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Introduction
Stroke, also known as cerebrovascular accident (CVA), 
stands as the second leading cause of death worldwide. 
It is characterized by a high incidence rate, elevated mor-
tality, and increased disability rates [1]. According to 
the Global Burden of Disease study in 2019, there were 
6.55 million fatalities attributed to stroke, with 12.2 mil-
lion new cases reported. Notably, China ranks among 
the countries with the highest proportion of stroke risk 
factors globally [2]. Advances in medical treatments have 
notably reduced the mortality associated with stroke. It 
is noteworthy that post-stroke disability complications, 
post-stroke cognitive impairment (PSCI) persist widely. 
According to severity, PSCI is divided into post-stroke 
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Abstract
Background  Post-stroke dementia (PSD), a common complication, diminishes rehabilitation efficacy and affects 
disease prognosis in stroke patients. Many factors may be related to PSD, including demographic, comorbidities, 
and examination characteristics. However, most existing methods are qualitative evaluations of independent 
factors, which ignore the interaction amongst various factors. Therefore, the purpose of this study is to explore the 
applicability of machine learning (ML) methods for predicting PSD.

Methods  9 acceptable features were screened out by the Spearman correlation analysis and Boruta algorithm. We 
developed and evaluated 8 ML models: logistic regression, elastic net, k-nearest neighbors, decision tree, extreme 
gradient boosting, support vector machine, random forest, and multilayer perceptron.

Results  A total of 539 stroke patients were included in this study. Among the 8 models used to predict PSD, extreme 
gradient boosting and random forest showed the highest area under the curve (AUC) of the receiver operating 
characteristic curve (ROC), with values of 0.7287 and 0.7285, respectively. The most important features for predicting 
PSD included age, high sensitivity C-reactive protein, stroke side and location, and the occurrence of cerebral 
hemorrhage.

Conclusion  Our findings suggest that ML models, especially extreme gradient boosting, can best predict the risk of 
PSD.
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cognitive impairment no dementia (PSCIND) and post-
stroke dementia (PSD) [3].

According to the Diagnostic and Statistical Manual 
of Mental Disorders, Fifth Edition (DSM-5), cogni-
tive impairment can be classified into two categories 
based on severity: mild cognitive impairment (MCI) and 
dementia. Additionally, research has found that MCI 
is reversible and may progress back to a normal cogni-
tive state [4]. About 20–30% of PSCI patients will dete-
riorate and develop into PSD [5, 6]. Thus, early diagnosis 
and treatment of PSCI and PSD contribute to improving 
the prognosis of stroke patients, alleviating societal and 
economic burdens. Numerous studies have reported 
many independent risk factors for PSCI and PSD related 
to age, hypertension, high cholesterol, diabetes, smok-
ing, atrial fibrillation [7–9]. Stroke history and vascular 
risk factors (such as high blood pressure, obesity, and 
smoking) may accelerate the development of PSCI and 
PSD [10]. Thus, clinicians face challenges in integrating 
multiple factors for the early diagnosis of PSCI and PSD. 
The CHANGE and SIGNAL2 scales have demonstrated 
accuracy in predicting PSCI, with area under the curve 
(AUC) of receiver operating characteristic curve (ROC) 
ranging from 0.740 to 0.829 [11, 12]. Due to the complex-
ity of the pathophysiology and multiple contributing fac-
tors associated with PSCI, conventional scoring systems 
with limited variables may not optimally predict PSCI. 
Researchers have applied cognitive impairment risk pre-
diction models to PSCI, but the predictive performance 
has not been ideal [13].

Machine learning (ML) algorithms are adaptable to 
various types and sizes of data and have garnered sig-
nificant attention in the development of patient-centered 
prediction/prognosis models. These models can help 
optimize treatment plans and facilitate the monitoring 
and management of health conditions. Recently, ML has 
demonstrated immense potential in enhancing the speed 
and accuracy of stroke imaging assessments [14, 15]. 
Consequently, some researchers are pivoting their focus 
towards ML, aiming to develop a more accurate predic-
tive model for PSCI [16–18]. In this context, we con-
ducted a retrospective study focusing on a more severe 
form of cognitive decline after stroke, PSD, with the goal 
of developing and testing the applicability of ML models 
in predicting PSD.

Materials and methods
Data source
For this retrospective cohort study, we selected 545 
stroke inpatients from the rehabilitation department 
and geriatrics department of Shaoxing People’s Hospital, 
spanning from January 2019 to August 2021.

Inclusion Criteria: (1) admitted for stroke between Jan-
uary 2019 and August 2021; (2) aged 18 years and above; 
(3) signed an informed consent form.

Exclusion Criteria: (1) Pre-existing cognitive impair-
ment before the current stroke; (2) Presence of other 
diseases severely affecting cognitive function, such as 
anxiety, depression, or brain tumors.

Clinical variables
A total of 46 variables were collected, including demo-
graphic data, vascular risk factors, and examination 
findings. Demographic data included variables such as 
gender, age, occupation, and education level, and Body 
mass index (BMI). The vascular risk factors recorded 
were smoking status, alcohol consumption, hypertension, 
hyperlipidemia, and any history of stroke. Clinical exami-
nation findings compiled for analysis included the type of 
stroke, fibrinogen levels, high-sensitivity C-reactive pro-
tein (CRP), blood uric acid levels, blood homocysteine 
levels (Hcy), and specifics regarding the stroke’s side and 
location.

Model construction and verification
The initial sample (n = 545) underwent multicollinearity 
assessment to ensure the stability of subsequent analyses. 
Based on Spearman correlation analysis, we identified 
and removed individual significant and highly correlated 
features to mitigate the effects of multicollinearity. Addi-
tionally, features with over 20% missing values (BMI) 
were discarded, and 6 samples with extreme deviations 
and missing data were excluded. 539 patients and 45 vari-
ables were included in the study. Supplementary Table 1 
shows the detailed information of all variables. The con-
tinuous variables in the remaining sample were standard-
ized through Z-score normalization. Finally, the data of 
539 patients were randomly divided into a training set 
and a test set in a 3:1 ratio.

In this study, we preselected features for the training set 
using the Boruta algorithm, a feature selection method 
based on the random forest algorithm [19]. The Boruta 
algorithm is a highly popular and robust feature selec-
tion method that helps in retaining only the most statisti-
cally significant variables [20], thereby making a practical 
contribution to our model. It identifies crucial features 
by creating shadow features (randomized copies of fea-
tures) and evaluating the importance of original features 
using the random forest algorithm. Subsequently, we 
input these preselected features into 8 different ML mod-
els: logistic regression (LR), elastic net (EN), k-nearest 
neighbors (KNN), decision tree (DT), extreme gradient 
boosting (XGB), support vector machine (SVM), ran-
dom forest (RF), and multilayer perceptron (MLP). For 
each model, we selected a set of hyperparameters that 
maximized the AUC of ROC on the training set using 
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a Bayesian optimizer, ensuring optimal performance 
and effective prediction and comparison on the test set. 
Detailed hyperparameters are available in the supple-
mentary material. All models were subjected to five-fold 
cross-validation to ensure robustness and reliability. We 
plotted the ROC of each model on the test set to evaluate 
their predictive performance and decision curves analy-
sis (DCA) and clinical impact curve (CIC) to assess their 
clinical utility.

Comparing models, we selected the best model based 
on AUC values and created a Shapley Additive exPlana-
tions (SHAP) explainer to calculate SHAP values, which 
indicate the contribution of each feature to the prediction 
outcome. We plotted a SHAP summary chart to illustrate 
the impact of model features.

Statistical analysis
R software (version 4.3.0, https://www.R-project.org/) 
was used to support grouping and data statistical analy-
sis. Continuous variables were presented as median with 
interquartile range (Mean, IQR), while categorical data 
were represented by numerical values and correspond-
ing percentages (n, %). We used t-test or the Wilcoxon 
rank-sum non-parametric test for continuous variables, 
and chi-square test for categorical variables to compare 
the demographic and clinical characteristics between the 
PSD group and the non-PSD group.

Results
Characteristics of patients
Among the 539 stroke patients included in this analysis, 
194 did not develop PSD, while 345 did. The baseline 
characteristics of the PSD and no PSD groups are shown 
in Table 1. There were significant differences in age and 
High-sensitive CRP between the two groups (P < 0.001).

Model building and verification
Through Spearman correlation analysis, we removed 6 
individual significant and highly correlated features. Fea-
ture selection was then conducted using the Boruta algo-
rithm, identifying 9 acceptable variables: brain stem, age, 
temporal lobe, right lesion, cerebral hemorrhage, high-
sensitive CRP, subarachnoid space, outer capsule, and 
Island leaves (Fig.  1). Using these 9 variables, we devel-
oped 8 ML models to predict the risk of PSD in stroke 
patients. Fig. 2 displays the ROC of all models, with their 
predictive discrimination represented by the AUC. The 
XGB model had the highest AUC (0.7287), followed by 
RF (0.7285), KNN (0.7113), MLP (0.7082), EN (0.7033), 
LR (0.7022), DT (0.6502), and SVM (0.6098). The clini-
cal applicability of all models was further assessed using 
DCA and CIC. DCA was utilized to evaluate the clini-
cal benefit of the predictive models. The threshold range 
for the XGB model was approximately 0-0.87, slightly 

narrower than those for the EN, LR, and KNN models. 
Additionally, the DCA overlapped partially or entirely 
with other models across most threshold ranges, indi-
cating no significant difference in net benefits. However, 
in the threshold range of approximately 0.76–0.8, the 
net benefit of the XGB model was significantly higher 
than that of other models (Fig. 3). Supplementary Fig. 1 
shows the CIC for all models, assessing the efficiency of 
the models. When the threshold was greater than 0.7, 
the high-risk PSD group identified by the XGB predic-
tion model closely matched the actual PSD occurrences, 
confirming the model’s high clinical efficiency. Addition-
ally, we calculated the accuracy, sensitivity, and specific-
ity for all models (Table 2). The XGB model achieved the 
highest accuracy with a value of 0.72939. Although the 
sensitivity and specificity of the XGB model were not the 
highest, its overall performance is better when these met-
rics are considered comprehensively.

Feature importance
To visually present the selected variables, we analyzed 
the best predictive model, XGB, using the SHAP package 
to show the positive and negative impact of each feature 
on a given sample. Fig. 4A displays the absolute values of 
the average SHAP values for different features. Age had 
the most significant impact on model output, followed 
by high-sensitive CRP, right lesion, temporal lobe, cere-
bral hemorrhage, brain stem, undergraduate, bilateral 
lesions, and subarachnoid space. Fig. 4B provides a more 
detailed view of the impact of each feature on individual 
predictions.

Discussion
In this retrospective cohort study, we selected 9 accept-
able features using the Boruta algorithm and developed 8 
ML models to predict the risk of PSD in stroke patients. 
Among the 8 models, the XGB model showed the high-
est AUC and good clinical applicability. Furthermore, the 
most impactful features for predicting PSD, in descend-
ing order of importance, were age, high-sensitive CRP, 
right lesion, temporal lobe, and cerebral hemorrhage.

Increasingly, research acknowledges that the risk fac-
tors and progression of post-stroke cognitive impairment 
and dementia (PSCID) are determined by a multitude 
of factors, including age, comorbidities, type of stroke 
(ischemic and hemorrhagic), education level, and the 
location and size of the stroke [3, 21]. Yan et al.‘s inves-
tigation, which developed 8 model for predicting the 
occurrence of MCI after stroke, revealed that the LR 
model achieved the highest AUC of 0.8595. It also exhib-
ited high accuracy, sensitivity, and specificity, at 0.770, 
0.778, and 0.765 respectively [18]. However, owing to the 
small sample size (n = 199), the model may not be suffi-
ciently effective. Therefore, more patients were included 

https://www.R-project.org/
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Table 1  Clinical characteristics of patients (n = 539)
Variables Dementia

NO (n = 194) Yes (n = 345) P-vaule
Age (year) 66 (56, 72) 70 (60, 77) < 0.001
Gender 0.052
Female 60 (30.93%) 137 (39.71%)
Male 134 (69.07%) 208 (60.29%)
Occupation
Farmer 66 (34.02%) 133 (38.55%) 0.341
Worker 8 (4.12%) 11 (3.19%) 0.748
Staff 53 (27.32%) 75 (21.74%) 0.175
Merchant 11 (5.67%) 24 (6.96%) 0.689
Retire 56 (28.87%) 102 (29.57%) 0.942
Education
Elementary school or below 74 (38.14%) 127 (36.81%) 0.83
Junior high school 57 (29.38%) 87 (25.22%) 0.344
High school 14 (7.22%) 35 (10.14%) 0.328
Undergraduate 17 (8.76%) 17 (4.93%) 0.116
Master degree or above 0 (0%) 1 (0.29%) 1
Smoking 54 (27.84%) 86 (24.93%) 0.524
Drinking 54 (27.84%) 91 (26.38%) 0.791
Hypertension 149 (76.8%) 272 (78.84%) 0.66
Hyperlipidemia 68 (35.05%) 127 (36.81%) 0.753
Diabetes 72 (37.11%) 136 (39.42%) 0.663
Previous Stroke 24 (12.37%) 49 (14.2%) 0.642
Accompanied by Depression 25 (12.89%) 46 (13.33%) 0.988
Cerebral hemorrhage 130 (67.01%) 210 (60.87%) 0.185
Cerebral infarction 54 (27.84%) 135 (39.13%) 0.185
Lesion
Left 98 (52.06%) 121 (35.07%) < 0.001
Right 71 (36.6%) 167 (48.41%) 0.01
Bilateral 25 (12.89%) 57 (16.52%) 0.316
Stroke Site
Basal ganglia 100 (51.55%) 194 (56.23%) 0.338
Frontal lobe 26 (13.4%) 98 (28.41%) < 0.001
Parietal lobe 29 (14.95%) 81 (23.48%) 0.025
Thalamus 12 (6.19%) 27 (7.83%) 0.594
Lateral ventricle 58 (29.9%) 68 (19.71%) 0.01
Subarachnoid space 0 (0%) 8 (2.32%) 0.077
Occipital lobe 8 (4.12%) 31 (8.99%) 0.055
Brain stem 25 (12.89%) 13 (3.77%) < 0.001
Semi-oval area 17 (8.76%) 31 (8.99%) 1
Outer capsule 0 (0%) 6 (1.74%) 0.156
Inner capsule 2 (1.03%) 9 (2.61%) 0.354
Cerebellum 13 (6.7%) 15 (4.35%) 0.327
Island leaves 1 (0.52%) 13 (3.77%) 0.046
Radiation crown 2 (1.03%) 2 (0.58%) 0.95
Corpus callosum 3 (1.55%) 6 (1.74%) 1
Temporal lobe 28 (14.43%) 97 (28.12%) < 0.001
Fibrinogen (g/L) 3.35 (2.88, 3.95) 3.35 (2.88, 4.16) 0.452
High-sensitive CRP (mg/L) 3 (0.95, 8.94) 4.99 (1.63, 17.46) < 0.001
Blood uric acid (µmol/L) 291.35 (222.58, 345.48) 284.4 (221.1, 346.1) 0.634
Blood homocysteine (µmol/L) 11.17 (9.41, 13.82) 11.17 (9.01, 13.27) 0.220
Notes: Continuous variables were presented as median with interquartile range (Mean, IQR), while categorical data were represented by numerical values and 
corresponding percentages (n, %)
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in this study to provide better confidence and stability. 
Given the complex and varied factors influencing PSCID, 
prediction in clinical settings is challenging, with lower 
accuracy compared to post-stroke functional outcomes. 
ML methods are often more suitable when dealing with 
complex influencing factors. Stroke can be categorized 
into hemorrhagic strokes (HS) and ischemic strokes (IS), 
with IS constituting a significantly higher proportion of 
all strokes, approximately 87% according to data from 
Johns Hopkins Medical Center [22]. Thus, research focus 
and resources are more inclined towards IS. Our study 
encompassed patients with both types of strokes, offer-
ing a more comprehensive perspective for understand-
ing and predicting PSD. The studies of Lee et al. (n = 951) 
and Ji et al. (n = 397) developed a variety of ML models to 

predict the risk of PSCI in patients with acute IS (AIS). 
They found that the XGB and Gaussian Naive Bayes 
(GNB) models had the best discrimination, with AUC of 
0.7919 and 0.925, respectively. Additionally, these models 
also surpassed the LR model in other metrics, including 
accuracy and F1 score [16, 17]. In our study, XGB also 
showed better overall performance for PSD prediction. 
Although PSCI and PSD may clinically overlap, they dif-
fer in definition, severity, treatment strategies, and man-
agement. Dementia represents a more severe clinical 
outcome, significantly impacting patients’ daily lives and 
independence. Therefore, by concentrating on PSD as an 
outcome, effectively predicting its occurrence can facili-
tate the implementation of prevention and intervention 
measures at an earlier stage.

Fig. 1  Feature selection based on Boruta algorithm. Green represents acceptable variables
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Despite the SIGNAL2 risk score and CHANGE risk 
score models exhibiting good discriminative ability in 
predicting PSCI, both models use Mini-Mental Status 
Examination (MMSE) ≤ 25 or Montreal Cognitive Assess-
ment (MOCA) ≤ 22 as cut-off raw scores and incorporate 
age and education level as variables with high weight. 
However, since MMSE and MOCA scores are highly 
dependent on age and education level [11, 12]. Therefore, 
regardless of the clinical characteristics of the patient, 
it may have little effect on the predictive outcome. In 
our study, the ML models we constructed can continu-
ally learn and adapt to new data, improving their accu-
racy over time, unlike the static SIGNAL2 and CHANGE 
models. By applying the Boruta algorithm, we identified 
the most important features in the dataset for the predic-
tive models. This approach, unconstrained by data type, 
allows for comprehensive feature selection, eliminat-
ing irrelevant features to reduce the risk of overfitting, 
thereby enhancing the model’s accuracy and interpret-
ability. We incorporated variables in the green zone into 

the 8 models, with the XGB model achieving the highest 
AUC value. Lastly, we employed SHAP to quantify the 
contribution of each feature to the predictive outcome. 
In the XGB model, the most important features were age, 
high-sensitive CRP, right lesion, temporal lobe, and cere-
bral hemorrhage. These key features show both consis-
tency and differences with previous research on PSCID 
risk factors [16–18, 23].

Most studies agree on the close association between age 
and cognitive decline. For instance, the REGARDS study 
found that each additional year of baseline age increased 
the likelihood of cognitive impairment by 17% during the 
follow-up period [23], aligning with non-stroke popula-
tion studies that identified older age as a significant risk 
factor for cognitive impairment [24]. However, Yan et 
al.‘s findings suggested no correlation between age and 
the occurrence of MCI after stroke [18]. A systematic 
review and meta-analysis assessed the potential of vari-
ous blood-derived proteins as biomarkers for PSCI, rec-
ommending Hcy, CRP, total cholesterol, and low-density 

Fig. 2  The receiver operating characteristic curves of the eight machine learning models. LR, logistic regression; XGB, extreme gradient boosting; DT, 
decision tree; SVM, support vector machine; KNN, k-nearest neighbors; RF, random forest; MLP, multilayer perceptron; EN, elastic net
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lipoprotein as potential biomarkers for PSCI [25]. The 
high-sensitivity CRP test, capable of measuring low con-
centrations of CRP in blood, is useful for assessing low-
grade inflammation and cardiovascular risk. A significant 
association between high-sensitive CRP concentrations 
and long-term cognitive decline was observed in a large 
study involving 5257 participants [26], consistent with 
our findings. Our research provides additional evidence 

supporting high-sensitive CRP as a potential biomarker 
for PSD, enhancing its potential in PSD prediction and 
monitoring. No association between Hcy and PSD was 
found in our study, although high Hcy levels have been 
confirmed as a risk factor for cerebrovascular events and 
cognitive decline [25]. The reasons for these differences 
may include sample selection bias, differences in data 
collection, or analytical methods.

At present, ML prediction models related to PSCID 
primarily focus on PSCI. To the best of our knowledge, 
this study is the first to construct and compare the per-
formance of eight different risk prediction models for 
PSD. Furthermore, this research integrates ML tech-
niques with demographic and imaging features to pre-
dict PSD. However, there are several limitations to our 
study that cannot be ignored. Firstly, the dataset used 
in this study was sourced from patients in the geriatrics 
department and those transferred to the rehabilitation 
department, who may exhibit significant differences in 
distributions of various demographic characteristics, 

Table 2  Performances of various prediction models predicting 
PSD using a testing data set

Accuracy Sensitivity Specificity
DT 0.6391 0.5000 0.7079
ENET 0.6992 0.1136 0.9888
XGB 0.7293 0.6136 0.7865
Logistic 0.6917 0.4773 0.7978
MLP 0.7143 0.5227 0.8090
RF 0.7068 0.4091 0.8539
SVM 0.3383 0.6591 0.1798
KNN 0.6767 0.3182 0.8539

Fig. 3  The DCA curves of the eight machine learning models. LR, logistic regression; XGB, extreme gradient boosting; DT, decision tree; SVM, support 
vector machine; KNN, k-nearest neighbors; RF, random forest; MLP, multilayer perceptron; EN, elastic net
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such as age and gender, compared to the general stroke 
patient population. These disparities could potentially 
limit the generalizability of the model across different 
demographic groups. Secondly, this is a single-center ret-
rospective cohort study, and the data quality and diver-
sity might be affected, necessitating external validation 
and optimization. Thirdly, not all patients underwent 
all examinations, leading to missing features in some 
cases. Although we excluded patients with more than 
20% missing values and employed multiple imputation 
for features with less than 10% missing values to mitigate 
this concern, the possibility of residual effects remains. 
Finally, our model has overlooked social, psychological, 
and behavioral elements like social support and lifestyle, 
which are crucial for understanding cognitive outcomes 
after a stroke. Including these factors in future research 
could enhance the model’s ability.

Conclusion
We proved that the ML model, especially the XGB 
model, can accurately predict PSD and is expected to be 
an effective assistant tool for the diagnosis and treatment 
of PSD. Among the variables included, age and high-sen-
sitive CRP are the two most significant factors influenc-
ing the XGB model’s output. However, the efficacy of this 
model in external cohorts and its potential to mitigate 
the occurrence of PSD remains to be determined.
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