.

SVM is another popular approach for classification
by exploiting a linear or nonlinear separation surface
in the feature space depending on the user-defined
kernels.19 The performance of SVM classifier largely
depends on the kernel.20 SVM classifiers are tuned
using 5-fold cross-validation method and looks for
optimal hyperplane as a decision function to classify
observations. In the testing stage, the test set was fed
into the SVM model for CHD classification.

In parallel to GBDT and SVM models, regularized
logistic regression and decision tree models were
developed for comparison purpose and to help with
results interpretation. Decision trees can be easily
visualized due to their inherent structure and repre-
sentation. The decision tree algorithm recursively
partitions the data based on different features and
creates a tree-like structure. Each node in the tree
corresponds to a specific feature and a threshold
value for partitioning the data, and the branches
indicate the decision path taken based on the values
of the features. The visual representation of a deci-
sion tree allows for a clear understanding of the
decision-making process within the model. By
following the branches from the root node to the leaf
nodes, 1 can easily interpret the sequence of decisions
and conditions that lead to a particular classification
outcome. Additionally, decision trees provide infor-
mation about the importance and contribution of
different features in the decision-making process, as
features closer to the root node are deemed to have
higher importance. Regularized logistic regression
was chosen due to its simplicity and interpretability,
whereas decision tree is highly interpretable and
could be easily visualized.
EVALUATION. To assess if our sample was sufficient
for the proposed ML models, we evaluated the per-
formances of the models with different training
samples ranging from a size of 2,000 to 15,375 which
was the size of our training sample. The results were
shown in Supplemental Figure 1. The figure demon-
strated that the Area Under the Precision Recall
Curves (AUPRCs) for all the models reached plateaus

https://doi.org/10.1016/j.jacadv.2023.100801
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TABLE 2 Features Included in the Development of Machine Learning Model for

Identifying Congenital Heart Disease Patients in Large Claims Database

Category
(Number of Variables) Description

Demographics (3) Patient sex (male/female)

Year of birth

Age at the first CHD-related bill or the first CHD-related procedure

Outpatient records (48) Yearly average number of CHD-related diagnosis by primary
physiciansa and specialists in diagnostic radiology and
ultrasonography. One variable for each of the 24 CHD-related
diagnoses from Table 1.

Yearly average number of CHD-related diagnosis by other
physiciansa. One variable for each of the 24 CHD-related
diagnoses.

Inpatient records (24) Yearly average number of CHD-related diagnoses during
hospitalization. One variable for each of the 24 CHD-related
diagnoses from Table 1.

Surgical procedures (4) Yearly average number of CHD-related surgery billed by
cardiovascular specialistsa. One variable for each of the
4 different complex level surgeriesb.

Score ¼ 1.5 to 5.9: complexity level 1. Score ¼ 6 to 7.9: complexity level 2. Score ¼ 8 to 9.9: complexity level 3.
Score ¼ 10 to 15: complexity level 4. aPrimary physicians refer to general practitioner, family physician, pedia-
trician, and internist. Other physicians refer to allergist, pathologist, anesthetist, microbiologist, biochemist,
general surgeon, orthopedic surgeon, etc. bDefinition of complex levels was defined based on Mean Aristotle
Basic Score.18

CHD ¼ congenital heart disease.
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after the training sample size equaled 10,000, with
some fluctuations around this point. These findings in
Supplemental Appendix 2 supported the conclusion
that our sample was sufficient for the study.

We split the study cohort randomly into training
set with 80% of the sample and a test set with the rest
20%. The training set was further randomly split into
5 folds, and the model trained on 4 of the folds and
performance validated against the fifth to establish
optimal free parameters for each GBDT (ie, number of
trees and tree depth) and different kernels for SVM
models (ie, different kernels). The AUPRC from the 5-
fold cross-validation was used to choose the optimum
parameters.

Selection of cutoff value would influence the results
of sensitivity and specificity, as decreasing the cutoff
value would increase sensitivity but decrease speci-
ficity, and vice versa. A cutoff value of 0.5 was adopted
in this study for the classification of patients as CHD or
not considering equally the importance of sensitivity
and specificity. Furthermore, area under the receiver
operating characteristic curve (AUROC) was computed
based on the specificity and sensitivity values at all
thresholds. We used AUPRC as our metric because our
data are unbalanced: there are more negative exam-
ples than positive examples. Compared to AUROC,
AUPRC focuses on the precision at each recall as
opposed to the sensitivity at each false positive rate
and therefore more suitable to our application.

In addition to the common statistics for assessing
model performance such as AUROC, we added F1
score which combines precision and recall into a
single value. The F1 score provides a balanced mea-
sure of the model’s ability to simultaneously optimize
precision (minimizing false positives) and recall
(minimizing false negatives). It is widely used in
medical research as a robust evaluation metric for
imbalanced data sets. Besides AUPRC, we also chose
an optimal threshold based on the 5-fold cross-
validation in order to obtain F1 score, accuracy,
specificity, and sensitivity on the test set. We
repeated evaluation 10 times. For each repetition, we
used a specific random seed for generating random
split of 80/20 training/testing. We then reported the
median performance for each method. Details about
identifying the final model could be found in
Supplemental Appendix 3 (Supplemental Table 1).

The whole study cohort included 19,187 patients
with 3,784 true CHD patients. We split the study
cohort randomly into a training set with 80% of the
patients and a test set with the rest 20%. There were
15,400 patients in the training set with 3,059 true
CHDs, while 3,787 patients were included in the test
set with 725 true CHDs.
L1 LASSO PENALTY. Although linear model is limited
to discovery only the additive effects of the feature
predictors, it has better interpretability than the tree-
based and kernel-based models described above. This
advantage is important in understanding the contri-
bution of each feature.

Least Absolute Shrinkage and Selection Operator
(Lasso) is a regularization technique in ML for linear
regression. The purpose of Lasso is to achieve a
parsimonious model by shrinking the coefficients of
less important features to zero, effectively removing
them from the model.19 Features with coefficients
closer to zero are regarded as less important. To this
end, we adopted the L1 Lasso regularization method
to study the potential of representing the data with
fewer predictors by penalizing the absolute sum of
predictors’ weights used in the model (ie, the L1-
norm) along with the cross entropy of the difference
between the predicted CHD risk and the true CHD
label. Because the gradient of each predictor coeffi-
cient is defined unless it is zero, using regularized
logistic regression along with Lasso regularization
could shrink the coefficients of the unimportant var-
iables to be exactly zero and therefore reduce the
complexity of the model. In this way, the Lasso per-
forms simultaneous feature selection and model
estimation of the original database.21 We used the
scikit-learn implementation of Lasso. To determine
the optimal Lasso regularization parameter, often
referred to as the tuning parameter, we employed a
cross-validation. We evaluated the performance of

https://doi.org/10.1016/j.jacadv.2023.100801
https://doi.org/10.1016/j.jacadv.2023.100801
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FIGURE 2 Age Distribution of the Study Cohort
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the Lasso model across a range of regularization
values and selected the value that yielded the best
performance based on our evaluation metric
(ie, AUPRC) procedure (results shown in
Supplemental Appendix 4 and Supplemental Table 2).

EXTERNAL VALIDATION. We performed external
validation on the developed GBDT model using an
updated data set (1983-2010) from the same sources,
that is, Quebec administrative databases of outpa-
tient data, hospitalization records, and vital statistics.
Subjects that were included in the training and test
sets for developing the GBDT model were excluded
from external validation.

IMPLEMENTATION. We performed all statistical ana-
lyses using Python version 3.6, Python-based scikit-
learn package22 and visualized using matplotlib.23

RESULTS

Age distribution of study population is shown in
Figure 2. Consistent with what has been reported in
the literature, the majority of the CHD population
were adults.

OPTIMUM CHD DIAGNOSIS MODEL CONSTRUCTION. We
adopted 5-fold cross-validation method for evalua-
tion. Possible overfitting was assessed by comparing
the prediction accuracy between training and vali-
dation sets. We repeated the evaluation 10 times,
each time with a different random split of 80/20
training/testing. The median performance and IQR
for each method was included in Table 3. As the IQR
was very low suggesting minimal variations, we
opted to select the model demonstrating the
median performance for test data set as the
final model.

Based on 5-fold cross-validation, the best tree
depth and tree number for GBDT model are 6 and 195,
respectively, which constitute the optimum GBDT
model. This means there are up to fifth order of in-
teractions between the features. This indicates the
nonlinearity of the data as well as the capability of
GBDT handling different types of features and
capturing interactions among features.

The optimal parameters for SVM model, Radial
Basic Function kernel was selected over the linear
kernel, indicating nonlinearity in the feature space.
These results were consistent to the results from the
optimum GBDT model which suggested high-order
interactions between the features.

Figure 3 shows the first 3 features about how the
Decision Tree model classified CHD patients. The
number of ventricular septal defect (VSD) by primary
physicians was the most important feature. If a pa-
tient had no diagnosis of VSD made by primary phy-
sicians, the chance of non-CHD was 85.4%. The
second and third most important features were the
number of complex level 3 surgeries by CV specialists
and number of atrial septal defect by primary physi-
cians. Figures 4 and 5 show AUROC and AUPRC,
respectively. While all of the ML models demon-
strated good performance, GBDT clearly leads the
performance across all of the 5 metrics including
AUPRC, AUROC, F1 score, accuracy, sensitivity, and
specificity.

We further assessed the performance of the 4
models using the Precision-Recall Plot. Figure 5 shows
pairs of recall and precision values. As seen from the
plot, the GBDT model outperforms all the other 3
models with nearly perfect precision and recall values
at all the thresholds. The largest difference between
any 2 models is GBDT and regularized logistic
regression with 0.993 and 0.936 AUPRC for the testing
set, respectively (ie, 5.7% improvement). This sug-
gests that some nontrivial features interactions can
only be captured by the more sophisticated GBDT.
AUROC in Figure 4 also showed that GBDT out-
performed the other 3 models.

FEATURE IMPORTANCE. After training the GBDT
model, we could acquire the feature importance of
each feature, which is computed as the total reduc-
tion of the criterion brought by that feature. A higher
value indicates a more important feature.

We performed 10 experiments each with a random
split of training and testing sets. We obtained
consistent features among the top 10 most important
features across these experiments although there

https://doi.org/10.1016/j.jacadv.2023.100801
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TABLE 3 Comparison Between GBDT, SVM, Decision Tree, and Regularized Logistic Regression in Model Diagnostic Performance

(Median Values From 10 Repetitions With Various Random Seeds)

AUPRC
Regularized Logistic

Regression Decision Tree SVM GBDT

Run Train Test Train Test Train Test Train Test

1 0.943 0.936 0.942 0.943 0.986 0.962 0.999 0.997

2 0.950 0.926 0.941 0.944 0.998 0.966 1.000 0.982

3 0.942 0.936 0.943 0.939 0.951 0.950 0.999 0.994

4 0.944 0.936 0.940 0.949 0.992 0.971 0.999 0.995

5 0.947 0.936 0.945 0.930 0.996 0.932 0.999 0.992

6 0.945 0.933 0.941 0.946 0.988 0.951 0.999 0.987

7 0.945 0.927 0.941 0.944 0.988 0.958 1.000 0.993

8 0.945 0.933 0.942 0.941 0.988 0.952 1.000 0.997

9 0.945 0.920 0.943 0.938 0.991 0.960 1.000 0.990

10 0.946 0.946 0.943 0.940 0.989 0.956 0.999 0.998

Median 0.945 0.935 0.942 0.942 0.989 0.957 0.999 0.994

Q1 0.94425 0.9285 0.941 0.9393 0.988 0.95125 0.999 0.9905

Q3 0.94575 0.936 0.943 0.944 0.99175 0.9615 1.000 0.9965

IQR 0.0015 0.0075 0.002 0.0048 0.00375 0.01025 0.001 0.006

AUPRC ¼ area under the precision recall curve; GBDT ¼ gradient boosting decision tree; SVM ¼ support vector machine.
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were slight variations in their ranks between
experiments.

Top 10 features in 1 run extracted from the ac-
quired GBDT model is shown in Figure 6. Number of
FIGURE 3 Visualization of Decision Trees in Classifying CHD Patient

CHD ¼ congenital heart disease.
VSD diagnosis by primary physicians was the most
important feature, followed by number of complex
level 3 surgeries by CV specialists, and number of
atrial septal defect diagnosis by primary physicians,
s



FIGURE 4 AUROC Plots of the 4 Constructed Models for CHD Diagnosis

AUROC ¼ area under the receiver operating characteristic curve; CHD ¼ congenital heart disease; GBDT ¼ gradient boosting decision tree.
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consistent with the top 3 features identified by deci-
sion tree.

Furthermore, the LASSO coefficients for 90% of
variables were nonzero, indicating that most of the
variables play a role in computing the CHD probabil-
ity. Details about Lasso diagnostics could be found in
Supplemental Appendix 5 (Supplemental Figure 2).

EXTERNAL VALIDATION. The data set for external
validation included 68,192 patients with at least 1
FIGURE 5 Precision-Recall Plots of the 4 Constructed Models for CH

CHD ¼ congenital heart disease; GBDT ¼ gradient boosting decision tre
CHD-related ICD-9 diagnosis and/or a surgical pro-
cedure between 1983 and 2010, whose CHD diagnosis
was not made by a CV specialist. The model showed
excellent performance: accuracy ¼ 0.993, F1 score ¼
0.990, sensitivity ¼ 0.978, and specificity ¼ 0.998.

DISCUSSION

This is the first study to show that ML models espe-
cially GBDT can automate the clinician designed
D Diagnosis

e.
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FIGURE 6 Selected Top 10 Features in the Optimum GBDT Model for CHD Diagnosis

CHD ¼ congenital heart disease; GBDT ¼ gradient boosting decision tree.
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algorithm to identify true CHD patients in large
claims database. The high precision and recall suggest
that our approach could capture the hierarchical
regularities that were derived based on long-term
expertise of clinicians (Central Illustration).

CHD diagnosis is challenging and requires spe-
cialist’s manual audits to increase accuracy of claims
database analyses. To facilitate this process, we pro-
pose a computational pipeline that leverages ML
models to identify CHD patients based on a large
claim database containing over 19,000 patients. To
this end, we evaluated several popular ML methods
including the regularized logistic regression model
and more sophisticated tree-based and kernel-based
methods. Compared to regularized logistic regres-
sion, GBDT and SVM could identify true CHD patients
from large administrative databases with excellent
diagnostic performance. GBDT model demonstrated
the highest AUPRC around 0.99 for the testing sets.
Lasso regularization method indicated the impor-
tance of majority of the features we used in the CHD
identification. Our data set is imbalanced, with a
higher number of negative examples (non-CHD pa-
tients) compared to positive examples (true CHD pa-
tients). The class proportion reflects the population
prevalence. Manually down-sample the negative ex-
amples to match the positive examples will lead to a
biased model with the prior probability at 50% CHD
prevalence. Therefore, it is desirable to have a model
with high precision at the same recall rate. To this
end, we used AUPRC as our metric, which focuses on
the precision at each recall as opposed to the recall (or
sensitivity at each false positive rate [ie, ROC]).

The near-perfect AUPRC suggests that our pipeline
can capture the hierarchical regularities that were
derived based on expertise of clinicians. The excel-
lent results from external validation further prove a
great generalizability of our ML approach in predict-
ing CHD patients. We envision that our approach can
be employed in other claims database for identifying
CHD patients. The results presentation was limited by
the fact that the feature importance from the GBDT
model was from 1 rather than all the 10 runs. How-
ever, given the fact that the top 10 most important
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Marelli AJ, et al. JACC Adv. 2024;3(2):100801.

AUPRC ¼ area under the precision recall curve; AUROC ¼ area under the receiver operating characteristic curve; CHD ¼ congenital heart

disease; CV ¼ cardiovascular; DT ¼ decision tree; GBDT ¼ gradient boosting decision tree; RLR ¼ regularized logistic regression;

SVM ¼ support vector machine.
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features were consistent across the 10 runs with mi-
nor variations in ranking, the presented feature
importance was informative.

The result of our study is in line with many prior
studies demonstrating the predictive superiority ofML
over more traditional statistical models. For example,
ML was better at predicting heart failure readmissions
and cardiovascular events24,25 than well-established
risk assessment scores. In the realm of CHD, ML
models were developed to stratify patients’ risks and
gauge their prognosis, as well as to forecast the level of
risk associated with congenital heart surgery.

The relevance of our study is reflected in the
exponential increase in the use of administrative
databases in the past decade. They also facilitate
investigation of regional variations and favor large-
scale collaborative initiatives.
STUDY STRENGTHS. Strengths of our study include
the characteristics of the databases, the rigorous in-
ternal validation previously done and the potential for
generalizability. First, the database source is admin-
istrative database. In a country with universal access
to health care and where physician’s renumeration is
claims-based, the database is inclusive and exhaus-
tive. Moreover, the manual audit done on around one-
third of the population by 2 specialized clinicians
contributes to the robustness of the internal validity
of the database. Finally, the features kept after regu-
larization of the data allow for the potential to refine
the standardized electronic health records coding
system (eg, ICD-10) and ultimately the generalization
of this model to other databases.

STUDY LIMITATIONS. We note some limitations of
the current study that highlight opportunities for



PERSPECTIVES

COMPETENCY IN SYSTEMS-BASED PRACTICE: Machine

learning models can be applied to large claim databases for

efficient disease classification.

TRANSLATIONAL OUTLOOK 1: Machine learning models

could be used to automate manual classification system for

congenital heart disease in claims database.

TRANSLATIONAL OUTLOOK 2: Machine learning models

could be generalized for classification of other complex diseases

in administrative databases.
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future development. Firstly, there is a need to
explore whether the true CHD patients with no CHD-
related diagnosis from CV specialists were ever seen
by a CV specialist and not given a diagnosis of CHD; or
were never seen and therefore not given a CHD
diagnosis. The former case suggests that our ML tool
would decrease false negative diagnoses among CV
specialist whereas the latter case suggests that it
would serve to signal which patients to properly refer
to a CV specialist for follow-up. Secondly, significant
unrecognized predictors contributing to CHD classi-
fication may exist. Thirdly, despite the use of regu-
larization methods to decrease overfitting and the
absence of overfitting supported by the results, our
models need to be reproduced on other CHD data-
bases to test its external validity. Fourthly, our study
used data from claims data sources. This is not im-
mune to the potential flaws that are commonly seen
in billing records motivating the need for models that
enhance diagnostic accuracy. Fifthly, we aggregated
patients’ medical data across their records and
trained the ML models by treating each aggregated
record as an independent training example. There are
alternative computational strategies that directly
model the longitudinal electronic health records data
using recurrent neural network with long short-term
memory architecture26,27 that may provide further
insights into the extent of how well a ML method can
perform on the CHD phenotyping task with longitu-
dinal data. Limited by the scope of this article, we will
leave model extension as well as the comparison with
the physician-developed method as future work.

CONCLUSIONS

Using an administrative database of patients with a
CHD diagnosis from which CHD patients were previ-
ously manually extracted, we showed that ML models
could identify the true CHD patients whose diagnosis
was made by a non-CV physician with much higher
accuracy than regularized logistic regression. The
GBDT model with the 79 carefully selected features
showed robustness and effectiveness in identifying
CHD cases. As the model is easy to be constructed and
the features are commonly found in claims database,
it provides significant potential for practical imple-
mentation. We also described the relative importance
of each predictor. These results are promising as more
accurate diagnosis will ultimately lead to better
characterization of CHD thereby improving the care of
CHD patients across the lifespan.
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