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Abstract: Chitosan is obtained from chitin that in turn is recovered from marine crustacean wastes.
The recovery methods and their varying types and the advantages of the recovery methods are briefly
discussed. The bioactive properties of chitosan, which emphasize the unequivocal deliverables
contained by this biopolymer, have been concisely presented. The variations of chitosan and its
derivatives and their unique properties are discussed. The antioxidant properties of chitosan have
been presented and the need for more work targeted towards harnessing the antioxidant property
of chitosan has been emphasized. Some portions of the crustacean waste are being converted to
chitosan; the possibility that all of the waste can be used for harnessing this versatile multifaceted
product chitosan is projected in this review. The future of chitosan recovery from marine crustacean
wastes and the need to improve in this area of research, through the inclusion of nanotechnological
inputs have been listed under future perspective.

Keywords: chitosan; chitin; crustacean shells; waste; antioxidant; derivatives; applications; nanotech-
nology

1. Introduction

Chitin is the second most abundant (first is cellulose), non-toxic, biodegradable high
molecular weight polymer occurring in nature. It exhibits outstanding chemical and bio-
logical properties, such as biocompatibility, non-toxicity, biodegradability, and exceptional
adsorption properties. These unique properties have enabled chitin to be used in indus-
trial and biomedical applications. Chitin is the major component of cuticles of insects
(cockroach, beetle, true fly, and worm), fungal cell walls (Aspergillus niger, Mucor rouxii,
Penicillum notatum, yeast) and green algae [1–4]. Chitin is a constituent of different ex-
oskeletons of marine arthropods such as crustaceans (crab, shrimp, lobster, krill, crayfish,
barnacles), cuttlefish, and squid pen. Chitin is made up of a linear chain of acetylglu-
cosamine groups [5]. With a turnover of 10 billion tons annually [6,7], chitin is one of the
most abundant biopolymers. Chitin can be readily obtained by simple extraction [8] and
the major source of industrial chitin is derived from wastes of marine food production,
mainly crustacean shells, e.g., shrimp, crab, or krill shells [9–11]. Crustacean shell is com-
posed of 30–40% proteins, 30–50% mineral salts, and 13–42% of chitin occurring in α-, β-,
and γ-forms. In the processing of shrimps for human consumption, between 40 and 50%
of the total mass is waste and 40% of this waste is chitin. A small part of the waste is
usually dried and utilized as chicken feed [11], while the rest is dumped into the sea, which
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is one of the main pollutants in coastal areas [12,13]. The utilization of shellfish waste
has thus been able to solve environmental problems, being an alternative waste disposal
method [14,15]. In practice, a polymer where most residues are acetylated is chitin, while
the opposite holds well for chitosan. Several processes have been proposed for the use of
shellfish waste for extraction of chitin and chitosan. Chitin extraction involves alkaline
extraction of organics and acid solubilization/decomposition of minerals, subsequent to
protein removal. During such extractions, the chitin molecule also suffers some structural
changes, including a moderate degree of deacetylation. Chitosan, is obtained on substantial
deacetylation through alkaline treatment of chitin under severe conditions.

Research in the area of renewable marine byproducts has recently been patronized.
The current application of crustacean waste mainly focuses on the value-added production
of chitin. Chemical methods of chitin extraction use voluminous hazardous chemicals
(NaOH and HCl) that are released into the environment. The abundant and renewable
marine processing wastes are commercially exploited for the extraction of chitin. However,
the traditional chitin extraction processes employ harsh chemicals at elevated temperatures
for a prolonged time which can harm chitin’s physico-chemical properties and are also
held responsible for the deterioration of environmental health. There are mainly two chitin
extraction methods conducted in the industry, those being chemical or biological. Both ex-
traction strategies of chitin consist of two phases, deproteinization with alkaline treatment
at high temperatures followed by demineralization predominantly with dilute hydrochloric
acid. The sequence of these two phases is interchangeable depending on the source and the
proposed use of chitin. During the chemical process, the protein component in the shells is
not recovered, however, this is resolved through enzymatic processing methods resulting
in the effective recovery of proteins, chitin, and pigments [16,17]. Chitin powder isolated
from crustacean sources has a pale pink color, thus necessitating the bleaching process
involving hydrogen peroxide, oxalic acid, or potassium permanganate [18,19]. In order
to avoid the use of harsh chemicals, green extraction methods are increasingly gaining
popularity due to their environmentally friendly nature. Chitin and its derivatives are
widely used in innumerable applications ranging from food, agriculture, biomedicine,
pharmaceuticals, and cosmetics to environmental sector. Figure 1 gives an overview of the
overall process involved in the recovery of chitosan from crustacean shell wastes.

Biotechnological production of chitin offers new perspectives for the production of
highly viscous chitosan, with promising inputs in biomedicine and pharmacy [20,21]. Pro-
teolytic enzymes such as, papain, alkalase, chymotrypsintrypsin, pepsin, devolvase and
pancreatin have been employed for the extraction and separation of chitin and proteins
from shrimp waste [22,23]. Mhamdi et al. reported the use of serine alkaline proteases
from Micromonospora chaiyaphumensis S103 for chitin extraction from shrimp shell (Pe-
naeus kerathurus) waste [24]. Other authors have described that the application of crude
digestive alkaline proteases from Portunus segnis led to effective extraction of chitin by
deproteinization of blue crab (P. segnis) and shrimp (P. kerathurus) [25]. The most used bac-
terial strains for fermentation are Lactobacillus sp. strain especially L. plantarum, L. paracasei,
and L. helveticus. Recently, Castro et al. extracted and purified chitin from Allopetrolisthes
punctatus crabs using Lactobacillus plantarum sp.47, a Gram-positive bacterium isolated
from Coho salmon that produces high lactic acid concentrations [26]. For chitin recov-
ery with non-lactic acid bacteria, crustacean shell fermentation bacteria and fungi such
as Pseudomonas sp., Bacillus sp. and Aspergillus sp. were used as the inoculum source:
Ghorbel-Bellaaj et al. isolated a protease bacterium identified as Pseudomonas aeruginosa
A2. Most commercial bacterial proteases are mainly produced by Bacillus sp., and Hajji
et al. have extracted from the waste of crab shells chitin and fermented-crab supernatants
after fermentation using six different strains of Bacillus. The bioextraction of chitin from
crustacean shell wastes has been increasingly researched at the laboratory scale, but not
at the commercial level. Bioextraction of chitin is thus a greener, cleaner, eco-friendly and
economical process. Specifically, microorganisms-mediated fermentation processes are
highly desirable due to easy handling, simplicity, rapidity, controllability through opti-
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mization of process parameters, ambient temperature, and negligible solvent consumption,
thus reducing environmental impact and costs. Driven by reduced energy, wastewater, or
solvent, advances in biological extraction of chitin along with valuable byproducts will
have high economic and environmental impact.
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Figure 1. Overview of the recovery of chitosan from crustacean wastes.

However, chitosan properties and applications and recovery methods have been
already reviewed. The following review highlights the recovery of chitosan from crustacean
wastes and emphasizes on the need to seek out “green” extraction methods. The available
data on the antioxidant properties of chitosan have been reviewed and the need to expand
the research focus in this area of research for harnessing the full potential of the antioxidant
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properties of chitosan has been proposed. Nanotechnological inputs into areas of chitosan
recovery and furtherance of biological activity (especially antioxidant activity) of chitosan
have been highlighted as a necessary improvement.

2. Chitin–Chitosan Metamorphosis

The seafood processing industry produces large quantities of byproducts and discards
such as heads, tails, skins, scales, viscera, backbones, and shells of marine organisms.
Although these are waste residues, they still are an excellent source of lipids, proteins,
pigments, and small molecules, and moreso a source of chitinous materials. One of the limi-
tations in the use of chitin on a large-scale is its water insolubility, this is why water-soluble
derivatives have been sought after. Chitosan is the most important of these. Chitosan
is obtained from chitin by a process called deacetylation, whereby acetyl groups (CH3-
CO) are removed resulting in a molecule that is soluble in most diluted acids [27]. The
deacetylation process releases amine groups (-NH2) rendering chitosan a cationic nature.
Chitosan, a linear polysaccharide is made up of β-(1–4)-linked d-glucosamine and N-
acetyl-d-glucosamine moieties [28–34]. Chitosan is derived from chitin by chemical or
enzymatic deacetylations. Although chemical deacetylation is preferentially cheaper and
warrants mass production, the major disadvantage is the energy consumption and high
environmental pollution risks. Alternatives in the form of enzymatic methods that utilize
chitin deacetylases have been explored via enzymatic deacetylation of chitin. Research
has identified that selected fungal, viral, and bacterial chitin deacetylases could produce
partially acetylated chitosan tetramers with a defined degree of acetylation and a pattern of
acetylation [35]. With the recent progress in extraction methodologies and instrumentation
sophistication, chitosan extraction from marine crustaceans has also been achieved out-
side of chemical extraction through autoclave-based methods [36–42], microwave-based
methods [39,43–46], ultrasonication-based methods [47–49], and Graviola extract combined
with magnetic stirring on hot plate [50] (Table 1). Table 1 tabulates the published chitosan
recovery methods specifically from crustacean wastes, the techniques employed and the
recovery variables have been reported. To date, the available recovery options include
chemical-, autoclave-, ultrasonication-based methods, and a phytoextract-based method-
ology using graviola leaf extracts. The predominant recovery method demonstrated is
chemical recovery and the least reported is phytoextract-mediated green recovery. This
review urges the need to focus research in the area of green extraction.
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Table 1. Chitosan recovery methods currently in use and the varying conditions employed for deacetylation.

Source Method Type of Conditions Deacetylation
Degree (%) References

Squid pens (Loligo formosana) Chemical Chitin was treated with 60% NaOH, 1/10 (w/v) for 60 min at 100 ◦C. 90% Methacanon et al. [51]

Squid pens (Loligo lessoniana and Loligo formosana) Chemical Chitin was treated with 50% NaOH, 1/15 (w/v) for 8 h at 100 ◦C. 92–93% Chandumpai et al. [52]

Lobster
Chemical Chitin was treated with 45% NaOH, at 130 ◦C for 30 min. 86%

Fernandez Cerveraa et al. [53]
Chemical Chitin was treated with 49% NaOH, at 130 ◦C for 30 min. 89%

Dublin Bay prawn shell waste (Nephrops norvegicus) Chemical
Chitin (10 g) was added to reaction flasks, 100 cm3 of 500 g kg−1

NaOH solution was added to each flask, heated for 2 h at 100 ◦C
under a nitrogen atmosphere.

81.92% Beaney et al. [54]

Shrimp biowaste (heads or shells) Chemical Chitin was added with 50% NaOH, 1:20 (w/v) at 50 ◦C for 48 h. 81–84% Rao and Stevens [55]

Shrimp shells (Metapenaeopsis dobsoni) Chemical Chitin was boiled with 40% NaOH until it got deacetylated to
chitosan. 81% Sini et al. [56]

Shrimp waste Chemical Chitin was added with 45% NaOH solution stirring for 90 min and
heating at 130 ◦C. 90% Weska et al. [57]

Crabs shells

Autoclave
Steeping in strong NaOH for 24 h before heating. Chitin was treated
with 40% NaOH solution autoclaved (at 2-atmosphere pressure) for
2.5–3.0 h.

95%

Abdou et al. [36]
Crayfish shells (Procambarus clarkia) 95%

Brown shrimp shells (Penaeus aztecus) 95%

Pink shrimp shells (Penaeus durarum) 92%

Grooved tiger prawn (Penaeus semisulcatus)
Jinga Shrimp (Metapenaeus affinis)
Blue Swimming Crab-Male (Portunus pelagicus)
Blue Swimming Crab-Female (Portunus pelagicus)
Scyllarid Lobster (Thenus orientalis)
Cuttlefish (Sepia spp.)

Chemical Chitin was treated with 45% NaOH, 1/15 (w/v) for 10 h at 110 ◦C. 88–94.4%

Sagheer et al. [43]
Microwave Chitin was added with 45% NaOH solution and irradiated by

microwave for 15 min at 600 W. 87.5–93.0%

Snow crab (Chionoecetes opilio) Chemical Chitin was treated with 40% NaOH solution at 105 ◦C for 120 min. 93.3% Yen et al. [58]

Shrimp shells
(Metapeneaus monoceros) Chemical Chitin was treated with 50% NaOH at 80 ◦C for 4 h. - Manni et al. [59]

Shrimp shells
Crab shells Chemical Chitin (10 g) was treated with 50% NaOH at 60 ◦C for 8 h. 79.80%

65.89% Zvezdova [60]

Shrimp shells (Metapenaeus stebbingi) Chemical Chitin was treated with 50% NaOH for 6 h at 120 ◦C. 92.19% Kucukgulmez et al. [61]
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Table 1. Cont.

Source Method Type of Conditions Deacetylation
Degree (%) References

Shrimp shells (Parapenaeus longirostris) Chemical Chitin was added in 50% NaOH solution, stirred for 3–5 h at 90–100
◦C. 80% Benhabiles et al. [62]

Crab shells (Podophthalmus vigil) Chemical Chitin was treated in 40% NaOH for 6 h at 110 ◦C constant stirring. - Prabu and Natarajan [63]

Cuttlefish (Sepia aculeata) Chemical Chitin was treated in 40% NaOH solution by heating under reflux
for 6 h at 110 ◦C. 49.9% Vino et al. [64]

Shrimp shells (Metapenaeus monoceros) Chemical Chitin was treated with 12.5 M NaOH, 1/10 (w/v) at 140 ◦C for 4 h. 78% Younesa et al. [65]

Prawn shells (Litopenaeus vannamei) Chemical Chitin was treated with 50% NaOH, 1/5 (w/v) for 2 h at 100 ◦C. 80% Mohammed et al. [66]

Fish scales (Labeo rohita) Chemical Chitin was added to 40% NaOH, 1/15 (w/v), and refluxed under
nitrogen atmosphere for 8 h at 100 ◦C. 78.2% Muslim et al. [67]

Shrimp waste Microwave Chitin was treated with 50% NaOH solution and irradiated by
microwave for 10 min at 1400 W. 95.19% Samar et al. [44]

Shrimp shells (Parapenaeus longirostris) Chemical Chitin was treated with 50% NaOH, 1/60 (w/v) for 5 h at 110 ◦C. 90% Dahmane et al. [68]

Crab shells (Carcinus mediterraneus)

Chemical Chitin was treated with 12.5 M NaOH, 1:10 (w/v) for 4 h at 140 ◦C.

83%
Hajji et al. [69]Cuttlefish bones (Sepia officinalis) 95%

Shrimp waste (Penaeus kerathurus) 88%

Shrimp shell waste Chemical Chitin was added to 70% NaOH, 1/14 (w/v), and kept room
temperature (RT) for 72 h. 74.82% Mohanasrinivasan et al. [70]

Squid chitin Chemical Chitin was treated with 60% NaOH, 1/10 (w/v) for 60 min at 100 ◦C. 97.3%

Nwe et al. [71]Crab chitin Chemical Chitin was treated with 40% NaOH, 1/30 (w/v) for 120 min at 105
◦C. 93.3%

Shrimp chitin Chemical Chitin was treated with 50% NaOH for 20 h at 65 ◦C. 87%

Shrimp shells (Metapenaeus monoceros) Chemical Chitin was treated with 12.5 M NaOH, 1:10 (w/v) for 4 h at 140 ◦C. 81% Younes et al. [72]

Shrimp shells Chemical Chitin was refluxed with 50% NaOH, 1/10 (w/v) at 90 ◦C for 4 h. 95.5% Abdel-Rahman et al. [73]

Crab shells (Carcinus mediterraneus)

Chemical Chitin was treated with 12.5 M NaOH, 1/10 (w/v) for 4 h at 140 ◦C

83%
Hajji et al. [74]Cuttlefish bones (Sepia officinalis) 95%

Shrimp waste (Penaeus kerathurus) 88%
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Table 1. Cont.

Source Method Type of Conditions Deacetylation
Degree (%) References

Fish scales (Labeo rohita) Chemical Steeping in strong NaOH for 24 h before heating. Chitin was treated
with 40–50% NaOH for 5–6 h at 100–160 ◦C. 61% Kumari et al. [75]

Shrimp shell waste Chemical Chitin was treated with 48% NaOH for 48 h at 25 ◦C. 70–85%. Ahing and Wid [76]

Shrimp waste Autoclave Chitin was added in 50% NaOH, 1/10 (w/v), and autoclaved for
20 min at 15 psi/121 ◦C. 70.9% Al-Hassan [37]

Spawning of veined rapa whelk (Rapana venosa) Chemical Ten grams of the sample was soaked in 4% NaOH, 1/15 (w/v) at 65
◦C for 2 h. - Apetroaei et al. [77]

Warty crab shells (Eriphia verrucosa) Chemical Chitin was treated with 45% NaOH, 1:20 (w/v) at 100 ◦C, for 15 min. -

Fish scales (Oreochromis niloticus) Chemical Chitin was added in 40% NaOH, 1/40 (w/v), stirred for 6 h (300
rpm) at 117 ◦C. 97.5% Boarin-Alcalde and

Graciano-Fonseca [78]

Blue crab shell wastes (Callinectes sapidus) Chemical Chitin was added in 50% NaOH, 1/10 (w/v), and heated for 4 h at
150 ◦C. 85% Demir et al. [79]

Crayfish shells Chemical Chitin was treated with 60% NaOH at 100 ◦C for 4 h. (Pure chitosan
was obtained) Duman and Kaya [80]

Shrimp shells (Parapenaeus longirostris)

Chemical
Chitin was
deacetylated with 15 M NaOH, 1/20 (w/v) at 110 ◦C under
vacuum and constant stirring for 5 h.

73.68%

Hafsa et al. [47]

Ultrasonic
Chitin was
suspended with 15 M NaOH, 1/20 (w/v), irradiated by ultrasonic (v
= 50 kHz) for 3 h.

83.55%

Squid pens (Loligo japonica) Chemical Chitin was treated with 40% NaOH at 95 ◦C for 6 h. 91.04% He et al. [81]

Cuttlebone (Sepia pharaonic) Chemical
Chitin was treated in hot concentrated NaOH (40–50%) solution to
yield chitosan, which was sulfated using chlorosulfonic acid and
stirred for 30 min to obtain sulfated chitosan.

81% Karthik et al. [82]

Shrimp shell (Crangon crangon)
Chemical Chitin was refluxed in NaOH (50% by weight) at 90 to 100 ◦C,

stirred for 6 h.
76%

Kumari et al. [83]
Fish scale (Labeorohita) 80%

Norway lobster (Nephrops norvegicus) Chemical Chitin was treated with 50% NaOH for 4 h at 120 ◦C. 71.59% Sayari et al. [84]
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Table 1. Cont.

Source Method Type of Conditions Deacetylation
Degree (%) References

Shrimp shell (Litopenaeus vannamei)
Autoclave Extracted with hot sulfuric acid at 95 ◦C overnight

and autoclaved for 20 min at 121 ◦C. 76%

Vilar Junior et al. [38]
Chemical Treated with 40–50% NaOH, 1/20 (w/v) at 100–120 ◦C for

60–720 min. 81.7%

Squid gladius (Sepioteuthis
lessoniana) Chemical Chitin was treated with 50% NaOH at 120 ◦C for 4 h. 71% Abdelmalek et al. [85]

Shrimp shells (Parapenaeus longirostris) Chemical Chitin was treated with 28.6% NaOH at 81.15 ◦C for 9.55 h. 98% Ben Seghir et al. [86]

Crab shells (Crangon crangon)

Chemical Chitin was treated with 40% KOH for 6 h at 90 ◦C.

70%

Kumari et al. [87]Fishery waste (Labeo rohita) 75%

Shrimp shells (Crangon crangon) 78%

Shrimp shells
Crab shells Chemical Chitin was treated with 65% NaOH for 72 at 30 ◦C. 88.48%

80.12% Premasudha et al. [88]

Shrimp shells (Litopenaeus vannamei) Chemical Chitin was added with 12.5 M NaOH, 1:15 (w/v) cooled, kept at
−83 ◦C for 24 h, and stirring (250 rpm) for 4 or 6 h at 115 ◦C. 91% de Queiroz Antonino et al. [89]

Squid pin (Doryteuthis singhalensis) Chemical Chitin was treated in 40% NaOH solution
by heating under reflux for 6 h at 110 ◦C. 83.76% Ramasamy et al. [90]

Shrimp waste (Penaeus merguiensis)

Autoclave Chitin was treated with 45% NaOH, 1/15 (w/v), and autoclaved
for 30 min at 15 psi/121 ◦C.

88% Sedaghat et al. [39]Microwave Chitin was treated with 50% NaOH and irradiated by microwave
for 10 min at 1400 W.

Chemical Chitin was treated with 50% NaOH at a 1/5 (w/v) ratio for 2 h at
100 ◦C.

Shrimp shell waste Autoclave One gram of chitin was added in 50% NaOH and autoclaved for
1 h at 121 ◦C, 15 psi. - Varun et al. [40]

Fish scales (Red Snapper) Chemical Chitin was treated with 80% NaOH, 1/3 (w/v) for 4 h at 110 ◦C. 90.83% Takarina and Fanani [91]

Fish scales (White Snapper) Chemical Chitin was treated with 80% NaOH for 4 h at 120 ◦C. 84.05% Takarina et al. [92]

Blue crab shells (Portunus segnis) Chemical Chitin was treated with 12.5 M NaOH, 1/10 (w/v) for 4 h at 140 ◦C. 90.39% Hamdi et al. [93]
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Table 1. Cont.

Source Method Type of Conditions Deacetylation
Degree (%) References

Squid pen (Illex argentines) Chemical
Chitin was dissolved in 5% acetic acid, filtered, and precipitated
with 8 N NaOH solution, washed with reverse osmosis (RO) water
until pH reached 7.0.

84% Huang et al. [94]

Prawn shells Chemical Chitin was refluxed in 50% NaOH solution for 30–150 min at 100 ◦C. 78.40% Muley et al. [95]

Crab shells (Portunus sanguinolentus) Chemical Chitin was treated with 80% NaOH, 1:20 (w/v) at 90–95 ◦C for 5h. 70.79% Rubini et al. [96]

Shrimp shells (Penaeus monodon) Chemical
One gram of chitin in 50 mL of 50% NaOH, stirred for 50 min at
90 ◦C, filtered, and treated with 80% alcohol in 1/30 (w/v) ratio for
24 h at 80 ◦C.

65% Srinivasan et al. [97]

Shrimp waste Chemical Chitosan-1: 40% NaOH 1/20 (w/v) at 120 ◦C for 300 min.
Chitosan-2: 50% NaOH 1/20 (w/v) at 100 ◦C for 720 min.

78.2%
84.95% Tokatli and Demirdöven [98]

Lobster shells (Thenus unimaculatus) Chemical Chitin was added with 40% NaOH, stirred for 6 h at 110 ◦C, filtered,
treated with 10% acetic acid for 12 h. - Arasukumar et al. [99]

Shrimp shells waste Chemical Chitin was treated with 50% NaOH under agitation for 4 h at 90 ◦C. 88% Boudouaia et al. [100]

Shrimp shells (Parapenaeus longirostris) Microwave Chitin was treated with 40% NaOH, 1:20 (w/v), heated by
microwave at 650 W for 12 min. 82.8% EL Knidri et al. [45]

Blue crab shell (Callinectes sapidus) Chemical Chitin was treated with 50% NaOH, 1/10 (w/v) at 150 ◦C for 4 h. 71% Metin et al. [101]

Shrimp shell

Chemical
Chitin was treated with 50% NaOH at 60 ◦C, dry residue was added
into 2% (w/w) acetic acid, 30% H2O2
was added and kept for 4 h.

64.18%

Ni’mah et al. [102]
Mussel shell 35.03%

Squid pen 58.04%

Crab shell 53.91%

Crab shell waste Chemical Chitin was treated with 50% NaOH, 1/10 (w/v) for 100 min at 100
◦C. 82% Păduret,u et al. [103]

Shrimp waste Chemical Chitin was added with 50% NaOH, 1/15 (w/v), stirred for 2 h (1 h at
RT and 1 h at 100 ◦C). 84% Păduret,u et al. [104]

Squid pens (Loligo formosana) Chemical Chitin was treated with 50% NaOH, 1:50 (w/v) for 8 h at 130 °C. 90% Singh et al. [105]
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Table 1. Cont.

Source Method Type of Conditions Deacetylation
Degree (%) References

Shrimp waste (Litopenaeus vannamei) Microwave 1 Chitin (16, 32, 60 mesh sizes) was treated 45% NaOH, 1/15 (w/v)
irradiated in 6 pulses of 5 min at 600 W. 81, 72, 78%

Santos et al. [46]

Microwave 2 Between each interval, they were stirred for homogenization. 81, 92, 89%

Shrimp shells Chemical Chitins were mixed with 40% NaOH, 1:10 (w/v), stirred overnight,
and the mixture was heated for 12 h at 100 ◦C. 93% Tolesa et al. [106]

Fish waste (Sardina pilchardus) Autoclave Chitin was added with 40% NaOH and autoclaved for 20 min at
15 psi/121 ◦C. 87% Aboudamia et al. [41]

Shrimp shell waste Chemical Chitin was added with 50% NaOH, stirred for 1 h at 30 °C. 88.89% Aldila et al. [107]

Shrimp residues (Farfantepenaeus aztecus) Ultrasound
Two grams of shrimp residues powder in 50 mL of
CaCl2–MeOH–H2O, stirred for 20 min at 60 ◦C, ultrasound at
40 kHz 30 min at 60 ◦C, rest for 48 h at RT.

65.87% Borja-Urzola et al. [48]

Crab shell (Portunus trituberculatus) Ultrasonication Chitin was treated with 50% NaOH, 1:15 (w/v), at 75 °C for 3.5 h
with sonication. 86.02% Huang et al. [49]

Omani shrimp waste Autoclave Chitin was treated with 50% NaOH, 1:10 (w/v), autoclaved for
15 min at 121 ◦C. - Said Al Hoqani et al. [42]

Shrimp shells (Litopenaeus vannamei) Chemical Chitin samples (0–9) were treated with 12.5 M NaOH, 1:5 (w/v) at
65 ◦C for 12 h. 56.10–88.76% Trung et al. [108]

Shrimp shell and Crab Shells

Graviola
extract with
magnetic
stirring

Shells interacted with graviola leaf extract with magnetic stirring. 50.97–94.56% Gopal et al. [50]
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Chitin and chitosan exhibit several biological properties such as anti-cancer [109],
antioxidant [110], antimicrobial [111], and anti-coagulant [112] properties. In addition, they
are used as biomaterials in a wide range of applications: for biomedical purposes such as
for artificial skin, bones, and cartilage regeneration [113,114], for food preservation such
as for edible films [115], and for pharmaceutical purposes such as for drug delivery [116].
Chitin is a versatile, environmentally friendly, modern material [117]. Chitin and chitin
derivatives have been used in virtually every significant segment of the economy (e.g.,
water treatment, pulp and paper industry, biomedical devices and therapies, cosmetics,
biotechnology, agriculture, food science, and membrane technology) [118]. Chitin and chi-
tosan are important bioactive materials, with many highly potent activities such as immune
function, hemostasis and wound healing, antioxidant action, antimicrobial activity, and
heavy metal and other pollutant removal [119]. Therefore, as renewable resources, chitin
and its derivatives have a wide range of applications in food and nutrition [120], pharma-
ceutical [121], biotechnological [122], cosmetic [123], packaging [124], textile, wastewater
treatment [125], and agricultural [126] industries.

3. Snap Shot of the Bioactive Properties of Chitosan

Chitosan has three reactive groups, the primary amine group and the primary and
secondary hydroxyl groups at C-2, C-3, and C-6 positions, respectively [127]. Among
the three groups, the primary amine at the C-2 position is reported to be responsible
for the bioactivity of chitosan [128]. The chemical modification of chitosan adds unique
functional properties for use towards biological and biomedical applications [129–161].
The biodegradability, biocompatibility, mucoadhesion, hemostatic, analgesic, adsorption
enhancer, antimicrobial, anticholesterolemic, and antioxidant attributes of chitosan are
those which make it suitable for biomedical applications.

Chitosan has been well established as an alternative to antibiotics, undertaking an-
timicrobial and antifungal roles. Because of its cationic properties, chitosan is able to lead
to membrane-disrupting effects [162–165], which are higher against Gram-positives than
Gram-negatives [165]. The antibacterial activity of chitosan is influenced by the molec-
ular weight of chitosan and allied physicochemical properties. A number of chitosan
derivatives with different modifications have shown improved antibacterial activity; in this
way, chitosan micro/nanoparticles display unique physical and chemical features [166].
The chitosan nanoparticles penetrate inside the cell, interacting with phosphorus- and
sulfur-containing compounds such as DNA and protein, eventually causing damage to
the cells [163,164]. Successful experiments were performed using chitosan and reticulated
chitosan microparticles against aquaculture related trouble-makers: Lactococcus garvieae
(Gram +), Vibrio parahaemolyticus, and Vibrio alginolyticus (Gram −). These microorganisms
are the most predominant bacterial pathogens of mariculture industry and are responsible
for crucial economic losses in cultured fish and seafood worldwide [167]. The antimicrobial
activity of chitin, chitosan, and their derivatives against different groups of microorgan-
isms, such as bacteria, yeast, and fungi, has received considerable attention in recent
years [120,168,169].

Traditional chemotherapeutic agents kill actively dividing cells, characteristic of most
cancer cells. Cytotoxic drugs continue to play a crucial role in cancer therapy, although
side effects such as the destruction of lymphoid and bone marrow cells is inevitable. In
this direction, constant efforts to improve cancer therapy-based side effects are sought
after. This is why biocompatible anticancer drugs are needed for cancer therapy. The
introduction of several groups into chitosan modifies its structure significantly, thereby
increasing the biological activity of chitosan. The introduction of sulfates and phenyl groups
in carboxymethyl benzylamide dextrans into chitosan, lead to enhanced anticancer activity
in breast cancer cells. Sulfated chitosan (SCS) and sulfated benzaldehyde chitosan (SBCS)
significantly inhibited cell proliferation, induced apoptosis, and blocked the fibroblast
growth factors (FGF)-2-induced phosphorylation of extracellular signal-regulated kinase
(ERK) in Middle cranial fossa (MCF)-7 cells [170]. Dialkylaminoalkylation and reductive
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amination followed by quaternization of chitosan could elicit inhibitory effects on the
proliferation of tumor cell lines [171].

Anti-inflammatory refers to the property of reducing inflammation. Theophylline is a
drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at
an appropriate dosage without causing adverse side effects. The adsorption of theophylline
to chitosan nanoparticles modified by the addition of thiol groups has been reported to
enhance theophylline absorption by the bronchial epithelium and thereby enhance its anti-
inflammatory effects [172]. The beneficial contributions of chitosan and its oligosaccharides
include anti-tumor [173], neuroprotective [174], antifungal and antibacterial [175,176],
and anti-inflammatory [177] effects. Tissue engineering is applying a combination of
cells, engineering and materials methods, and suitable biochemical and physiochemical
factors to improve or replace biological functions. Natural and synthetic materials have
been used. Chitosan derivatives have been reported for the preparation of several tissue
engineering organs, such as skin, bone, liver, nerve, and blood vessels. The chemical
modification of chitosan has a profound impact with respect to delivery of different kinds
of drugs to a specific place [178]. Chitosan nanoparticles have led to a significant increase in
loading capacity and efficacy. The phenolic and polyphenolic compounds with antioxidant
effects have been condensed with chitosan to form mutual prodrugs [179,180]. Chitin and
chitosan derivatives are ideal candidates as drug carriers in cancer chemotherapy [181].
Apart from these, chitosan has been used in the pharmaceutical industry in drug delivery
systems, such as tablets, microspheres, micelles, vaccines, nucleic acids (NAs), hydrogels,
and nanoparticles. Chitosan has also been used for pharmaceutical applications, wound
healing, and tissue regeneration [182,183]. In tableting, chitosan has been reported as an
excipient to delay the release of the active ingredient from the tablets. Chitosan with high
molecular weight is more viscous and is used for sustained release of drugs, in order
to prolong drug activity, improve therapeutic efficiency, and reduce side effects in oral
tablets [183]. Chitosan has also been reported for its use as coating material in drug delivery
applications because of its good film-forming and mucoadhesive properties, leading to
controlled release of drugs.

4. Antioxidant Activity of Chitosan

Being extracted from crustacean’s exoskeleton and fungi cell walls, chitosan products
are biocompatible and biodegradable, and their range of applications include food, wastew-
ater treatment, cell culture, cosmetics, textiles, agrochemicals, and medical devices [30].
Additionally, chitosan also exhibits antioxidant activity [184,185] and can be used as a
replacement for synthetic antioxidants such as butylated hydroxytoluene (BHT), butylated
hydroxy-anisole (BHA), propyl gallate, and tert-butylhydroquinone (TBHQ) [186]. Reactive
oxygen species (ROS) such as H2O2, hydroxyl radicals, and superoxides lead to oxidative
stress which is the key behind a wide range of pathologies: cancer [187], cardiovascular dis-
ease [188,189], premature aging [190], rheumatoid arthritis, and inflammation [191]. Chitin,
similar to vitamin C, exhibits antioxidant effects [192] and can be used as an ingredient
for the production of functional foods in order to circumvent age-related and diet-related
diseases [193]. Due to oxidation of lipids in food, off-flavors and rancidity manifests, this
is why BHT and BHA (synthetic antioxidants) are used. BHT and BHA are well known
for their potential health hazards [194], and hence safe and natural alternatives are being
sought [195]. The addition of 1% chitosan resulted in 70% decrease in the 2-thiobarbituric
acid reactive substance (TBARS) values of frozen meat. Chitosan addition is reported to
have lead to chelation of the free iron in heme proteins of meat that are released during
processing [196]. In seafoods, oxidation of high concentrations of prooxidants such as
hemoglobin and metal ions in fish muscles is also reported [197]. Antioxidant effect of
chitosan is reported [198] to be directly proportional to its molecular weight, concentration,
and viscosity. Chitosans from crab shell wastes were tested on herring flesh and chitosan
with different viscosity were also tested on fish samples. The highest activity was observed
with low viscosity chitosan (14 cP) and its action was similar to that of BHA, BHT, and
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TBHQ. Chitosans are speculated to slowdown lipid oxidation by chelating ferrous ions in
fish. This eliminates the prooxidant activity of ferrous ions by preventing their conversion
to ferric ion [197]. Kim and Thomas [199] have also reported identical inferences in Atlantic
salmon (Salmo salar).

Free radical reaction is connected with several specific human diseases and has gained
paramount attention. In the human body, reactive oxygen species (ROS) produced during
metabolic process oxidize lipids, proteins, carbohydrates and nucleic material, resulting
in oxidative stress [192]. The ROS generated, may activate enzymes that eventually man-
ifest as life-threatening disorders such as cancer, aging, cardiovascular diseases wrinkle
formation, rheumatoid arthritis, inflammation, hypertension, dyslipidemia, atherosclerosis,
myocardial infraction, angina pectoris, heart failure, and neurodegenerative diseases such
as Alzheimer’s, Parkinson’s, and amyotrophic lateral sclerosis [200–204]. The term ROS
refers to oxygen-derived free radicals like superoxide, hydroxyl radical, and nitric oxide,
and is extended to nonradical oxygen derivatives of high reactivity like singlet oxygen,
hydrogen peroxide, peroxynitrite, and hypochlorite [205,206]. Mitochondria in biological
cells are responsible for ROS generation [207]. The cellular defense includes enzymes
such as catalase, superoxide dismutase, and glutathione peroxidase [200]. When excessive
ROS are generated, the defense mechanism is unable to respond appropriately and thus
oxidative stress manifests. The antioxidant activity of chitosan has gained paramount
importance, with chitosan exhibiting confirmed scavenging activity against various rad-
ical species. The degree of deactylation (DDA) and molecular weight (MW) of chitosan
determine the scavenging capacity of chitosan [208] and the chitosan NH2 groups are
responsible for free radical scavenging effect. Mahdy Samar et al. confirmed that a high
rate of DDA and low MW of chitosan exhibits higher antioxidant activity [44]. Hajji et al.
studied chitosan obtained from Tunisian marine shrimp (Penaeus kerathurus) waste (DDA:
88%), crab (Carcinus mediterraneus) shells (DDA: 83%), and cuttlefish (Sepia officinalis) bones
(DDA: 95%) [74] and tested their antioxidant activities. Cuttlefish with 95% DDA exhibited
the highest antioxidant activity. Sun et al. [209], reported that chitosan oligomers exhibited
stronger scavenging activity with lower MW. Chang et al. [210] demonstrated that lower
MW chitosan (~2.2 kDa) greatly impacts the scavenging ability. Although the antioxidant
activity of chitosan has been proven, yet it is limited by the lack of an H-atom donor, to
serve as a good chain-breaking antioxidant [211]. The scavenging capacity of free radicals
is related to the bond dissociation energy of O–H or N–H and the stability of the formed
radicals. Due to the presence of strong intramolecular and intermolecular hydrogen bonds
in chitosan molecules, the OH and NH2 groups find it difficult to dissociate and react
with hydroxyl radicals [212]. This is why various modifications of chitosan molecules
by grafting functional groups into the molecular structure have evolved. Modification of
chitosan by grafting polyphenols, has been observed to enhance the antioxidant activity.
This has resulted owing to the synergetic effects obtained from both chitosan and polyphe-
nols [213]. Chito-oligosaccharides (COS) are known to be highly promising compounds for
use as natural antioxidants in biological systems [62,214]. Li et al. 2018 [215] have recently
investigated the preparation and potential free radical scavenging activity of chitosan
derivatives with 1,2,3-triazoles and 1,2,3-triazoliums. Their results indicated that all the
chitosan derivatives exhibited higher radical scavenging activity than chitosan and the
scavenging ability was further enhanced following the N-methylation of 1,2,3-triazole moi-
eties. Other researchers [216,217] have also reported the antioxidant activity of quaternary
ammonium groups in chitosan derivatives.

Antioxidant agents like chitosan play a role in scavenging the free radicals and by
inhibiting the oxidative damage caused by free radicals (Figure 2). Antioxidant mechanism
of chitosan functions by protecting the host against oxidative stress induced damages
via interfering with the oxidation chain reaction. The exact mechanism of free radical
scavenging activity of chitosan has still not been established. However, Riaz et al., 2019 [218]
put forth a plausible theory that the unsteady free radicals may react with the OH group
and the amino group at C-2, C-3, and C-6 positions of the pyranose ring to produce a



Antioxidants 2021, 10, 228 14 of 27

stable macromolecule. This review calls to attention that this (elucidating the mechanism
of antioxidant activity of chitosan) is one of the gray areas worth working on with respect
to the antioxidant activity of chitosan.
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Figure 2. Schematic diagram showing the mode of action of antioxidant activity of chitosan via
interruption of free radical chain reaction.

5. The State-of-the-Art Chitosan Trends

With the outputs of nanotechnology having benefitted almost every area of life, inputs
from the nano realm in chitosan are no exception. Nanofabrication comprises of top-down
approaches and bottom-up approaches that bring about fabrication of nanostructures
from native superstructures through successive disintegration or build-up [219]. Chitosan
nanofibers and nanowhiskers have been fabricated using methods of disassembly [220,221].
Wet grinding of chitosan flakes, with subsequent high pressure homogenization resulted
in 100 to 1000 nm-sized (diameter) chitin nanofibers. Wijesena et al. [222] prepared chitin
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nanofibrils (diameter of 5 nm) from crab shells applying ultrasonication for mechanical
disassembly. Grinding has also been adopted for fabrication of chitin nanofibrils from
microfibrils [223]. Chitin nanowhiskers and nanofibers have been prepared using radical
assisted oxidation of chitin with 2,2,6,6-tetramethyl piperidine-1-oxyl followed by ultra-
sonication [224]. Tanaka et al. [225] reported nanofibrillation of chitin powder under nitro-
gen gas using ultrasonication. Chitin nanofibers have been reported by top-down approach
or by electrospinning [226]. Most of these approaches involve highly acidic or basic solu-
tions, this is why alternative environment-friendly approaches to produce chitin/chitosan
nanofibers were sought after. A self-assembly mechanism is one such alternative approach.
However, chitosan nanoparticles being insoluble do not self-assemble [227]. Therefore,
amphiphilic chitosan derivatives have been constructed for self-assembly [227].

Curcumin-encapsulated chitosan nanoparticles have been reported using the soni-
cation method. The results revealed an improved solubility of curcumin with sustained-
release pattern [228]. Chitin nanofibers have been extracted from crab shells [229], from
prawn shells [230] including shells of Penaeus monodon (black tiger prawn), Marsupe-
naeus japonicus (Japanese tiger prawn), and Pandaluseous makarov (Alaskan pink shrimp).
Their shells were treated using NaOH and HCl solutions to remove proteins and minerals
to yield chitin nanofibers with 10–20 nm uniform width and high aspect ratios. Chitin
nanofibers have been reported for use as a drug for inflammatory bowel disease. More-
over, chitosan is also employed as a cell culture media due to its biocompatibility and
ability to accelerate growth. In many of these studies, chitosan, polylactic acid (PLA) and
polyglycolic acid (PGA) are mixed to form films, porous structures, or beads [231].

Several composites have been prepared, such as chitosan with alginate [139], colla-
gen [232], calcium phosphate [233], hydroxyapatite [234], and polysulfone [235]. Chitosan
composite materials have been employed in bone tissue engineering. Bone is mostly
composed of collagen and hydroxyapatite; researchers have attempted substituting the
function of collagen by chitosan [34,236,237]. Various derivatives of chitosan have also been
reported, carboxymethyl-chitosan is an amphoteric polymer and the solubility depends on
pH. Hydroxypropyl chitosan was prepared from chitosan and propylene epoxide under
alkaline conditions. Other chemical modification of chitosan includes esterification of
chitosan and N, O-acylation of chitosan using acetyl chloride in MeSO3H as solvent [238].
It has been confirmed that acetylation of chitosan substantially improves its antifungal ac-
tivity [239]. There are few methods to obtain phosphorylated derivatives of chitosan. These
chitosan derivatives are necessary owing to their unique biological and chemical properties.
They could exhibit bactericidal and osteoinductive properties. Phosphorylated chitosan can
be prepared by heating chitosan with orthophosphoric acid in N, N-dimethylformamide
(DMF). Chitosan nanoparticles have been prepared and put to use for catalytic functions
too [240,241].

Chitosans with degrees of polymerization (DPs) <20 and an average molecular weight
less than 3900 Da are called chitooligosaccharides (COS) [242]. This is one of the most trend-
ing chitosan derivate types. COS are generated by depolymerization of chitin or chitosan
using acid hydrolysis, hydrolysis by physical methods, and enzymatic degradation [243].
Recently, COS has gained paramount attention owing to its pharmaceutical and medicinal
applications, due to their nontoxicity and high solubility and positive physiological effects.
The health benefits of COS include lowering blood cholesterol, lowering high blood pres-
sure, protective effects against infections, controlling arthritis, improvement of calcium
uptake, and enhancing antitumor properties.

6. Future Perspective and Conclusions

Disposal in the future will have to cope with more stringent ecological standards,
making recovery of valuable byproducts from wastes mandatory. Integral utilization
of renewable resources is certainly a goal worth pursuing and can be envisaged as new
reclamation technologies are developed. This certainly applies to shellfish processing waste
and byproducts. Shellfish waste represents a substantial portion of the raw material. These
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materials, mainly shells, viscera, heads, and adhered meat, are partly used today to produce
fishmeal for animal consumption, the rest being wasted even though it is environmentally
offensive. The relative amount of these materials varies with the species and the technology
of processing. There is considerable potential for conversion of this waste into value-added
products to resolve some of the issues associated with environment pollution and cost
of disposal. Chitosan has been extensively expanding and especially the very aspect of
recovery of this valuable resource from marine shell waste is by itself a very attractive
topic. Given the fact that such a worthwhile recovery on the other hand is also helping
through productive use of crustacean wastes, ridding the environment of a bio-pollutant,
still the extraction process itself has not been improved much. Only traditional extraction
processes, with very minimal use of sophistication in terms of advanced instrumentation
have been employed. Green extraction strategies have been minimally attempted and
published; more green extraction methods and large scale extraction methods need to be
addressed. This is a huge lacuna we observed as this research was reviewed. Muthu et al.
have already reported extraction of chitosan from sea waste uisng graviola leaf extracts.
This is only the beginning, there are numerous such green aspects that can be probed.
This review is expected to draw some response from researchers in this area of research
in this specific direction. With chitosan holding huge potentials in industrial, medical,
and agricultural applications, there is still need for more chitosan and large-scale recovery
units and factories with more advanced technologies. How much crustacean waste are we
currently using to extract chitosan? How much more can we utilize this marine waste? Is
there a chance that we can perhaps use all of it? Are all questions worth giving a thought
or a shot?

Chitosan composite materials with integrated properties are much less reported; this is
a crucial area demanding progress. Chitosan derivatives have also not been exploited fully,
each derivative has a few reports attached and each derivative has not been extensively
assessed of its wholesome properties. COS, which apparently appears to hold a lot of
potential, needs to be put forward to various medical applications. Moreover, extraction of
COS from crustacean wastes, involving advanced techniques, should be seriously looked
into.

Chitosan-based drugs that are employed to treat various cancers are still at the labora-
tory stages of testing. No clinical trials are reported and most of the medical applications
are far from even beginning the journey from benchtop to bedside. This gray area needs to
be worked on. There is no doubt that the recovery of chitosan and its derivatives from ma-
rine shell wastes is a valuable asset, what remains is how best we can advance the recovery
methods and how best we can use the recovered chitosan. Since chitosan has huge potential
and given the fact that it can be harnessed from a wasting away resource, everything that it
takes to bring chitosan to the forefront needs to be attempted and achieved.

Nanotechnology is a field that has made much room for progress in various areas of
research and development. There has been very limited exploitation of this cutting-edge
technology in chitosan recovery, in chitosan composites, and in chitosan applications; this
is something this review would like to project. Nanotechnology has pushed the limits
of various gray areas in various fundamental research, more inclusion of this technology
into chitosan research is crucial for progress. When composites have been done with bulk
materials such as alginates, collagen, and hydroxyapatites, there is certainly “room for
more” making these composites with nano-alginates, nano versions of collagens, and the
like. Table 2 presents the nano-chitosan/nano-chitosan composites versions that have been
synthesized so far and their deliverables achieved. With such medical applications of
nano-chitosan already established [244–266], it is strange that these chitosan nanomaterials
have not been assessed for their antioxidant properties. The antioxidant potential of
chitosan is far from being harnessed, there has been nothing much reported in the direction
of enhancement of the antioxidant potential of chitosan through nanocomposites and a
fundamental understanding of antioxidant activity of chitosan (mechanism) is greatly
lacking. Moreover, the antioxidant activity of chitosan derivatives has been clearly shown
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to be higher than that of chitosan, yet other than the existing handful reports there has
been low enthusiasm on extending the antioxidant applications to chitosan derivatives.

Table 2. Various nano-chitosan morphologies and their medical applications.

Nano-chitosan Morphology Preparation Method Applications References

Nanogels
Covalent cross-linking, ion

crosslinking,
covalent modification

Photothermal
therapy–chemotheraphy, controlled

drug delivery, deep
tumor penetration

[245–248]

Micelles Covalent modification/self
assembly, ion crosslinking

Drug delivery, photodynamic
theraphy, ocular delivery [249–253]

Nanofibers Electrospinning process Improve osteogenic activity [254]

Liposomes Covalent modification/self
assembly, electrostatic adsorption

Anticancer drug delivery,
antimalarial drug delivery, reverse

drug resistance, photothermal,
and chemotheraphy

[255–259]

Nanosphere
Covalent modification/self

assembly, electrostatic adsorption,
emulsification

siRNA delivery, drug delivery,
drug release [260–262]

Nanoparticles Covalent modification/self
assembly, ion crosslinking

Oral delivery, siRNA delivery,
targeted therapy [263–266]

This review briefly summarized the existing recovery, bioactive, and antioxidant
properties and applications of chitosan. The antioxidant property of chitosan has been
vaguely and randomly studied and represented by not many authoritative reports, this area
needs to be explored more. The most important emphasis here is that since crustacean waste
can be turned into a multifaceted beneficial resource; more cutting-edge technologies need
to be applied to and improved in chitosan research. This appears to have not been done as
we look through what has been achieved, hence we encourage progressive upgradations
involving nano aspects and nano-integrated composite approaches as future initiatives.
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