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Abstract
Antibodies are widely available and cost-effective research tools in life science, and anti-

body conjugates are now extensively used for targeted therapy, immunohistochemical

staining, or in vivo diagnostic imaging of cancer. Significant advances in site-specific anti-

body labeling technologies have enabled the production of highly characterized and homog-

enous conjugates for biomedical purposes, and some recent studies have utilized site-

specific labeling to synthesize bifunctional antibody conjugates with both imaging and drug

delivery properties. While these advances are important for the clinical safety and efficacy

of such biologics, these techniques can also be difficult, expensive, and time-consuming.

Furthermore, antibody-drug conjugates (ADCs) used for tumor treatment generally remain

distinct from conjugates used for diagnosis. Thus, there exists a need to develop simple

dual-labeling methods for efficient therapeutic and diagnostic evaluation of antibody conju-

gates in pre-clinical model systems. Here, we present a rapid and simple method utilizing

commercially available reagents for synthesizing a dual-labeled fluorescent ADC. Further,

we demonstrate the fluorescent ADC’s utility for simultaneous targeted therapy and molecu-

lar imaging of cancer both in vitro and in vivo. Employing non-site-specific, amine-reactive

chemistry, our novel biopharmaceutical theranostic is a monoclonal antibody specific for a

carcinoembryonic antigen (CEA) biomarker conjugated to both paclitaxel and a near-infra-

red (NIR), polyethylene glycol modified (PEGylated) fluorophore (DyLight™ 680-4xPEG).

Using in vitro systems, we demonstrate that this fluorescent ADC selectively binds a CEA-

positive pancreatic cancer cell line (BxPC-3) in immunofluorescent staining and flow cytom-

etry, exhibits efficient internalization kinetics, and is cytotoxic. Model studies using a xeno-

graft of BxPC-3 cells in athymic mice also show the fluorescent ADC’s efficacy in detecting

tumors in vivo and inhibiting tumor growth more effectively than equimolar amounts of

unconjugated drug. Overall, our results demonstrate that non-selective, amine-targeting

chemistry is an effective dual-labeling method for synthesizing and evaluating a bifunctional
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fluorescent antibody-drug conjugate, allowing concurrent detection, monitoring and treat-

ment of cancer.

Introduction
Antibodies are highly effective tools in contemporary human medicine, particularly in the
diagnosis and treatment of cancer. Antibodies can be intrinsically therapeutic, or conjugated to
different molecules for a variety of biomedical applications [1]. For decades, radioactive, fluo-
rescent, and enzyme labels covalently attached to antibodies, antibody fragments, or other
affinity biomolecules have been routinely used in non-clinical research for antigen detection
[2]. More recent research has also highlighted the enormous potential of antibody conjugates
as pharmaceutical tools for diagnosing disease. Known as molecular, optical, or simply “in
vivo” imaging, this modality involves a probe circulating in the body until it binds a specific tar-
get for visualization using specialized instrumentation [3, 4]. Antibodies can also be coupled to
therapeutic small molecules for drug delivery applications. These antibody-drug conjugates
(ADCs) target individual tissues or cells through disease biomarker recognition, localizing the
drug to these areas. Upon cellular internalization, the ADC releases its drug payload to kill the
cell [5–8]. Targeted therapy utilizing ADCs is highly promising, with two ADCs, brentuximab
vedotin (Adcetris) and trastuzumab emtansine (Kadcyla), currently approved by the FDA,
with at least 30 more in various phases of development and clinical trials [9,10]. The current
commercial availability of monoclonal antibodies targeting innumerable antigens of interest
has also grown exponentially, presenting an unprecedented opportunity to study the therapeu-
tic and diagnostic potential of a wide range of antibodies [11].

Whether labeled with imaging agents for molecular diagnostics or conjugated to drugs for
targeted therapy, chemical modification strategies are necessary to couple these components to
a protein or antibody base. There are myriad protein bioconjugation techniques currently
available, employing a wide variety of strategies to label amino acids, carbohydrates, or other
moieties present on a protein of interest. Of these classical methods, two of the most effective
and well-characterized are modification of cysteine and lysine residues [12]. In native proteins
and antibodies, oxidized cysteine pairs (i.e. disulfide bonds) can be easily reduced to generate
free thiols for alkylation reactions with iodoacetamide or maleimide reagents [13]. Primary
amine groups present on surface-accessible lysines (as well as the N-terminus) also react prodi-
giously with a variety of compounds including carbodiimides, aldehydes, imidoesters, and
most commonly, N-Hydroxysuccinimide Esters (NHS Esters), forming stable amide bonds
[14]. Indeed, heterobifunctional crosslinkers exploiting both cysteine and lysine modification
chemistries are almost exclusively used to form antibody-drug linkages in ADCs [15–17]. For
example, brentuximab vedotin (Adcetris) is comprised of an anti-CD30 monoclonal antibody
conjugated to the antimitotic compound monomethyl auristatin E (MMAE), using a malei-
mide-based heterobifunctional linker [18, 19]. Similarly, several ADCs in clinical development
also utilize cysteine-directed maleimide chemistry to conjugate various therapeutic antibodies
to their respective cytotoxic payloads, including glembatumumab vedotin, pinatuzumab vedo-
tin, and PSMA-ADC [20–22]. Conversely, trastuzumab entamsine (Kadcyla) relies on an NHS
ester-based bifunctional crosslinker, succinimidyl trans-4-(maleimidylmethyl)cyclohexane-
1-carboxylate (SMCC), to covalently attach the cytotoxic small molecule DM1, a maytansinoid
antimitotic microtubule disruptor, to the therapeutic antibody Herceptin through exposed sur-
face lysines [23]. Analagously, various ADCs in the clinical pipeline also use this amine-reactive
lysine chemistry for drug loading, including milatuzumab-doxorubicin, inotuzumab ozogami-
cin, indatuximab ravtansine, coltuximab ravtansine, and lorvotuzumab mertansine [24–28].
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While cysteine and lysine targeting conjugation methods are simple and demonstrably
effective in these aforementioned examples, these techniques are also largely considered “regio-
selective”, “nonselective”, or “non-site-specific”, resulting in a heterogenous distribution of dif-
ferentially labeled protein conjugates. For instance, trastuzumab emtansine is molecularly
comprised of a mixture of ADCs with drug-to-antibody ratios (DARs) ranging from 0–8, with
an overall average DAR of 3.5 [29]. This distribution is potentially problematic in a pharmaco-
logical context, where ADCs with particularly high DARs exhibit instability, insolubility, poor
pharmacokinetics, and increased toxicity [30–32]. New advancements in bioconjugation
research have attenuated several of these issues by enabling “site-specific” labeling at precise
locations on proteins. These various methods include the insertion of specialized amino acid
conjugation sites (e.g. engineered cysteines or unnatural amino acids), the use of enzymes to
catalyze antibody-drug linkage at specific residues, or the utilization of next generation malei-
mide reagents for simultaneous disulfide re-bridging and site-specific labeling of antibody con-
jugates [33–45]. In addition to yielding more homogenous distributions of conjugates, these
techniques have also been shown to result in ADCs with enhanced pharmacological properties,
improving both the safety and efficacy of these biopharmaceuticals [46]. However, these tech-
niques require multiple, difficult, and time-consuming processing steps, including complete
engineering of a recombinant antibody sequence, optimization of an appropriate bioorthogo-
nal cell line expression system, and/or precise control over sequential reduction and re-bridg-
ing for antibody labeling. The vast array of promising drugs, antibodies, and cancer targets/
biomarkers currently being researched requires simpler methods to dual label antibodies that
enable efficient pre-clinical evaluation of molecular diagnostic and therapeutic potential of
these combinations.

Paclitaxel is one such promising cytotoxic compound, first purified in the late 1960’s and
later characterized in greater detail by Wani, M. C. et al [47]. Similar to other ADC cytotoxic
payloads, including DM1 and MMAE, paclitaxel is a mitotic inhibitor that binds and stabilizes
microtubules, interrupting normal mitotic spindle assembly and chromosome segregation dur-
ing G2/M phase leading to apoptosis [48]. Despite paclitaxel’s cytotoxic utility in cancer che-
motherapy, it is also has poor aqueous solubility, requiring harsh delivery mechanisms to
administer it. To attenuate these effects, as well as increasing the potency, efficacy, and solubil-
ity of paclitaxel itself, numerous paclitaxel derivatives and prodrugs have been developed,
including conjugation to PEG, docosahexaenoic acid, hyaluronic acid, arginylglycylaspartic
acid, poly-L-glutamic acid, and albumin [49–55]. Cross-linking paclitaxel to antibodies has
also been investigated, with several studies demonstrating the pre-clinical effectiveness of these
ADCs for use in cancer treatment [56–59].

Selecting a therapeutic target and/or biomarker is also an important consideration in the
design of both ADCs and molecular imaging reagents. Carcinoembryonic antigen (CEA) is a
developmental, cell-surface adhesion protein over-expressed in many gastrointestinal, breast,
ovarian, lung, and thyroid carcinomas, and is a well established and attractive cancer bio-
marker [60, 61]. Several reports have shown the effectiveness of targeting CEA in anti-cancer
applications [62–65]. There also exists an impressive body of work demonstrating the biomark-
er’s efficacy as a cancer imaging and diagnostic tool, ranging from radio-labeled CEA antibod-
ies [66–71] to the use of fluorescent labels [72–79]. More recent work has demonstrated the
improved optical performance and physiological stability of PEGylated, NIR dyes coupled to
CEA-specific antibodies for highly effective molecular imaging of tumors [80, 81].

Presently, the use of antibody conjugates for cancer diagnosis or treatment are distinct mol-
ecules with different uses. Thus, there exists a need to unify these applications in the clinical
setting. Previous research has demonstrated the indirect fluorescent labeling of ADCs for con-
current imaging of tumors [82]. Other studies have utilized a disulfide re-bridging strategy to
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achieve dual, site-specific labeling of Herceptin with both a chemotherapeutic drug and a fluor-
ophore, but these studies only assessed efficacy in vitro [43–45]. Here, we present an alterna-
tive, simple method for synthesizing a dual-labeled fluorescent ADC that is capable of
simultaneous targeted therapy and molecular imaging in vivo. Given the prior diagnostic and
therapeutic promise surrounding these components, we utilized a commercially available CEA
mouse monoclonal antibody (Thermo Fisher Scientific #MIC0101, IgG1 isotype, clone 1105)
for direct conjugation to both paclitaxel and the PEGylated, NIR fluorophore, DyLight™-680-
4xPEG. In addition to the synthesis and analytical characterization of this conjugate, we dem-
onstrate the first in vitro and in vivo evaluation of this type of bifunctional antibody construct
for simultaneous treatment and detection of cancer. Further, the method we report here is
widely applicable, and can be used to quickly and effectively synthesize a variety of bifunctional
antibody and protein conjugates for a multitude of biomedical research applications.

Results

Synthesis, Purification, and Characterization
Amine-reactive NHS ester chemistry was used to conjugate both paclitaxel and DyLight™-680-
4xPEG to an antibody specific for CEA. Paclitaxel was first derivatized into a succinate ester
(Paclitaxel-NHS or “PTX-NHS”) using a procedure outlined previously [51]. To effectively
evaluate different CEA antibody modifications, four conjugate samples (with and without
labels) were synthesized, purified, and characterized as depicted in Fig 1. Two mouse IgG iso-
type control samples were also prepared to assess specificity of the antibody conjugate/thera-
nostic during in vitro fluorescent binding assays. After concentration and buffer exchange,
antibodies were reacted with the noted molar excesses of appropriate components. Samples
were then purified with the resin included in the Pierce™ Dye Removal Column kit followed by
dialysis in PBS. Conjugates were then characterized by UV/Vis analysis for fluorophore:anti-
body ratio (FAR) estimation. Drug:antibody ratio (DAR) was determined with a modified pro-
cedure taken from [58] by hydrolyzing the ester antibody-drug linkage and then quantifying
extracted paclitaxel by liquid chromatography. Table 1 summarizes the characterized DARs
and FARs for all antibody conjugates used in this study.

Overall, the protocol for conjugating both paclitaxel and a PEGylated fluorophore to the
CEA antibody was quite simple using established amine-reactive crosslinking chemistry. For
effective comparison, it was desired that the different conjugates had similar DARs and FARs
(Table 1). Unexpectedly, we found that the same molar excesses of each component (PTX-NHS
or DyLight™ 680-4xPEG-NHS) could be used for every conjugation reaction, whether used
alone or mixed together in a single reaction (Fig 1). A 3-fold molar excess of dye resulted in an
approximate FAR of 2:1 for each conjugate, while a 5-fold molar excess of drug resulted in a
relatively lower DAR of 1:1. These data suggest that the fluorophore labeling chemistry is more
efficient, or perhaps more reactive due to differences in accessibility or compound solubility.
These results were consistent in multiple CEA antibody and isotype control conjugate prepara-
tions in the development of this method, suggesting that the amine-reactive drug and dye
either do not compete for the same amino groups, or may preferentially react with distinct sites
on the antibody. In addition, these observations are indicative that these procedures can be
potentially applied to other antibodies and proteins.

Another unexpected finding during the conjugate purification method development was
that the dye removal columns efficiently removed both excess, unreacted dye and drug (verified
by high-performance liquid chromatography). While the resin affinity for different fluoro-
phores has been shown, this resin has never been demonstrated to remove other types of small
molecules. Since paclitaxel is a large and hydrophobic molecule, this drug may have some
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Fig 1. Workflow for Synthesis, Purification, and Characterization of Conjugates.Mouse monoclonal antibody specific for human CEA
was used to prepare four samples for subsequent evaluation and comparison. Twomouse IgG1 isotype control conjugate samples were
also prepared as stated in Table 1. The bottom portion of Fig 1 illustrates approximate characterized loading ratios for both drug and dye in
various CEA samples.

doi:10.1371/journal.pone.0157762.g001
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properties similar to common fluorophores which are involved in affinity interactions with the
dye removal resin. Ultimately, this method enabled us to produce highly pure conjugates in a
single purification step.

In ADC applications, it is also vital to assess the chemical stability of the antibody-drug
linker for eventual pharmacological considerations. Stability of the α-CEA-680-PTX antibody-
drug linker (structurally illustrated in [58]) was determined through in vitro hydrolysis of the
ester bond linkage followed by C18 extraction and analysis of free drug concentration by
HPLC. For triplicate samples, the fluorescent ADC was hydrolyzed over time at physiological
temperatures and compared to a control sample mixture of the unconjugated antibody and
free paclitaxel. Degree of hydrolysis at each time point was defined as the peak area ratio of
extracted paclitaxel from test samples compared to hydrolyzed controls. As shown in Fig 2,
these data illustrate a time-dependent release of paclitaxel, and the in vitro physiological half-
life of the conjugate linkage is estimated at 12–16 hours. The stability of the paclitaxel-antibody
linkage was also approximated in a previous report, where hydrolytic half-life was determined
to be 2–3 hours at physiological conditions [83]. However, this study utilized a radioactive,
benzoyl-labeled paclitaxel linker derivative to make these estimates, with distinct chemical and

Table 1. Analytical Characterization of Antibody Samples and Conjugates.

Sample DAR FAR

α-CEA NA NA

α-CEA-PTX 1:1 NA

α-CEA-680 NA 2.4:1

α-CEA-680-PTX 1.2:1 2.1:1

IgG-680 NA 2.3:1

IgG-680-PTX 1.1:1 2.2:1

doi:10.1371/journal.pone.0157762.t001

Fig 2. Estimation of Physiological Conjugate Stability In Vitro. The fluorescent ADC and hydrolyzed controls were
incubated in PBS at 37°C, and liberated paclitaxel was extracted and quantified. Degree of hydrolysis was defined as the ratio of
extracted paclitaxel from test samples compared to hydrolyzed controls. Data points represent triplicate extracted samples
(n = 3). Error bars denote standard error.

doi:10.1371/journal.pone.0157762.g002
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structural differences, so comparisons between these approximations are difficult. In either
case, the stability of this particular antibody-drug linker appears to be somewhat labile.

In Vitro Fluorescent Evaluation
One of the major goals of this study was to determine if fluorescent labeling significantly
altered ADC function, or if conjugating a drug to a fluorescent antibody would otherwise
impede molecular imaging performance. To evaluate this latter idea, various cell lines (two
purported CEA-positive cell lines, BxPC-3 and MCF-7, and two CEA-negative control cell
lines, HeLa and HepG2) were incubated with several concentrations of α-CEA-680 or α-CEA-
680-PTX, and analyzed via immunofluorescence (Fig 3) and flow cytometry (Fig 4) for both
specificity and signal performance. In both experiments, all cell lines were also incubated with
isotype control conjugates, IgG-680, and IgG-680-PTX, to assess in vitro non-specific binding.

In both in vitromodel systems, fluorescently labeled anti-CEA conjugates showed high reac-
tivity for the CEA-positive BxPC-3 cell line and minimal response to both CEA-negative HeLa
and HepG2 cell lines (Figs 3 and 4). Another putative CEA-positive cell line, MCF-7, had only
partial staining of a subpopulation of cells in both immunofluorescence and flow cytometry
immunoassays in replicate experiments with different sources of the cell line. These results
were consistent with previous reports that MCF-7 is heterogeneous for CEA expression [84–
86]. In terms of fluorescent performance, α-CEA-680-PTX exhibited slightly lower intensities
across a range of concentrations when compared to identical amounts of α-CEA-680 (Fig 4).

Fig 3. Immunofluorescent Staining of Cell lines with Conjugates and Quantification of Signal. (A) Immunofluorescent images of cell lines stained
with various conjugate samples. Two putative CEA-positive cell lines, BxPC-3 and MCF-7, and two control CEA-negative cell lines, HeLa and HepG2, were
seeded at 1x104 cells/well in 96-well collagen-coated plates. Cells were immunofluorescently stained with approximately 2ug/mL of α-CEA-680 or α-CEA-
680-PTX where noted (red). Nuclei were counterstained with Hoechst dye (blue). Images were obtained on an ArrayScan VTI under 20X magnification and
arranged with the HCS View software, Pxlr editor, and Microsoft PowerPoint. (B) Quantification of Immunofluorescent Staining. BxPC-3, MCF-7, HeLa, and
HepG2 cell lines were seeded at 1x104 cells/well in 96-well collagen-coated plates. Cell lines were probed with α-CEA-680 (red lines), α-CEA-680-PTX
(blue lines), IgG-680 (green lines), or IgG-680-PTX (purple lines) at concentrations of 0 – 60ug/mL. Fluorescent signal intensity was quantified with the
ArrayScan VTI and vHCS Scan software. Data points represent average fluorescent intensity (n = 3000 cells), and error bars denote standard error. Error
bars are present at every data point, but are very small in some cases.

doi:10.1371/journal.pone.0157762.g003
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This difference between the two conjugates is most likely due to the lower FAR of α-CEA-
680-PTX compared to α-CEA-680 (Table 1). However, the addition of paclitaxel may also have
an effect on the fluorophore fluorescent properties, antibody solubility, or antibody-antigen
binding. Regardless of the molecular and/or biochemical reason for this variation, there were
no substantial differences observed for in vitro fluorescent localization of α-CEA-680-PTX
(fluorescent ADC) and α-CEA-680 (fluorescent antibody). As expected, both isotype control
conjugates, IgG-680 and IgG-680-PTX, displayed virtually no affinity for any cell lines tested,
regardless of concentration or application tested (Figs 3 and 4).

A further key assessment of ADCs is the estimation of internalization kinetics. After ADCs
bind to a specific cell surface receptor antigen, it must be internalized before subsequent lyso-
somal and/or proteolytic release of the drug intracellularly [87]. Several previous reports have
assessed CEA internalization, especially when CEA-positive cells have been probed with anti-
bodies [88–91], CEA-targeting polymeric particles [92, 93] or an anti-CEA immunotoxin con-
jugate [94]. We have employed a high-throughput, instrument-based immunofluorescent
assay to quantitatively detect and measure CEA internalization in BxPC-3 cells probed with
various conjugates synthesized in this study. This well-characterized method has been utilized
in multiple studies to assess real-time receptor internalization and translocation events in a
wide variety of contexts in vitro [95–105]. BxPC-3 cells were seeded into 96-well plates, and
exposed to either free DyLight™ 680-4xPEG, IgG-680, IgG-680-PTX, α-CEA-680, or α-CEA-
680-PTX for incubation times ranging from 0–72 hours. At the time points indicated, cells
were washed extensively and then fixed and counterstained. Stained cells were then imaged
with the ArrayScan VTI HCS instrument, and the appearance of internalized antibody-bound
CEA “spots” over time was quantitatively assessed using the “Spot Detector” algorithm bioap-
plication in the ArrayScan VTI vHCS Scan software (Fig 5).

It is clear from both panels in Fig 5 that α-CEA-680 and α-CEA-680-PTX underwent pro-
gressive internalization from 0–8 hours. CEA internalization was observed as early as 2 hours,
with maximal CEA internalization seen approximately 8–24 hours after exposure. Previous
studies with other CEA expressing cell lines reported significant, noticeable internalization of

Fig 4. Flow Cytometry Analysis of Cell lines Stained with Conjugates. BxPC-3, MCF-7, HeLa, and HepG2 cells (1x106 in each sample) were probed
with either buffer (unstained, black histograms) or a 10ug/mL solution of α-CEA-680 (red histograms), α-CEA-680-PTX (blue histograms), IgG-680 (green
histograms), or IgG-680-PTX (purple histograms). Cells were analyzed using the BD Accuri C6 Flow Cytometer and CSampler Workspace software. Each
histogram represents 50,000 total events.

doi:10.1371/journal.pone.0157762.g004
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antibodies ranging from as early as 5 minutes [88, 90] to 5 hours [89]. Another extensive study
evaluating several cell lines, CEA antibody clones, and internalization methods estimated CEA
turnover half times at 10–16 hours, with some antibody clones expediting this to as little as 4
hours [91]. Further, while the exact internalization kinetics were unknown in this particular
system, a prior report using BxPC-3 cells incubated with CEA-targeting antibody-nanoparticle
hybrids observed significant internalization after 30 minutes [93]. Taken together, the internal-
ization kinetics we observed in this study are consistent with these previous assessments.

While we observed internalization for both α-CEA-680 and α-CEA-680-PTX, their kinetic
profiles were markedly different (Fig 5A). Although both fluorescent antibodies were steadily
internalized from 0–8 hours, the number of detected spots decreased after 8–72 hours for α-
CEA-680 but remained constant for α-CEA-680-PTX. One explanation for these data is that
viable cells progressively degrade α-CEA-680 and liberate the dye inside vesicles, allowing
eventual clearance of the dye through several rounds of endosomal recycling and extracellular
release [106]. This is supported by both the observed decrease in overall fluorescent intensity
as well as the general translocation of signal to the perinuclear region from 8–72 hours (Fig
5B). It is very unlikely that these results are due to passive diffusion of DyLight™ 680-4xPEG in
or out of the cells, as evidenced by the lack of any observed or detected internalization of the
free dye by itself.

For α-CEA-680-PTX, the persistent staining of internalized CEA spots is most likely due to
the cytotoxic and antimitotic action of paclitaxel itself. Endosomal metabolism has been shown
to be dependent on microtubules [107], which may explain why dye release and clearance is
slower in cells exposed to PTX. In addition, the onset of apoptosis observed after α-CEA-
680-PTX treatment may further inhibit spot degradation. As expected for both isotype control
conjugates, IgG-680 and IgG-680-PTX, there was no observed localization or internalization
during the entire duration of treatment. However, it is worth noting that treatment with IgG-

Fig 5. Immunofluorescent Assessment of CEA Internalization. (A) Quantification of internalized CEA “spots”. BxPC-3 cells were seeded at 1x104 cells/
well in 96-well collagen-coated plates. Cells were then treated with 46ng/mL free DyLight™ 680-4xPEG or 2ug/mL of IgG-680, IgG-680-PTX, α-CEA-680, or
α-CEA-680-PTX diluted in RPMI completed media (all at 46ng/mL effective DyLight™ 680-4xPEG) for the time points indicated. Cells were then washed,
fixed, and counterstained with Hoechst dye. Average internalized spots per cell were obtained with the ArrayScan VTI and vHCS Scan software. Data points
represent the average number of internalized spots per cell (n = 10,000 cells), and error bars denote standard error. Error bars are present at every data
point, but are very small in some cases. (B) Immunofluorescent images depicting representative cells at each time point. Images (20X magnification) were
obtained in concert with spot detection analysis on the ArrayScan VTI, and arranged with the vHCS View software, Pxlr editor, and Microsoft PowerPoint.

doi:10.1371/journal.pone.0157762.g005
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680-PTX also produced readily apparent, apoptotic nuclear fissure, particularly after prolonged
incubation times (24–72 hours), likely explained by the estimated stability characteristics of the
antibody-drug linker (Fig 2).

In Vitro Cytotoxic Efficacy
A subsequent major aim of this study was to demonstrate that the fluorescent ADC was cyto-
toxic to target cells. Using an in vitroMTT cell viability assay, BxPC-3 cells were treated with
different modified CEA antibodies and compared to free and antibody-bound drug and fluoro-
phore controls. As shown in the compiled dose-response curves (Fig 6), CEA antibody alone
was not intrinsically cytotoxic. DyLight™ 680-4xPEG, or conjugates thereof, were also non-
toxic. Only samples containing paclitaxel, whether free or bound to antibody, were shown to
exhibit dose-dependent decreases in cell viability.

Using the dose response curves shown in Fig 6, IC50 values for each condition were esti-
mated (Table 2). The IC50 of samples containing free paclitaxel (PTX, α-CEA + PTX, α-CEA

Fig 6. MTT Cytotoxic Assessment of Samples and Conjugates. BxPC-3 cells (5x103) were plated in 96-well collagen-coated plates, and treated
with a range of various test samples as noted in the figure. Connected dashes denote conjugates, and “+” indicates the addition of free,
unconjugated compound (i.e. α-CEA-680 is the fluorescent antibody conjugate, where α-CEA + 680 indicates naked antibody plus free fluorescent
dye). The sample concentration at each data point is plotted according to the three x-axes. For example, the data point on the far right for α-CEA-
680-PTX is comprised of 60ug/mL of antibody, which corresponds to an effective paclitaxel concentration of 400nM, and an effective DyLight 680
concentration of 800nM. Samples are diluted 1:2 serially throughout the rest of the series. Samples that do not contain antibody, paclitaxel, or
DyLight 680 are still standardized in this manner for graphical comparison (i.e. the far right data point for naked antibody, α-CEA, is comprised of a
60ug/mL solution and serially diluted 1:2 as before, and α-CEA-PTX starts at 60ug/mL, which corresponds to an effective paclitaxel concentration of
400nM, and is serially diluted identically.) After 24 hours, samples were removed and replaced with fresh media. Cells were allowed to grow for 72
additional hours and then stained with MTT according to the manufacturer’s instructions. The absorbance of each well was measured at 540nm on
the Thermo Scientific VarioSkan Flash plate spectrophotometer. Edges of the plate were omitted. Percent viability was defined as the ratio of the
A540 of test wells compared to the A540 of untreated control wells. Untreated controls received media and an appropriate vehicle depending on
sample. Data points represent the average of three separate experiments performed in triplicate (n = 9 wells). Error bars denote standard error.

doi:10.1371/journal.pone.0157762.g006
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+ 680 + PTX) were approximately 3-fold lower than the IC50 of samples with paclitaxel bound
to antibody (α-CEA-PTX and α-CEA-680-PTX). In comparing various conjugates, α-CEA-
680-PTX was more potent than that of α-CEA-PTX at almost every concentration in the MTT
assay (Fig 6). Furthermore, the estimated IC50 value for α-CEA-680-PTX was also 20% lower
than α-CEA-PTX (Table 2). This difference is most likely due to the increased DAR of α-CEA-
680-PTX, which happens to be 20% higher than α-CEA-PTX (Table 1).

Previous reports have shown an increase in the effectiveness of paclitaxel when bound to
antibody in other cytotoxic assays [56–59]. However, our results indicate that free paclitaxel
was more cytotoxically potent in vitro than equimolar levels conjugated to an antibody. One
possible explanation for these results is that free paclitaxel can more easily diffuse into cells in
vitro compared to paclitaxel ADCs that must go through CEA binding, internalization, and
degradation before eventual intracellular drug release. In addition, a majority of paclitaxel
ADCs previously reported couple paclitaxel to antibodies which also exhibit some cytotoxic
effects [56–59]. Although CEA is an effective target for immunofluorescent diagnostics (Figs
3–5) and visualization of tumors [66–81], we have demonstrated that CEA antibodies alone do
not contribute to cytotoxicity (Fig 6), likely due to the fact that CEA is not necessary for cell
survival [60, 61]. Further, drug-free antibody control samples (α-CEA-680, IgG-680) exhibited
no decrease in cell survival even after prolonged incubation times (Fig 5).

The molecular cytotoxic mechanism of free and antibody-conjugated paclitaxel was also
assessed using the BD Cycletest™ Plus DNA ploidy staining kit for flow cytometric cell cycle
analysis. Efficacy of α-CEA-PTX and α-CEA-680-PTX was also compared in the assay to fur-
ther assess the effects of fluorescent dye conjugation on ADC functionality. As shown in Fig 7,
both α-CEA-PTX and α-CEA-680-PTX antibody conjugate treatment resulted in a similar cell
cycle arrest at G2/M phase, consistent with the established molecular mechanism of paclitaxel.
Similar to our MTT cytotoxicity assay results, free paclitaxel was more efficient at arresting
cells than equimolar levels of paclitaxel bound to an antibody. These results demonstrate the
cytotoxic functionality of our fluorescent ADC and that fluorescent dye labeling did not signifi-
cantly alter this activity.

In Vivo Evaluation
To demonstrate specificity and cytotoxicity of the fluorescent ADC in vivo, a mouse tumor
xenograft model was used. Nude, athymic mice were subcutaneously inoculated with BxPC-3
cells. When tumors were palpable, mice were separated randomly into 3 groups. Mice in group
1 (n = 6) were negative controls and received PBS (vehicle). Group 2 (n = 6) received free

Table 2. IC50 Estimations of Samples and Conjugates.

Sample Estimated IC50 (nM)

α-CEA NA*

α-CEA-PTX 37.99

PTX 9.84

α-CEA-680 NA*

α-CEA-680-PTX 30.13

680 NA*

α-CEA + PTX 11.89

α-CEA + 680 NA*

α-CEA + 680 + PTX 12.16

*Not applicable, value too large to compute

doi:10.1371/journal.pone.0157762.t002
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paclitaxel (6.7uM) in PBS, while group 3 (n = 5) received equimolar amounts of paclitaxel con-
jugated to antibody (100ug α-CEA-680-PTX, 6.7uM effective paclitaxel). Each mouse received
a total of five doses of the respective treatment, spaced 3 days apart, via retro-orbital injection.
Tumor growth was measured and calculated every 3 days throughout the study, and average
tumor volume for each group data is plotted in Fig 8.

Fig 7. Flow Cytometry Cell Cycle Analysis. BxPC-3 cells were treated with vehicle control, 100nM free paclitaxel, 15ug/mL α-CEA-PTX, or
15ug/mL α-CEA-680-PTX (both at 100nM effective paclitaxel) for 24 hours. Cell cycle analysis was analyzed using the BD Cycletest™ Plus DNA
Reagent Kit. All samples were gated identically, and 30,000–40,000 events were collected for each sample.

doi:10.1371/journal.pone.0157762.g007

Fig 8. In Vivo Tumor Growth Inhibition.Male nude, athymic mice, 4 weeks of age, were subcutaneously inoculated with BxPC-3
cells (2x106) embedded in 50:50 HBSS:Matrigel. When tumors were palpable (~1 week), mice were tagged and randomly separated
into 3 groups. Mice in group 1 (n = 6) received PBS (vehicle). Group 2 (n = 6) received free paclitaxel (6.7uM) in PBS, while group 3
(n = 5) received equimolar amounts of paclitaxel conjugated to antibody (fluorescent ADC, 100ug α-CEA-680-PTX, 6.7uM effective
paclitaxel). Each mouse received a total of five doses of the respective treatment, spaced 3 days apart, via retro-orbital injection.
Arrows indicate treatment days (days 3, 6, 9, 12, and 15). Tumor size was measured every 3 days using digital calipers, and tumor
volume was calculated with the modified ellipsoid formula (v =½(length × width2)). Each data point represents average tumor volume
(n = 5–6 mice). and error bars denote standard error.

doi:10.1371/journal.pone.0157762.g008
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As shown from the tumor growth inhibition curves in Fig 8, clear differences in tumor vol-
ume are observed between α-CEA-680-PTX compared to both PBS and free PTX control
groups over time. In addition, conjugating paclitaxel to a tumor-specific antibody appeared to
increase its efficacy compared to equimolar levels of free paclitaxel, which is at an otherwise
low, clinically irrelevant dose. However, when the average volume of each group on day 45 was
compared with a one-way ANOVA, these differences were not found to be significantly differ-
ent (F(2,14) = 1.803, p = 0.2011). Large variability was observed in tumor depth, shape, and
volume across mice in all groups, and it is likely this was a major contributor to a lack of signif-
icant differences, particularly when considering the relatively low number of mice (n = 5–6 in
each group) in this pilot study.

Based on our observations, α-CEA-680-PTX localizing to a BxPC-3 tumor in vivomay
exhibit three potential outcomes; a) α-CEA-680-PTX localizes to the tumor site, but paclitaxel
has already been hydrolyzed from the antibody en route due to linker lability (Fig 2); b) α-
CEA-680-PTX localizes, is internalized with CEA, digested via lysosomal degradation, and the
drug is released intracellularly; or c) α-CEA-680-PTX localizes, paclitaxel is hydrolyzed from
the antibody before internalization occurs, released to the local extracellular environment, and
passively diffuses into target cells.

Given these potential pathways, the biochemical design of our fluorescent ADC contains a
number of areas for improving this efficacy. As alluded to earlier, it is clear that antibody-drug
linker stability is a critical parameter for effective tumor growth inhibition, and Safavy et al.
described an addition of an extra carbon spacer to this linker which increased physiological sta-
bility by at least 16-fold [83], a modification which would likely enhance in vivo effectiveness of
our own conjugate. Furthermore, conjugating higher amounts of drug typically confers higher

Fig 9. In Vivo Fluorescent Tumor Localization of α-CEA-680-PTX.Mice in group 3 were imaged 24 hours after every treatment infusion (i.e. treatment
on days 3, 6, 9, 12, and 15, imaging on days 4, 7, 10, 13, and 16), and were also imaged once a week after all treatment had stopped (days 23, 30, 37, and
44). At each time point, mice were anesthetized as outlined in the methods section and imaged using the UVP iBox Explorer2 with attached BioLite Xe
MultiSpectral Source. Images were obtained with a white light (control) and a NIR excitation filter (600-645nm), an emission filter of 720nm, a
magnification of 0.17x, and fixed exposure times as indicated.

doi:10.1371/journal.pone.0157762.g009
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potency in ADCs, and using PEG itself as a linker with paclitaxel has been shown to yield solu-
ble antibody conjugates with DARs at 10:1 and upwards [59]. The antibody itself also presents
an opportunity for greater effectiveness. While CEA is an established target for diagnostic visu-
alization of cancer, antibodies against the biomarker in this study did not confer any cytotoxic
properties (Fig 6). Utilizing an antibody that is intrinsically therapeutic or targeted against vital
receptors that normally bind ligands for growth factors, nutrients, or other survival signals
would likely improve the effectiveness of this conjugate. Indeed, almost all ADCs in the clinical
pipeline share this common feature [9, 10, 17]. Additionally, conjugating different drugs may
increase the fluorescent ADC’s potency, solubility, and overall efficacy, and would be intriguing
for subsequent experimentation.

Mice in group 3 were also imaged 24 hours after each treatment infusion, followed by
weekly imaging as described in the methods section. The fluorescent tumor localization images
of introduced α-CEA-680-PTX are shown in Fig 9. Both excitation filter sets are depicted.
Images were obtained at the time points indicated, with fixed exposure times where noted. Sig-
nal intensity and specificity are clearly illustrated, and are consistent with previous reports
demonstrating in vivo CEA detection, particularly with fluorescently labeled antibodies [72–
81]. In addition to fixed exposure times, automatic exposures were obtained for the 600-
640nm excitation on the dorsal side of mice in group 3, and the average exposure time at differ-
ent points in the study is plotted in Fig 10.

Images, as well as the exposure times obtained throughout the study, show strong tumor
fluorescence and substantial signal stability still observed 4 weeks after α-CEA-680-PTX
administration. While in vitro internalization kinetics of antibody-bound CEA were estimated
in this particular system (Fig 5), the precise molecular composition of the remaining fluores-
cent entity is unknown, as well as how long the signal indefinitely persists in vivo. Based on our

Fig 10. Automatic Exposure Times Throughout the Study.Mice in group 3 were imaged 24 hours after every treatment infusion
(i.e. treatment on days 3, 6, 9, 12, and 15, imaging on days 4, 7, 10, 13, and 16), and were also imaged once a week after all
treatment had stopped (days 23, 30, 37, and 44). At each time point, mice were anesthetized as outlined in the methods section and
imaged using the UVP iBox Explorer2 with attached BioLite Xe MultiSpectral Source. A variable automatic exposure using the
VisionWorks control software was obtained on the days indicated. Treatment infusion days are indicated by arrows (days 3, 6, 9, 12,
and 15). Data points represent average automatic exposure times (n = 5 mice). Error bars denote standard error.

doi:10.1371/journal.pone.0157762.g010
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assessment of CEA internalization kinetics, particularly in BxPC-3 cells treated with α-CEA-
680-PTX, it is likely that the signal longevity observed in mice is a combination of externally
bound, intact antibody conjugate and internalized, digested conjugate with accumulated fluor-
ophore inside apoptotic cells. Regardless, the signal decay was highly predictable after stopping
treatment infusions with an estimated half-life of approximately 14 days (Fig 10). Ultimately,
more accurate pharmacodynamic methods are needed to assess α-CEA-680-PTX half-life and
tumor internalization. Replicating this experiment, followed by tumor excision and further
characterization of the remaining conjugate and/or fluorophore would be highly interesting for
further study.

Looking at Figs 9 and 10, it is clear that signal intensity increased with each treatment infu-
sion, potentially indicating that the current dosing scheme was suboptimal and that this dose
(100ug fluorescent ADC) was insufficient for complete tumor saturation. The variability
observed in tumor size also suggests that the current dose may also only be appropriate for
tumors of a certain volume or stage. Although our in vivo assessment of our dual-labeled
ADCs showed high tumor localization specificity, our combined data suggest that an increased
dose, administered earlier in the tumor growth cycle, and spaced further apart may have been
more effective at significantly reducing tumor volume.

Discussion
Therapeutic antibodies and ADCs continue to exhibit great promise as cancer treatment
options and drug delivery systems. Radio-labeled or fluorescently-tagged antibodies have also
demonstrated their effectiveness as valuable tools for cancer detection, diagnosis, and surgical
guidance. Our study addresses the need to unify these concepts, presenting a simple and quick
method for synthesizing a dual-labeled fluorescent antibody-drug conjugate. Using amine-
reactive chemistry, we conjugated a monoclonal antibody specific for carcinoembryonic anti-
gen (CEA) to either paclitaxel, a near-infrared fluorophore (DyLight™ 680-4xPEG), or both
simultaneously. Furthermore, the use of a resin-based purification method enabled near com-
plete removal of un-reacted components, resulting in highly pure constructs. Through various
in vitro and in vivo analyses, we demonstrate feasibility of this bifunctional antibody conjugate
as a theranostic agent.

While further study is needed to improve the pharmacokinetics, stability, and potency of
this construct for optimal imaging and tumor growth inhibition, the technique reported here is
an effective methodology for synthesizing a dual-labeled antibody for simultaneous molecular
imaging and targeted therapy of cancer. The increasingly wide availability of monoclonal anti-
bodies and recombinant protein technology, as well as the progressive nature of both drug and
molecular imaging agent discovery, presents a significant opportunity to evaluate the diagnos-
tic and therapeutic potential of a continually growing number of components. The method we
present in this study is a highly cost effective and accessible tool utilizing readily available, off-
the-shelf reagents, and can be employed to produce a vast variety of antibody or protein conju-
gates for extensive, high-throughput screening and pre-clinical evaluation. Further, this proto-
col can potentially decrease costs associated with in vivo imaging and ADC research, thereby
increasing the accessibility of studying these strategies in preclinical cancer treatment and
molecular diagnostics.

Materials and Methods

Antibodies
Mouse monoclonal antibody (IgG1 isotype, clone 1105) specific for carcinoembryonic antigen
was obtained from Thermo Fisher Scientific (Product #MIC0101, Rockford, IL). This antibody
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was proprietarily generated by Thermo Fisher Scientific, in BALB/c mice immunized with
purified CEA from pooled tumors. Isolated primary splenocytes were fused with
P3X63-Ag8.653 mouse myeloma cell line (American Type Culture Collection, #CRL-1580,
Manassas VA). Resulting mouse antibody was purified with immobilized, recombinant Protein
A.

A mouse IgG1 isotype control was also utilized to prepare control conjugate samples. Iso-
type control was obtained from Thermo Fisher Scientific (Product # 02–6100). This antibody
was proprietarily generated and purified from mouse myeloma IgG1 ascites induced by mye-
loma cells.

Synthesis of Paclitaxel-NHS Ester (PTX-NHS)
Paclitaxel (TCI America, #P1632, Portland, OR) was derivatized into an amine-reactive succi-
nate ester by the general procedure previously outlined in [51] with purity and expected mass
verified with analysis on a Thermo Scientific LTQ XL™ Linear Ion Trap Mass Spectrometer.

Synthesis, Purification, and Characterization of Conjugates
General procedure. Antibody conjugates were prepared and analyzed according to the

general schematic shown in Fig 1. Mouse monoclonal antibody (anti-human CEA or non-
binding IgG1 Isotype control) was buffer exchanged and processed with a 30kD PES concentra-
tor (Thermo Fisher Scientific, #88502, Rockford, IL) to yield a 10mg/mL antibody solution in
0.05M sodium borate buffer, pH 8.5. Paclitaxel-NHS and DyLight™ 680-4xPEG-NHS (Thermo
Fisher Scientific, #46603, Rockford, IL) stocks were prepared in DMSO. Where appropriate for
each reaction, either a 5-fold molar excess of PTX-NHS, a 3-fold molar excess of the DyLight™
680-4xPEG-NHS, or both simultaneously, were reacted with 1mg of the processed CEA anti-
body for a final volume of 100uL with 5% DMSO co-solvent. Reactions were incubated for 1
hour at room temperature with gentle vortexing every 10 minutes. Reactions were neutralized
in PBS and purified with 3x100uL incubations with the resin provided in the Pierce™Dye
Removal Column kit (Thermo Fisher Scientific, #22858, Rockford, IL). Purified samples were
then dialyzed extensively in PBS overnight using a 20kD Slide-A-Lyzer™ G2 Dialysis Cassette
(Thermo Fisher Scientific, #87734, Rockford, IL) to remove residual solvent and preservatives.
Protein concentration and fluorophore:antibody ratio (FAR), where applicable, were deter-
mined using spectrophotometric absorbance on an Agilent Cary 300 UV-Vis spectrophotome-
ter. Drug:antibody ratio (DAR), where applicable, was determined by hydrolyzing the
antibody-drug ester bond linkage and quantifying extracted paclitaxel. Triplicate samples
(5ug) of purified conjugates were hydrolyzed in 50uL 0.2M carbonate-bicarbonate buffer, pH
9.4 for 6 hours at room temperature. Samples were then adjusted to 30% ACN, and liberated
paclitaxel was extracted with C18 Spin Columns (Thermo Fisher Scientific, #89870, Rockford,
IL). Bound paclitaxel was eluted in 100% ACN and analyzed using an Agilent 1100 HPLC with
a Phenomenex Gemini1 5 μmC18 column (#00F-4435-B0, Torrance, CA) and a mobile
phase linear gradient of 50% to 100% ACN in water over 25 minutes. Instrument control and
chromatogram analysis were completed using OpenLab CDS ChemStation Edition software
(vA01.04). Extracted paclitaxel from conjugates was quantified by correlating peak areas to
known, triplicate amounts of free paclitaxel that were hydrolyzed, extracted and analyzed with
the same procedure.

Verification of dye removal column purification method. To assess and verify removal
of un-reacted components (PTX-NHS and DyLight™ 680-4xPEG-NHS) using the Pierce™Dye
Removal Column resin, mock conjugation reactions were prepared as described in the methods
section, albeit in the absence of antibody. These reactions were purified with the resin and
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analyzed on the HPLC system described earlier. For PTX-NHS removal, un-purified and puri-
fied samples were injected onto the Gemini1 column with a mobile phase linear gradient of
50% to 100% ACN in water over 25 minutes. Known amounts of PTX-NHS were also serially
diluted and analyzed in triplicate to approximate the amount of remaining PTX-NHS after
purification. For DyLight™ 680-4xPEG-NHS removal, samples were injected onto the same col-
umn as described earlier, but with a mobile phase linear gradient of 0% to 100% ACN in water
over 25 minutes, with both solvents also containing 0.1%Trifluoroacetic acid. Known amounts
of DyLight™ 680-4xPEG-NHS were also analyzed with this method for removal estimation.
Instrument control and chromatogram analysis were completed as previously described.

Antibody-drug linker stability evaluation. To estimate physiological stability of the anti-
body-drug linker, 2.5ug of the fluorescent ADC (α-CEA-680-PTX) was added to 50uL of PBS
and incubated at 37°C. Hydrolyzed control samples were also prepared, comprised of equimo-
lar amounts of naked CEA antibody and free paclitaxel with respect to test samples. Samples
were taken in triplicate at T = 0, 2, 4, 8, 24 and 48 hours, and free paclitaxel was extracted and
analyzed with C18 spin columns as previously described. Degree of hydrolysis at each time
point (n = 3) was defined as the peak area ratio of extracted paclitaxel from test samples com-
pared to hydrolyzed controls.

In Vitro Specificity Evaluation
Immunofluorescent staining and analysis. BxPC-3, MCF-7, HeLa and HepG2 cell lines

(American Type Culture Collection, Manassas, VA) were cultured in RPMI-1640 + 10% FBS
(Thermo Fisher Scientific, #11875–085, Grand Island, NY) at 37°C, 5% CO2, and harvested with
0.25%Trypsin-EDTA (Thermo Fisher Scientific, #25200–056, Grand Island, NY). Cells were
plated in 96-well collagen I-coated plates (Corning Incorporated, #356700, Corning, NY) at
1x104 cells/well and allowed to recover for 24 hours. Cells were then fixed with pre-warmed PBS
+ 4% paraformaldehyde and blocked with PBS + 0.3% BSA. Conjugates (IgG-680, IgG-680-PTX,
α-CEA-680, and α-CEA-680-PTX) were serially diluted 1:2 (ranging from 0-60ug/mL) in PBS
+ 0.3% BSA, 1.62uMHoechst 33342 dye (Thermo Fisher Scientific, #62249, Rockford, IL) and
incubated in appropriate wells for 1 hour at room temperature. Plates were then washed twice
with both PBS + 0.05% Tween 20, and PBS. Average fluorescent intensity was analyzed using the
Compartmental Analysis v2 BioApplication on the Thermo Scientific Cellomics ArrayScan VTI
HCS Reader. Average fluorescent intensity was measured as the mean intensity of 3000 identified
cells. All plates were read using the same method parameters. Instrument control, analysis and
quantification was performed using the vHCS Scan software (v6.1.2). Images were captured at
20X magnification, and enhanced using the vHCS View software (v1.4.6),Microsoft PowerPoint
2007 (v12.0.6665.5003), and AutoDesk Pixlr Editor (v6.7). All images were enhanced identically.
Edges of the plate were omitted.

Flow cytometry staining. BxPC-3, MCF-7, HeLa and HepG2 cells were cultured and har-
vested as previously described. Cells (1x106) were equilibrated in cold PBS + 5% FCS, and incu-
bated with a 10ug/mL solution of either IgG-680, IgG-680-PTX, α-CEA-680, or α-CEA-
680-PTX for 1 hour. Cells were then washed and re-suspended with PBS + 5% FCS. Analysis
was completed using the Becton Dickson Accuri C6 Flow Cytometer and CSampler Workspace
software (v1.0.264.21). For each histogram, 50,000 events were collected.

Immunofluorescent CEA internalization assay. BxPC-3 cells were cultured and har-
vested as previously described, and seeded into 96-well collagen I-coated plates at 1x104 cells/
well and allowed to recover for 24 hours. Media was then removed, and cells were treated with
46ng/mL free DyLight™ 680-4xPEG, or 2ug/mL of IgG-680, IgG-680-PTX, α-CEA-680, or α-
CEA-680-PTX, (all at 46ng/mL effective DyLight™ 680-4xPEG) diluted in complete RPMI-
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1640. Cells were incubated with samples for the indicated time points at 37°C, 5% CO2, after
which the plates were then washed three times with PBS. Plates were then fixed with PBS + 4%
paraformaldehyde, and nuclei were stained with 1.62uM Hoechst 33342 dye in PBS. Plates
were washed an additional three times with PBS, and analyzed using a Thermo Scientific Cello-
mics ArrayScan VTI HCS Reader. Quantification of CEA internalization was assessed through
measurement of mean internalized spots per cell (n = 10,000 cells for each time point) using
the Spot Detector v2 Image Analysis BioApplication on the ArrayScan VTI HCS Reader.
Instrument control was performed with the vHCS Scan software (v6.1.2), All plates were read
using the same method parameters. Images were captured at 20X magnification, and enhanced
using the vHCS View software (v1.4.6), Microsoft PowerPoint 2007 (v12.0.6665.5003), and
AutoDesk Pixlr Editor (v6.7). All images were enhanced identically.

In Vitro Cytotoxic Evaluation
MTT growth inhibition assay. Cytotoxic activity in vitro was assessed using an MTT

(Thermo Fisher Scientific, #M6494, Grand Island, NY) cell viability assay. BxPC-3 cells were
cultured and harvested as previously described, and were plated in 96-well collagen I-coated
plates at 5x103 cells/well and allowed to recover for 24 hours. Media was removed, and replaced
with serially diluted (1:2 in complete RPMI-1640) test samples, ranging from 0-400nM free or
effective paclitaxel, 0-60ug/mL antibody/conjugate, or 0-800nM free or effective DyLight™ 680-
4xPEG, where applicable. After 24 hours, samples were removed and replaced with fresh
media. Cells were allowed to grow for 72 additional hours, after which the cells were stained
with MTT according to the manufacturer’s instructions. Liquid was carefully aspirated from
each well, and replaced with 100uL DMSO to solubilize produced formazan. The absorbance
of each well was measured at 540nm on the Thermo Scientific VarioSkan Flash plate spectro-
photometer. Edges of the plate were omitted. Percent viability was defined as the ratio of the
A540 of test wells compared to the A540 of untreated control wells. Untreated controls
received media + vehicle depending on the sample. Each data point represents the average via-
bility of three separate experiments each with triplicate wells (n = 9 wells). IC50 values were
estimated using logarithmic regression analysis in Microsoft Excel.

Flow cytometry cell cycle analysis. Cell cycle analysis was performed using the Becton
Dickson BD Cycletest™ Plus DNA Reagent Kit (BD, #340242, San Jose, CA). BxPC-3 cells were
seeded equally into T25 flasks, and allowed to recover for 24 hours. Flasks were then treated
with vehicle control, 100nM free paclitaxel, 15ug/mL α-CEA-PTX, or 15ug/mL α-CEA-
680-PTX (both at 100nM effective paclitaxel) for 24 hours. Cells were then harvested with
Trypsin-EDTA, stained according to the kit instructions, and analyzed via flow cytometry as
previously detailed. All samples were gated and analyzed identically per the manufacturer/tem-
plate instructions, with the cell cycle histograms containing approximately 30,000–40,000
events.

In Vivo Tumor Localization and Growth Inhibition
Animals. Male nude, athymic mice, 4 weeks of age (Taconic Biosciences, #NCRNU-M,

Hudson, NY) were group-housed (5 per cage) in a sterile microisolator cage system (Tecniplast
Smart Flow). Mice were given irradiated rodent diet (Envigo Labs) and autoclaved water ad
libitum. Each cage was provided with an autoclaved mouse hut and shredded paper for nesting
and thermoregulation. Animals were checked daily by the animal care staff and/or the
researcher for any adverse events throughout the course of the study. Animals that were con-
sidered ill or showing pain and/or distress were examined by the veterinarian for pain manage-
ment determination. When using anesthesia, animals were observed every 30 minutes until
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recovery from anesthesia. Two mice (one each in experimental groups 1 and 3) died prior to
the experimental endpoint. No autopsy was performed, and air embolism after treatment infu-
sion was the likely cause of death. The duration of this study was planned for a total of 60 days,
however several animals became increasingly moribund, with two mice (one each in experi-
mental groups 1 and 2) having mobility issues with their hind legs. It was determined to end
the study early (45 days total) to avoid further pain and distress of the animals. Mice were
euthanized via CO2 (EZ- Flow system) asphyxiation followed by cervical dislocation. Humane
use of animals was performed in this study according to the guidelines for the care and use of
laboratory animals and with the rules formulated under the Animal Welfare Act by the U.S.
Department of Agriculture. The protocol was approved by the IACUC Biological Resource
Committee of the University of Illinois, College of Medicine at Rockford, IL and performed at
a facility accredited by AAALAC and USDA.

Tumor induction. After a one week acclimatization period, mice were subcutaneously
inoculated with 2x106 BxPC-3 cells embedded in 100uL of 50:50 HBSS:Matrigel (Corning
Incorporated, #354262, Corning NY). When tumors were palpable (~1 week), the mice were
tagged and separated randomly into 3 groups, assuring that each group had approximately
equal average starting tumor volumes. This was defined as “Day 0”.

Treatment. Mice were separated into one control group and two treatment groups, con-
sisting of 5–6 mice per group. Mice in group 1 (n = 6) were negative controls and received PBS
+ 0.13% DMSO (vehicle). Group 2 (n = 6) received free paclitaxel (6.7uM) in PBS + 0.13%
DMSO, while group 3 (n = 5) received equimolar amounts of paclitaxel conjugated to antibody
(100ug α-CEA-680-PTX, 6.7uM effective paclitaxel in + 0.13% DMSO). Each mouse received a
total of five 100uL doses of the respective treatment by retro-orbital injection, with each admin-
istered on days 3, 6, 9, 12, and 15. All mice were anesthetized with 100mg/kg ketamine and
10mg/kg xylazine given intraperitoneally prior to all retro-orbital infusions.

Tumor growth monitoring. Tumor size was monitored every 3 days for the entire dura-
tion of the study using digital calipers. The modified ellipsoid formula was used to calculate
tumor volume (v = ½(length × width2)).

Tumor imaging. Mice in group 3 were imaged 24 hours after every treatment (Days 4, 7,
10, 13, and 16), and weekly thereafter (Days 23, 30, 37, and 44). Mice were anesthetized as out-
lined earlier, and imaged using the UVP iBox Explorer2 with attached BioLite Xe MultiSpectral
Source. Instrument control and image acquisition were performed using the UVP VisionWorks
LS Acquisition and Analysis software (v8.0). Images were obtained with a white light (control)
and NIR excitation filter (600-645nm), an emission filter of 720nm, and magnification of 0.17x.
Exposure times for white light were approximately 30 seconds, while NIR was exposed at both a
constant 54 seconds, as well as a variable automatic exposure using the VisionWorks control soft-
ware. All other parameters were identical, and images were prepared for final presentation with
Microsoft Office Picture Manager (v12.0.6413.1000), and AutoDesk Pixlr Editor (v6.7).

Statistical Analysis
All graphical analysis was completed using Excel. Statistical analysis was performed with Graph-
Pad Prism 6 (v. 6.07) statistics calculator. Where appropriate, data groups were statistically com-
pared using a one-way ANOVA test. An alpha level of 0.05 was considered significant.

Graphics
All artwork and graphics are original creations, assembled and modified using clip art, stock
photos, and royalty-free images purchased from 123rf.com. Enhancements and arrangements
were prepared using Pixlr Editor, PowerPoint, and Excel.
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