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Summary
Background Accumulative evidences have shown that dysregulation of biological pathways contributed to the initia-
tion and progression of malignant tumours. Several methods for pathway activity measurement have been proposed,
but they are restricted to making comparisons between groups or sensitive to experimental batch effects.

Methods We introduced a novel method for individualized pathway activity measurement (IPAM) that is based on
the ranking of gene expression levels in individual sample. Taking advantage of IPAM, we calculated the pathway
activity of 318 pathways from KEGG database in the 10528 tumour/normal samples of 33 cancer types from TCGA
to identify characteristic dysregulated pathways among different cancer types.

Findings IPAM precisely quantified the level of activity of each pathway in pan-cancer analysis and exhibited better
performance in cancer classification and prognosis prediction over five widely used tools. The average ROC-AUC of
cancer diagnostic model using tumour-educated platelets (TEPs) reached 92.84%, suggesting the potential of our
algorithm in early diagnosis of cancer. We identified several pathways significantly deregulated and associated with
patient survival in a large fraction of cancer types, such as tyrosine metabolism, fatty acid degradation, cell cycle, p53
signalling pathway and DNA replication. We also confirmed the dominant role of metabolic pathways in cancer
pathway dysregulation and identified the driving factors of specific pathway dysregulation, such as PPARA for
branched-chain amino acid metabolism and NR1I2, NR1I3 for fatty acid metabolism.

Interpretation Our study will provide novel clues for understanding the pathological mechanisms of cancer, ulti-
mately paving the way for personalized medicine of cancer.

Funding A full list of funding can be found in the Acknowledgements section.
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Introduction
Cancer is a highly heterogeneous disease with diverse
genetic and environmental factors involved in its aetiol-
ogy. Analyses of genome-wide expression profiles
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provide a comprehensive and dynamic view of the
molecular changes between cancer and normal tissues,
which has become a widespread technique for identify-
ing diagnostic and prognostic markers of cancer. How-
ever, searching for reliable biomarkers among
thousands of individual molecule is a challenging prob-
lem owing to the immaturity of cancer mechanism
study.1 Although an increasing number of cancer bio-
markers have been identified, they are limited in their
reproducibility and overlap, which makes them hard to
apply to the clinical practices.2�4 More and more stud-
ies have demonstrated that cancer is essentially caused
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Research in context

Evidence before this study

Cancer is a highly heterogeneous disease with diverse
genetic and environmental factors involved in its aetiol-
ogy. The diagnosis, risk assessment and prognosis predic-
tion of cancer can be improved by stratification of cancer
patients based on transcriptional characteristics of the
tumour. The existing cancer biomarkers that are based on
individual genes and molecular are limited in their repro-
ducibility and overlap, which hinders their wide applica-
tion in the clinical practices. More and more studies have
demonstrated that pathways have become more stable
and biologically meaningful biomarkers in interpreting
cancer mechanism. To facilitate the identification and
interpretation of dysregulated pathways in cancer, path-
way activity algorithms have been proposed, such as
GSVA, GSEA, Pathifier and IndividPath, but they are
restricted to making comparisons between groups or sen-
sitive to experimental batch effects. Thus, a more stable
and widely applicable individualized pathway activity
algorithm is urgent demand.

Added value of this study

We introduced a novel method for individualized path-
way activity measurement (IPAM) that is based on the
ranking of gene expression levels in individual sample.
IPAM precisely quantified the level of activity of each
pathway in multiple pan-cancer datasets and exhibited
better performance in the prediction of diagnosis and
prognosis over existing tools. Using IPAM, we identified
common and characteristic pathway dysregulation
among different cancer types. The driving factors of
specific pathway dysregulation were also elucidated,
such as PPARA for branched-chain amino acid metabo-
lism and NR1I2, NR1I3 for fatty acid metabolism.

Implications of all the available evidence

Pathways could be more stable and biologically mean-
ingful biomarkers than single gene in interpreting can-
cer mechanism and prediction of cancer diagnosis and
prognosis. IPAM possessed potential clinical value in
early diagnosis and prognosis prediction of cancer. Our
study will provide novel clues for understanding the
pathological mechanisms of cancer, ultimately paving
the way for personalized medicine of cancer.
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by the disturbing of complex regulatory relationships
among multiple functionally relevant genes,5�8 which
suggest us interpreting cancer expression data at the
level of functional modules, such as biological path-
ways, instead of at the level of individual genes and mol-
ecule. With the accumulation of biological knowledge
over the years, several pathway knowledge databases
have been built, such as KEGG,9 Reactome,10 and Bio-
Cyc,11 etc., which laid the foundation for exploring the
biological mechanisms, improving clinical treatment,
and discovering drug targets and biomarkers of cancer.
Then, the crucial question is how to utilize biological
pathway information to interpret transcriptome data
between cancer and normal tissues and identify charac-
teristic dysregulated pathways among cancer patients.

To facilitate the identification and interpretation of
dysregulated pathways in cancer, multiple tools for
pathway activity inference have been proposed, such as
GSEA,12 GSVA,13 PADOG14 and PLAGE,15 which con-
verted the pre-calculated gene scores to the statistical
values of pathways according to the specific statistical
model. These methods have promoted the interpreta-
tion of cancer transcriptome data and identified many
biological pathways associated with cancer.16 However,
these methods were developed to investigate dysregu-
lated pathways between two phenotype groups, the effi-
cacy of which relies on a large number of samples.
Although with careful external validation in large data
sets, the performance of these methods in clinical prac-
tices is restricted by the heterogeneity of cancer sam-
ples. Therefore, the personalized analysis for pathway
activity has clinical significance and urgent demand,
which will be crucial for improving our understanding
of cancer heterogeneity and developing personalized
therapies targeting specific pathways, ultimately paving
the way for personalized medicine of cancer.

Until recently, several individualized pathway activ-
ity measurement tools have been developed to charac-
terize dysregulated pathways for individual patients,
such as iPAS,17 Pathifier18 and IndividPath.19 iPAS
takes accumulated normal sample data as a reference
(nRef) and then quantify the aberrance of pathway activ-
ity for individual tumour sample by comparing it with
the nRef. Pathifier calculated the personalized pathway
deregulation score (PDS) for each pathway, which repre-
sents the distance of individual cancer samples from the
median of normal samples on the principal curve. Com-
monly, these approaches require a number of cohort
data as reference to infer pathway activity for individu-
als. Therefore, the Achilles’ heel of these cohort-based
methods is their sensitivity to experimental batch
effects, leading to significant limitations in translating
research findings into clinical practice.20 Although Indi-
vidPath reduced experimental batch effects through uti-
lizing the relative expression orderings (REOs) of genes,
it’s still subjected to the impact of the size of normal
samples, which makes it only exhibit good predictive
efficiency in cancer with sufficient normal sample accu-
mulated, such as breast and lung cancers.19,21 Further-
more, the output results generated by these tools are
typically given as p-values or software-specific informa-
tion, which is not suitable for further analyses.13,19,22 It
would be of great significance for the investigation of
individualized characteristics of cancer patients and fur-
ther development of personalized medicine if the path-
way activity of each patient can be quantified with
precise arithmetic. Consequently, a more stable and
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widely applicable individualized pathway activity algo-
rithm is urgent demand.

Here, we proposed a novel method for individualized
pathway activity measurement (IPAM) based on the
ranking of gene expression levels in individual samples.
For a given sample, the gene expression data can be con-
verted to normalized quantitative values through rank-
ing all genes within the sample, which eliminates the
batch effect caused by the heterogeneity between sam-
ples and cross-platform experiments. We demonstrated
that IPAM is not dependent on the accumulation of nor-
mal samples and is sufficient to reveal pathway activity
at the individual level, which would provide a strong
foundation for the translating of research findings into
clinical practice. Taking advantage of this method, we
calculated the pathway activity of 318 pathways from the
KEGG database in the 10,528 tumour/normal samples
of 33 cancer types from TCGA to identify characteristic
dysregulated pathways among different cancer types.
Further, through integrating with a machine learning
algorithm, IPAM was applied to the prediction of diag-
nosis and prognosis in multiple cancers and achieved
higher accuracy compared to several previous pathway-
based approaches. Furthermore, we also showed that
IPAM could find more reproducible pathway markers
that retain the high predictive power across different
cancer datasets, especially in the dataset of liquid biopsy
based on tumour-educated platelets (TEPs). Our individ-
ualized pathway activity algorithm and systematic pan-
cancer analysis would provide novel clues for under-
standing the pathological mechanism of cancer, ulti-
mately paving the way for personalized medicine of
cancer. IPAM can be available at https://github.com/
keke529/IPAM.
Methods

Data collection and processing
Processed level 3 RNA-Seq data and the corresponding
survival information of 33 cancer types from The Cancer
Genome Atlas (TCGA) were obtained using the UCSC
Xena browser (https://xena.ucsc.edu/).23 Gene expres-
sion data was quantified by RNA-Seq by Expectation
Maximization (RSEM) algorithm, with raw read counts
mapped to gene features. The count-based gene expres-
sion was normalized across all samples using FPKM
method, followed by log2(FPKM + 0.001) transforma-
tion. A total of 10528 tumour/normal samples of 33 can-
cer types in the TCGA cohort were included in the
analysis.

To validate the stability of our individualized pathway
activity algorithm, the independent cancer datasets were
obtained through the GEO database. Datasets satisfying
the following criteria were considered: (1) gene expres-
sion profile data, (2) tissue samples from primary
tumour, and (3) availability of matched samples from
www.thelancet.com Vol 79 Month May, 2022
normal tissues. The datasets summarized in Supplemen-
tary Table 1 contained the largest samples among those
satisfying our criteria and were used for validation. Fur-
thermore, to examine the potential of our algorithm and
predictive model in blood-based liquid biopsies, the
RNA-Seq data of tumour-educated blood platelets (TEP)
were collected from the study of GSE68086 for valida-
tion.24 A total of 283 blood platelet samples, including
228 TEP samples collected from patients with six differ-
ent malignant tumours and 55 platelet samples from
healthy individuals were downloaded. The identical data
processing pipeline as TCGA was also employed for the
expression profiles of these datasets.
Pathway database
Gene sets of 321 pathways were obtained from the
KEGG database (https://www.kegg.jp/).9,25 These path-
ways are compiled by domain experts and provide
canonical representations of biological processes. The
pathways that contain less than 3 genes were omitted,
leaving 318 KEGG pathways. The individualized path-
way activity was calculated for each pathway using gene
expression data of the corresponding gene set.
Individualized pathway activity algorithm
We developed an approach for individualized pathway
activity measurement (IPAM) to identify characteristic
dysregulated pathways among cancer patients. For each
sample in the TCGA cohort, the pathway activities of 318
KEGG pathways were calculated using IPAM. A sche-
matic diagram of IPAM is described in Figure 1. IPAM
began with quantifying the expression level of each gene
in individual sample. For a given sample, the expression
values of 19833 genes were ranked from small to large,
and the ordering value was regarded as the expression
level of genes. In consideration of that a small change of
the gene expression for a gene would enlarge its influ-
ence in gene ranking score, in order to reduce the effects
caused by minor changes of gene expression on the
whole level of pathway activity and highlight the influ-
ence of genes with large changes on expression level, we
assigned a same rank score for genes within one same
rank region (bin size setting as 10):

Gene score ¼ Gene rank=10½ � � 10þ 1

For example, the genes with ranks from 11 to 20 are
all regarded as 11 score, and the genes with ranks from
19831 to 19833 are all regarded as 19831 score (Figure 1).
The operator in the formula are using to round down
the gene ranks to make genes with the same tens digit
to the same scores. Pathway activities were then calcu-
lated by summing the gene expression level for all genes
within each of the pathways and dividing by the number
of genes for that particular pathway, to account for gene
number effects in the different pathways:
3
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Figure 1. Pipeline individualized pathway activity algorithm. A total of 10528 tumour/normal samples of 33 cancer types in the
TCGA cohort were included in this study. Our algorithm begins with quantifying expression level of each gene in individual samples.
For a given sample, the expression values of 19833 genes were ranked from small to large, and the ordering value was regarded as
the expression level of genes. In order to reduce the effects caused by small changes of gene expression on the whole level of path-
way activity and highlight the influence of genes with large changes on expression level, the gene ranks with the same tens digit
were regarded as the same level and assigned as same scores. Pathway activities were then calculated by summing the gene
expression level for all genes within each of the pathways and dividing by the number of genes for that particular pathway, to
account for gene number effects in different pathway. Finally, the pathway activities of 318 KEGG pathways in 10446 TCGA samples
were obtained for further analyses.
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Pathway score ¼ S Gene scoresð Þ=n
Finally, the pathway activities of 318 KEGG pathways

in 10528 TCGA samples were obtained for further anal-
yses. The pathway activities of the GEO datasets in Sup-
plementary Table 1 were also calculated using IPAM.
Construction of cancer classification model based on
pathway activity
In order to evaluate the performance of our individual-
ized pathway activity algorithm, we developed the classi-
fication model of cancer versus normal samples based
on pathway activity data of TCGA samples. A total of 11
TCGA cancer projects with enough normal samples
(n > 30) were chosen for model construction, including
breast invasive carcinoma (BRCA), colon adenocarci-
noma (COAD), head and neck squamous cell carcinoma
(HNSC), kidney renal clear cell carcinoma (KIRC), kid-
ney renal papillary cell carcinoma (KIRP), liver hepato-
cellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), pros-
tate adenocarcinoma (PRAD), stomach adenocarcinoma
(STAD), thyroid carcinoma (THCA). For each cancer
type, we developed a Neural Network based classifica-
tion model using Levenberg-Marquardt Back Propaga-
tion (LMBP) algorithm. Receiver Operating
Characteristic (ROC) curves and Area under Curve
(AUC) were used to assess the classification perfor-
mance for each cancer classification model. For each
cancer type in pan-cancer datasets, we conducted the
www.thelancet.com Vol 79 Month May, 2022
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five-fold cross-validation for 100 random repeats and
averaged the resulting 500 ROC-AUCs to obtain a reli-
able performance measure of the classification model
for each cancer type. The averaged accuracy and PR-
AUC were also calculated for the accurate evaluation of
each cancer classification model (Supplementary Meth-
ods). To compare the classification performance of dif-
ferent pathway activity algorithms, we also repeated the
above experiments using the iPAS, Pathifier, PLAGE,
ssGSEA and IndividPath methods for inferring the
pathway activities based on TCGA and GEO datasets
(Supplementary Methods). Furthermore, cancer classifi-
cation models using IPAM without gene ranking, gene-
based cancer classification models and cancer classifica-
tion models using tumour purity corrected transcrip-
tome data were constructed and compared with IPAM
to further evaluation of our algorithm (Supplementary
Methods).
Identification of dysregulated pathways
To investigate characteristic dysregulated pathways
among different cancer types, the differential analyses
of 318 KEGG pathways were performed in 20 TCGA
cancer projects with enough matched normal samples
(n > 3, Supplementary Table 2). The dysregulated path-
ways were identified using the t-test between cancer and
normal samples with a significance threshold of FDR
corrected P-value <0.05. The magnitude of pathway
dysregulation was determined by the adjusted t values
of differential analyses.
Survival analysis based on pathway activity
To evaluate the effectiveness in survival analysis of
IPAM, survival analysis based on pathway activity was
performed in the TCGA cohort using the Survival R
package. Within these 33 cancer types, 8 cancer types
(CHOL, DLBC, ESCA, KICH, PCPG, PRAD, TGCT,
THYM) were excluded because the number of death
events was too small (n < 20) for survival analysis.
Kaplan-Meier curve and log-rank test were conducted to
compare the difference of overall survival between
patients at high- or low- activity of each pathway. The
pathways that reached a significance threshold of P-
value <0.05 were considered as significantly associated
with the overall survival. We next examined IPAM for
predicting patient survival in TCGA. Pathway-based
univariate and multivariate survival analyses were per-
formed using the Cox proportional hazard model to
identify statistically significant prognostic factors. We
used a forward-stepwise algorithm to identify the opti-
mal prognostic factors of overall survival. Beginning
with the pathway with the highest concordance index
(C-index) as the seed signature, the candidate pathway
was added to the signature one at a time until the addi-
tion of one did not improve predictive performance. At
www.thelancet.com Vol 79 Month May, 2022
each step, predictive performance was measured for all
possible additions and evaluated using the C-index to
select the optimal addition yielding the largest increase
in the C-index value. Finally, the pathway signature
with the highest C-index was regarded as the prognostic
factor of specific cancer. To demonstrate the effective-
ness of IPAM, the mean C-index values of 100 repeated
5-fold cross-validation were compared with that of five
other pathway activity algorithms.
Investigation of driving factors for specific pathway
dysregulation
To further investigate the driving factors of pathway dys-
regulation, we performed systematic analyses for the
individual pathway dysregulated in specific cancer types.
Transcription factor enrichment analysis of metabolic
genes was performed using ChEA3 web-server (https://
amp.pharm.mssm.edu/ChEA3), which integrates a col-
lection of gene set libraries generated frommultiple sour-
ces including TF-gene co-expression, TF-target
associations, and TF-gene co-occurrence.26 Differential
expression analyses were conducted using GEO2R under
accession numbers GSE7329927 and GSE71446.28 The
gene set enrichment analysis of the differential expres-
sion genes was performed by the KOBAS 3.0 web
server.29 Some figures are depicted using the OmicStu-
dio tools at https://www.omicstudio.cn/tool.
Ethics
All datasets were publicly available, and ethical approval
was acquired for all original studies.
Statistics
Student’s t-test was used for performance comparisons
between IPAM and other pathway activity algorithms.
The dysregulated pathways were identified using
Student’s t-test between cancer and matched normal sam-
ples. Pearson’s correlation coefficient was used to evaluate
the correlation between pathway activity and TFs. Kaplan-
Meier curve and log-rank test were conducted to compare
the difference of overall survival between patients at high-
or low- activity of each pathway.
Role of funding source
Funders provide financial support for this study, and do
not participate in study design, data collection, data
analyses, interpretation, or writing of the manuscript.
Results

Performance of IPAM in cancer classification
The schematic diagram of our individualized pathway
activity algorithm IPAM is shown in Figure 1. Taking
advantage of our algorithm, we calculated the pathway
5
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activity of 318 KEGG pathways in 33 TCGA cancer proj-
ects (Supplementary Table 3). To evaluate the perfor-
mance of IPAM, we developed cancer classification
models based on pathway activity data of 11 TCGA proj-
ects and compared it with three algorithms (IPAM with-
out gene ranking, gene-based, and tumour purity
corrected IPAM) and five widely used tools (iPAS, Pathi-
fier, PLAGE, ssGSEA and IndividPath). Among these
pathway activity algorithms, IPAM achieved the highest
Figure 2. IPAM showed good performance in cancer classifica
shows the average ROC-AUCs of each pathway activity algorithm in
pathway activity algorithm and five widely used tools (iPAS, Pathifie
boxplots was built on the average ROC-AUCs of five-fold cross-vali
sets. The significance tests of ROC-AUCs between IPAM and other
test. (a) Boxplot of average ROC-AUCs for different pathway activity
TCGA. IPAM-withoutRank denotes the performance of cancer class
Gene-based denotes the performance of cancer classification usin
mance of IPAM algorithm in cancer classification using tumour pu
AUCs for different pathway activity algorithms on cancer classificatio
AUCs for different pathway activity algorithms on cancer classificatio
(d) The number of significantly dysregulated pathways among can
dysregulated in a specific number of cancer types. (f) The significan
map of 318 KEGG pathways dysregulation in pan-cancer. Data are s
samples and matched normal samples. The red colour represent tha
colour is down-regulated. The intensity of colour indicates the magn
classification performance (accuracy, ROC-AUC and PR-
AUC) in almost all cancer types (Figure 2a, Supplemen-
tary Figure 2 a, d, Supplementary Results). To validate
the stability of IPAM, the cancer classification models
were also trained using the independent cancer datasets
from the GEO database. As expected, IPAM showed bet-
ter performance than the other five pathway activity algo-
rithms (Figure 2b, Supplementary Figure 2 b, e). To
examine the potential of IPAM in the early diagnosis of
tion and identification of pathway dysregulation. Panel a-c
cancer classification using pan-cancer data. Our individualized
r, PLAGE, ssGSEA and IndividPath) were compared. Each box in
dation for 100 random repeats across the different cancer data
pathway activity algorithms were conducted using Student’s t-
algorithms on cancer classification using pan-cancer data from
ification using IPAM algorithm without the gene ranking step.
g marker-gene selection. IPAM-corrected denotes the perfor-
rity corrected transcriptome data. (b) Boxplot of average ROC-
n using pan-cancer data from GEO. (c) Boxplot of average ROC-
n using liquid biopsy data based on tumour-educated platelets.
cer types. (e) The number of pathways that were significantly
tly dysregulated pathways among most cancer types. (g) Heat-
howed by the t statistics of differential analyses between cancer
t the pathway is up-regulated in the cancer samples, while blue
itude of dysregulation.
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cancer, we calculated the pathway activity of tumour-edu-
cated blood platelets (TEP) data and constructed the can-
cer diagnostic model. The result showed that IPAM
outperformed the other methods except for Pathifier
(Figure 2c, Supplementary Figure 2 c, f). However, Pathi-
fier calculates pathway activity of a sample by first gener-
ating a principal curve using only the normal samples.
When using Pathifier, the labels (cancer or normal) of
samples are needed to generate the principal curve,
which is inconvenient for Pathifier to apply in the indi-
vidualized clinical diagnosis of cancer. Consequently,
IPAM showed remarkable performance in cancer classifi-
cation of multiple cancer data and possessed high appli-
cation potential in the early diagnosis of cancer.
Pan-cancer identification for pathway dysregulation
In view of the good performance of our algorithm in
cancer classification, the differential analyses of 318
KEGG pathways were performed in 20 TCGA cancer
projects to identify characteristic dysregulated pathways
among different cancer types.

Among all cancer types, LUSC, CHOL, and KIRC
possessed the most dysregulated pathways, while
PAAD, CESC, and UCEC have the least (Figure 2d). In
318 KEGG pathways, tyrosine metabolism pathway was
significant in most cancer types. It is significantly dysre-
gulated in 17 cancer types excluding CESC, PAAD, and
PRAD (Figure 2e, f). Besides tyrosine metabolism path-
way, some pathways were significantly deregulated in a
large fraction of cancer types, such as fatty acid degrada-
tion, cell cycle, phenylalanine metabolism, p53 signal-
ling pathway and DNA replication (Figure 2f). To
determine the pathway dysregulation characteristic
among different cancers, we performed the clustering
analysis based on the dysregulation magnitude of 318
KEGG pathways. The results showed strong tissue spec-
ificity. Cancer types with the same histological origin
exhibited a similar pattern of pathway dysregulation,
such as LUAD and LUSC, KIRP and KIRC (Figure 2g).
Survival analysis based on pathway activity
Cancer types with distinct patterns of pathway dysre-
gulation may have underlying differences in survival
outcomes. Thus, we performed survival analysis for
each pathway to identify survival-related pathways in
multiple cancer types (Supplementary Table 6).
Among all cancer types, LGG, KIRC, and UVM pos-
sessed the most pathways that were associated with
patient survival, while READ THCA and UCS have
the least (Figure 3a). Several pathways were signifi-
cantly associated with prognosis in multiple cancer
types, such as DNA replication, cell cycle, calcium sig-
nalling pathway, regulation of lipolysis in adipocytes,
microRNAs in cancer, ECM-receptor interaction, tryp-
tophan metabolism, renin secretion (Figure 3b).
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ECM-receptor interaction, focal adhesion, microRNAs
in cancer, glycosaminoglycan biosynthesis were the
most unfavourable pathways to patient survival
among pan-cancer. Glyoxylate and dicarboxylate
metabolism, peroxisome, butanoate metabolism, fatty
acid degradation were the most favourable pathways
to patient survival among pan-cancer (Figure 3c). To
determine the survival characteristic among different
cancers, we performed the clustering analysis based
on the hazard ratio (HR) of 318 KEGG pathways.
Some cancer types clustered closely in the clustering
analysis, such as GBM and LAML, STAD and LUSC,
KIRP and MESO (Figure 3d), suggesting that these
cancer types possessed similar pattern in patient sur-
vival. Then, we conducted the univariate and multi-
variable Cox regression analyses for 25 cancer types to
examine the predictive ability of IPAM in patient
prognosis. In univariate Cox regression analyses, sev-
eral pathways showed extremely high predictive abil-
ity, such as drug metabolism � cytochrome P450 in
ACC, histidine metabolism in KIRP, tyrosine metabo-
lism in MESO (Figure 3e). The forward-stepwise algo-
rithm was used to construct the optimal multivariable
Cox proportional hazard models for 25 cancer types.
As shown in Figure 3f, IPAM provides a higher mean
and median C-index than the other methods in pan-
cancer, suggesting our algorithm could potentially
serve as a useful tool for predicting the survival of
cancer patients.

Taken together, the above results demonstrated the
capacity of IPAM to characterize pathway deregulation
in individual patients, providing the ability of cancer
classification and survival prediction.
Pan-caner pathway dysregulation in different KEGG
categories
According to KEGG classifications, the 318 individual
KEGG pathways were classified into 6 major categories,
including cellular processes, environmental informa-
tion processing, genetic information processing, human
diseases, metabolism and organismal systems. In the
cellular process category, only cell cycle and p53 signal-
ling pathway were significantly up-regulated in most
cancer types (Figure 4a). In environmental information
processing, most of signal transduction pathways were
more likely to be down-regulated in most cancer types
(Figure 4a). In the category of genetic information proc-
essing, most pathways are up-regulated in most cancer
types, including DNA replication, homologous recombi-
nation, mismatch repair, non-homologous end-joining,
base excision repair (Figure 4a). Among the pathways
involved in the metabolism, most of these metabolic
pathways were down-regulated in multiple cancer types
(Figure 4a). In organismal systems, most of the path-
ways, such as regulation of lipolysis in adipocytes, min-
eral absorption, and aldosterone synthesis and
7



Figure 3. Pan-cancer survival analysis based on pathway activity. (a) The number of favourable and unfavourable pathways in
survival analysis among cancer types. (b) Pathways significantly associated with patient survival in multiple cancer types. The x-axis
shows the number of survival-related cancer types for each pathway. The colour of bar indicates the mean value of hazard ratio (HR)
of survival analysis for each pathway in these cancer types. (c) The most favourable and unfavourable pathways in survival analysis
among pan-cancer. Each box in boxplots was built on the HRs of the pathway in survival analysis among the different cancer types.

Articles

8 www.thelancet.com Vol 79 Month May, 2022



Figure 4. Pan-caner pathway dysregulation in different KEGG categories. (a) The significantly dysregulated pathways among
most cancer types in different KEGG categories. (b) Heatmap of 85 metabolic pathways dysregulation in pan-cancer. The red colour
represent that the pathway is up-regulated in the cancer samples, while blue colour is down-regulated. The intensity of colour indi-
cates the magnitude of dysregulation.
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secretion, were down-regulated in most cancer types
(Figure 4a). To determine patterns of pathway dysregu-
lation among different KEGG categories, we further
conducted the hierarchical clustering of pathway dysre-
gulation for each KEGG category. In the categories of
environmental information processing and genetic
information processing, the patterns of pathway dysre-
gulation in different cancers were similar, indicating a
universal mechanism in the essential biological func-
tion of pan-cancer (Supplementary Figure 4). Most can-
cer subtypes including lung cancer (LUAD and LUSC),
colorectal cancer (COAD and READ), and uterine can-
cer (CESC and UCEC) constituted a primary group in
the clustering analysis of metabolism category
(Figure 4b), suggesting that these cancer subtypes pos-
sess similar metabolic dysregulation pattern. However,
the subtypes of kidney cancer (KICH, KIRC and KIRP)
exhibited distinct metabolic dysregulation patterns.
KIRC formed a separate branch and showed a unique
(d) Heatmap of 318 KEGG pathways in survival analysis. Data are sho
represent that the pathway is associated with poor prognosis, while b
the pathway with the highest C-index for each cancer types. (f) Perf
survival prediction. Each box in boxplots was built on the average C-
the pan-cancer data from TCGA. The significance tests of C-index b
ducted using Student’s t-test.
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pathway dysregulation pattern in the clustering analyses
of metabolism, environmental information processing
and organismal systems categories, which is consistent
with cluster analysis of 318 pathways (Figure 2g, b, Sup-
plementary Figure 4). It was mainly because some path-
ways involved in metabolism and signal transduction
were significantly up-regulated in KIRC, such as HIF-1
signalling pathway, TNF signalling pathway, NOD-like
receptor signalling pathway and Toll-like receptor sig-
nalling pathway, which was not common in other can-
cer types.30
Metabolic pathways play a dominant role in cancer
pathway dysregulation
We then summarized the number of significantly dysre-
gulated pathways in 6 major KEGG categories for each
cancer type and found that the most of dysregulated
pathways in all cancers belonged to the metabolism
wed by the HRs of pathways in survival analysis. The red colour
lue colour is associated with good prognosis. (e) Bar chat shows

ormance comparison of different pathway activity algorithms on
index of five-fold cross-validation for 100 random repeats across
etween IPAM and other pathway activity algorithms were con-
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Figure 5. Metabolic pathways play dominant role in cancer pathway dysregulation. (a) The number of significantly dysregu-
lated pathways in different KEGG categories. (b) Boxplot shows the ratios of dysregulated pathways of different KEGG categories
across the different cancer types. (c) Boxplot shows the sample variance of pathway activities of different KEGG categories in pan-
cancer. (d) Performance comparison of cancer classification models based on all KEGG pathways and 85 metabolic pathways. Each
box in boxplots was built on the average ROC-AUC of five-fold cross-validation for 100 random repeats across the pan-cancer data
from TCGA. The significance tests of ROC-AUC between IPAM using all pathways and metabolic pathways were conducted using
Student’s t-test. (e�g) Heatmap of pathways dysregulation in amino acid metabolism (e), carbohydrate metabolism (f), lipid metab-
olism (g). The red colour represent that the pathway is up-regulated in the cancer samples, while blue colour is down-regulated. The
intensity of colour indicates the magnitude of dysregulation.
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category, followed by the organismal systems category,
whereas the cellular process category was the least dys-
regulated (Figure 5a). Compared with the pathways of
other categories, metabolic pathways were more likely
to be dysregulated in most cancer types (Figure 5b), and
account for the most variance of heterogeneity among
the samples within each cancer data (Figure 5c), indicat-
ing the important role of metabolic pathways in cancer
pathway dysregulation. To elucidate the importance of
metabolic pathways in pathway dysregulation, we
trained the cancer classification models using pathway
activity data of 85 metabolic pathways in 11 cancer types.
Surprisingly, the cancer classification models based on
85 metabolic pathways showed as good as prediction
efficiency than that based on all KEGG pathways
(Figure 5d), suggesting the dominant role of metabolic
pathways in pathway dysregulation. The 85 individual
metabolic pathways were condensed into eight major
metabolic categories based on KEGG classifications,
including amino acid metabolism, carbohydrate metab-
olism, energy metabolism, glycan metabolism, lipid
metabolism, cofactors and vitamins metabolism, nucle-
otide metabolism, and xenobiotics metabolism. Not sur-
prisingly, among these metabolic categories, the
metabolism of three basic nutrients (amino acid, carbo-
hydrate, lipid) showed more dysregulated in pan-cancer
(Figure 5e�g), such as tyrosine metabolism dysregu-
lated in 17 cancer types, fatty acid degradation
www.thelancet.com Vol 79 Month May, 2022
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dysregulated in 16 cancer types, propanoate metabolism
dysregulated in 13 cancer types, indicating the impor-
tance of these three metabolic categories.
Metabolic pathways were associated with the survival
of cancer patients in multiple cancer types
We note that several pathways of amino acid, carbohy-
drate, lipid metabolism were significantly associated
with the survival of cancer patients in multiple cancer
types, such as tryptophan metabolism, pyrimidine
metabolism, phenylalanine metabolism, and histidine
metabolism in nine cancer types. In amino acid metabo-
lism catalogue, several pathways were significantly asso-
ciated with the survival of cancer patients in more than
seven cancer types, including tryptophan metabolism,
histidine metabolism, phenylalanine metabolism,
valine, leucine and isoleucine degradation (Supplemen-
tary Figure 5a), indicating the importance of these meta-
bolic pathways in cancer development. In carbohydrate
metabolism, glycolysis/gluconeogenesis, glyoxylate and
dicarboxylate metabolism were significantly associated
with the survival of cancer patients in most cancer types
(Supplementary Figure 5b). In lipid metabolism, alph-
linolenic acid metabolism, fatty acid degradation, glycer-
ophospholipid metabolism, primary bile acid biosynthe-
sis, steroid biosynthesis were significantly associated
with the survival of cancer patients in more than eight
cancer types (Supplementary Figure 5c).
Metabolism of branched-chain amino acid influence
the progression and prognosis of kidney cancer
To further investigate the driving factors of pathway dys-
regulation and elucidate the pathological mechanism of
cancer, we performed a systematic analysis for the indi-
vidual pathway dysregulated in specific cancer types. In
the clustering analysis of amino acid metabolism cate-
gory, we found that valine, leucine and isoleucine bio-
synthesis pathway was significantly up-regulated in
kidney cancer including KICH, KIRC and KIRP
(Figure 5e). Meanwhile, valine, leucine and isoleucine
degradation pathway was down-regulated in these can-
cer types (Figure 5e). Valine, leucine and isoleucine, the
branched-chain amino acids (BCAA), play critical roles
in the regulation of energy homeostasis and nutrition
metabolism.31 To investigate the role of the BCAA level
in the progression and prognosis of kidney cancer, we
calculated the BCAA level of each sample in kidney can-
cer by reversing the pathway activity algorithm of the
BCAA degradation pathway and integrating it with the
BCAA biosynthesis pathway activity. Survival analysis
demonstrated that high a BCAA level was significantly
associated with poor prognosis in KIRC and KIRP
(Figure 6a). To further investigate potential factors reg-
ulating the changes of BCAA levels, we first examined
the BCAA metabolic genes at the genomic level. Most of
www.thelancet.com Vol 79 Month May, 2022
kidney cancer patients had suffered somatic copy-num-
ber variation (CNV) loss of various BCAA catabolic
genes (Figure 6b), which were the leading factor that
caused the improving level of BCAA, ultimately affect-
ing the overall survival time of the patients. However,
compared with normal tissues, the expressions of
BCAA genes in tumours with normal CNVs were
decreased (Figure 6b), indicating that there are addi-
tional regulatory mechanisms involved in the regulation
of BCAA levels. We then calculated the correlation
between BCAA levels and 1627 transcription factors
(TFs) expression levels to investigate which TF may reg-
ulate the BCAA metabolism. PPARA was the most sig-
nificant TF correlated with BCAA level (Figure 6c),
which was also associated with patient survival. Further-
more, TF motif enrichment analysis indicated that
PPARA binding motifs were enriched in the promoters
of 48 BCAA catabolic genes (Figure 6d). Collectively,
these results suggest low expression of PPARA likely
results in BCAA accumulation through down-regulat-
ing BCAA catabolic genes, leading to a poor prognosis
of kidney cancer. To validate our finding, we performed
differential expression analysis between 26 wild-type
mice and PPARA knock-out mice. Most of the BCAA
catabolic genes were down-regulated in PPARA knock-
out mice (Figure 6e), indicating PPARA could regulate
BCAA catabolic genes to affect BCAA level. To further
investigate downstream effects of PPARA, we con-
ducted enrichment analysis using all significantly differ-
ential expressed genes and found these genes were
enriched in cell cycle pathway (Figure 6f). Overall,
PPARA could affect the progression and prognosis of
kidney cancer by regulating the degradation of BCAA.
NR1I2 and NR1I3 affect the prognosis of liver cancer
through co-regulating fatty acid metabolism
We also found that fatty acid metabolism, including
linoleic acid metabolism, fatty acid degradation, arachi-
donic acid metabolism, and alpha�linolenic acid metab-
olism were significantly associated with patient survival
in LIHC (Figure 5g). To further investigated which TF
may regulate these fatty acid metabolisms, we calculated
the correlation between TFs and fatty acid metabolisms.
We noted that both NR1I2 and NR1I3 showed high a cor-
relation with all these fatty acid metabolisms (Supple-
mentary Figure 6a). Furthermore, NR1I2 and NR1I3
were also associated with patient survival in LIHC (Sup-
plementary Figure 6b). Transcription factor enrichment
analysis prioritized NR1I2 and NR1I3 as activating TF for
cytochrome P450 enzymes, which are crucial enzymes
of fatty acid metabolism (Supplementary Figure 6c). To
further validate our finding, we performed differential
expression analysis between wild-type (WT) HepaRG
cell line and HepaRG cell line treated with phenobarbi-
tal (PB), a dual activator of NR1I2 and NR1I3. Five cyto-
chrome P450 genes (CYP2B6, CYP3A4, CYP4F8,
11



Figure 6. Metabolism of branched-chain amino acid influence the progression and prognosis of kidney cancer. (a) Kaplan-
Meier survival curves show the difference of overall survival between patients at high- or low- activity of BCAA level in KIRC and
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CYP2C9, CYP2C8) were significantly up-regulated after
being treated with PB (Supplementary Figure 6d).
Among these genes, CYP3A4, CYP2C9, CYP2C8 were
significantly associated with patient survival in LIHC
(Supplementary Figure 6e). Collectively, these results
suggest that NR1I2 and NR1I3 co-regulate the metabo-
lism of fatty acid, ultimately affecting the prognosis of
liver cancer.
Discussion
Accumulative evidence showed that dysregulation of
biological pathways could contribute to the initiation
and progression of malignant tumours. Understanding
the extent and detailed landscape of dysregulation of
oncogenic pathways is important for researchers to
investigate the pathogenesis and the therapeutic drug
development of cancers. Furthermore, pathways that
are defined by groups of genes will tend to be more
robust in the face of the variation of individual genes,
which can be regarded as stable and widely applicable
biomarkers in cancer diagnosis and treatment. Several
methods for pathway activity measurement have been
proposed, but they are restricted to making comparisons
between groups or sensitive to experimental batch
effects. Thus, the development of a more stable pathway
activity algorithm for individual patients is crucial for
the advanced investigation of cancer pathogenesis.
Here, we introduced a novel method for individualized
pathway activity measurement (IPAM) that is based on
the ranking of gene expression levels in the individual
sample, which reduced experimental batch effects.
Unlike pathway methods that use pathway enrichment
of differential expressed genes (DEGs), IPAM can give
an arithmetic score for each pathway in each sample,
which does not need for DEG selection and possesses
better generalization ability. IPAM quantifies the level
of activity of each pathway within each sample and
shows its advantages over other widely used approaches
in the prediction of diagnosis and prognosis. It's worth
noting that IPAM achieved high classification accuracy
in liquid biopsy based on TEP, which possessed poten-
tial clinical value in the early diagnosis of cancer.
KIRP. P-value indicates significance levels from the comparison of su
BCAA level was significantly associated with poor prognosis in kid
metabolic genes among normal tissues, and tumours with or with
expression of PPARA and BCAA level. The Pearson correlation coeffi
motif enrichment analysis of BCAA metabolic genes. The y-axis show
each transcription factor. The size of the points indicates the numb
corresponding transcription factor. The colour of points shows the
�log10(adjusted p-value) with smaller p-value (red) representing m
between wild-type mice and PPARA knock-out mice. The y-axis show
represents fold change of each BCAA metabolic gene in differential
PPARA knock-out mice are plot as red dots, while down-regulated
differential expression genes between wild-type mice and PPARA kn
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Notably, IPAM can also be used to identify signifi-
cantly dysregulated pathways for each cancer type.
Some canonical oncogenic pathways were identified sig-
nificantly deregulated in a large fraction of cancer types,
such as tyrosine metabolism, fatty acid degradation, cell
cycle, phenylalanine metabolism, p53 signalling path-
way and DNA replication, which also confirmed the reli-
ability of our algorithm. In particular, tyrosine
metabolism pathway was significantly down-regulated
in 17 cancer types, which would result in the accumula-
tion of tyrosine. Several studies have showed that the
concentration of tyrosine in urine was significantly ele-
vated in almost all cancer patients,32�34 which can be
used for early screening and detection of cancer. Fatty
acid degradation is an essential cellular process that
converts nutrients into metabolic intermediates for
membrane biosynthesis, energy production and the
generation of signalling molecules.35 It’s a common fea-
ture of cancer cells to reprogram fatty acid metabolism
for the production of ATP and macromolecules needed
for cell growth, division and survival.36 As showed in
our study, fatty acid degradation pathway was signifi-
cantly associated with patient survival in most cancer
types. Therapeutic strategies for successfully targeting
fatty acid metabolism in cancer are of substantial clini-
cal interest and urgent. These pathways that are com-
monly dysregulated across most cancer types may
provide novel clues for investigating the pathogenesis
and clinical treatment of cancer. Through a comprehen-
sive analysis of pathway dysregulation across pan-can-
cer, we found that activities and alterations of pathways
differed among cancer types. Besides the cancers with
the same histological origin, some cancers exhibited a
similar pattern of pathway dysregulation, such as ESCA
and STAD, CHOL and LIHC. These kinds of similari-
ties remind us the common pathogeneses in these can-
cer types, which should be taken more consideration in
follow-up studies and therapy of cancer.

We also confirmed the dominant role of metabolic
pathways in cancer pathway dysregulation, which
accounts for the most variance of heterogeneity among
the samples within each cancer type. The metabolic het-
erogeneity is caused by multiple factors, including
genetic alterations, cell origin, epigenetic regulation,
rvival curves using the log-rank test. Survival analysis show high
ney cancer. (b) The comparison of relative expression of BCAA
out CNV loss of indicated gene. (c) Correlation between gene
cient is show in the upper part of plot. (d) Transcription factor
s transcription factors, and the x-axis represents rich factors for

er of BCAA metabolic genes enriched in the target genes of the
significance of each transcription factor using the logarithm of
ore significant enrichment. (e) Differential expression analysis
s the significance of each BCAA metabolic gene, and the x-axis
expression analysis. Genes that are significantly up-regulated in
genes are plot as blue dots. (f) Gene set enrichment analysis of
ock-out mice.
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and tumour microenvironment.37 Understanding meta-
bolic heterogeneity is crucial because it influences thera-
peutic strategies and may predict clinical outcomes.
Given that the metabolic heterogeneity of cancer has
attracted increasing attention, several interesting per-
spectives have been proposed to interpret metabolic het-
erogeneity. Tong et al. summarized the diverse
metabolic profiles of the important cell types in the
tumour microenvironment and discussed their impact
on tumour progression and clinical therapy.38 Park
et al. elucidates the interactions between signal trans-
duction pathways and metabolic pathways, and high-
light the role of therapeutic interventions targeting
cancer metabolism.39 In the present study, metabolic
pathways are used as the biomarkers in further analyses
of cancer mechanisms, which is more biologically
meaningful and easy for intervention in cancer treat-
ment. Given that the abnormal metabolic pathway activ-
ities are possibly caused by the dysregulated oncogenic
regulator, we further investigated the driving factors of
the specific pathway dysregulation. Consequently, we
found that the important transcription factor PPARA
could affect the progression and prognosis of kidney
cancer by regulating the degradation of BCAA. The
BCAA metabolism plays an important role in energy
homeostasis and nutrient signalling as well as nitrogen
balance.40 Dysregulation of the BCAAmetabolism path-
way alters the levels of several crucial metabolites,
including BCAAs, glutamate, a-ketoglutarate, and ROS,
which are used to generate nutrients and energy, acti-
vated the signalling pathways, shape the epigenetic
modifications, and improve the capacity of drug resis-
tance, ultimately leading to the initiation and progres-
sion cancer cell.41 In addition, BCAA metabolic
enzymes, such as BCAT1 and BCAT2, have emerged as
useful prognostic cancer markers,42,43 indicating that
targeting BCAA metabolism is an appealing therapeutic
approach for the treatment of human cancers. Thus,
given the great significance of PPARA in BCAA metabo-
lism, PPARA could be potential therapeutic targets for
the treatment of human cancers. Similarly, we found
that NR1I2 and NR1I3 could affect the prognosis of liver
cancer through co-regulating fatty acid metabolism.
Studies have showed that phenobarbital (PB), a dual
activator of NR1I2 and NR1I3, would cause liver tumours
in mice following chronic administration.44,45 Though
there is no evidence of a specific role of phenobarbital
in human liver cancer risk, our results would provide a
new clue for the investigation of cancer pathogenesis
and therapeutic targets.

Despite having comparative advantages, our
approach also has certain limitations. A limitation of
pathway analysis is how far transcriptomic data can be
equated to pathway dysregulation, which occurs to a cer-
tain extent at the post-transcriptional and post-transla-
tional levels. Thus, validation of results needs further
studies using proteomic and metabolomic data for the
exploitation of therapeutic strategies and targets. Fur-
thermore, the gene sets omitted from KEGG were not
considered in the pathway analysis owing to insufficient
coverage of genes by known biological pathways, which
is the common limitation of the pathway activity algo-
rithm. The network weighted pathway activity algorithm
did not improve the performance of IPAM in cancer
classification and prognosis prediction. This might due
to the fact the pathway interaction network was built
based on the same information for all individuals. We
believe that the performance of IPAM will be consider-
ably improved with the maturity of biological knowledge
and the availability of individualized pathway interac-
tions. To improve the stability and general applicability,
we reduce the effects caused by small changes of the
gene on pathway activity. Thus, IPAM may not be sensi-
tive enough to detect the subtle alterations of pathway
activity. In light of the small effect of these alterations
on cancer outcomes, this kind of modification is condu-
cive to the application of our algorithm in more data
from other platforms. Nonetheless, it should be recog-
nized that our algorithm represents an important step
toward the era of personalized medicine.

In summary, IPAM precisely quantified the level of
activity of each pathway in pan-cancer analysis and
exhibited good performance in the prediction of diagno-
sis and prognosis, which possessed potential clinical
value in early diagnosis and prognosis prediction of can-
cer. Our study will provide novel clues for understand-
ing the pathological mechanisms of cancer, ultimately
paving the way for personalized medicine of cancer.
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