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Abstract

Background

Measles cases continue to occur despite its elimination status in the United States. To con-

trol transmission, public health officials confirm the measles diagnosis, identify close con-

tacts of infectious cases, deliver public health interventions (i.e., post-exposure prophylaxis)

among those who are eligible, and follow-up with the close contacts to determine overall

health outcomes. A stochastic network simulation of measles contact tracing was conducted

using existing agent-based modeling software and a synthetic population with high levels of

immunity in order to estimate the impact of different interventions in controlling measles

transmission.

Methods and Findings

The synthetic population was created to simulate California‘s population in terms of popula-

tion demographics, household, workplace, school, and neighborhood characteristics using

California Department of Finance 2010 census data. Parameters for the model were

obtained from a review of the literature, California measles case surveillance data, and

expert opinion. Eight different scenarios defined by the use of three different public health

interventions were evaluated: (a) post-exposure measles, mumps, and rubella (MMR) vac-

cine, (b) post-exposure immune globulin (IG), and (c) voluntary isolation and home quaran-

tine in the presence or absence of public health response delays. Voluntary isolation and

home quarantine coupled with one or two other interventions had the greatest reduction in

the number of secondary cases infected by the index case and the probability of escape sit-

uations (i.e., the outbreak continues after 90 days).
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Conclusions

Interrupting contact patterns via voluntary isolation and home quarantine are particularly

important in reducing the number of secondary cases infected by the index case and the

probability of uncontrolled outbreaks.

Introduction

Despite the elimination of endemic measles transmission in the United States [1–3], measles

cases continue to occur from time to time, mostly due to importation. In 2014–2015, there was

a large measles outbreak that was linked to one or more Disney theme parks [4, 5]. The out-

break consisted of 131 cases involving 14 local health jurisdictions in California as well as

other U.S. states and countries.

Each identified case requires extensive follow-up to confirm the infection and identify oth-

ers who may have been exposed while the case was infectious. Contact tracing, a method of

eliciting close contacts of cases, is used to identify individuals who may have been exposed to

the case and need appropriate medical follow-up. For measles, post-exposure prophylaxis

(PEP) can reduce an exposed person’s likelihood of infection if taken within the appropriate

time from exposure. For example, measles, mumps, and rubella (MMR) vaccine should be

administered within 72 hours from the time of exposure in order to be effective as PEP, while

immune globulin (IG) should be administered within six days of exposure [6]. In addition,

public health authorities can also advise persons who have been exposed or symptomatic indi-

viduals to stay at home (voluntary quarantine and isolation) [7]. However, public health

authorities cannot always administer PEP to a person who is eligible for PEP within the appro-

priate time frame.

Contact tracing has been used in the control of many infectious diseases, including tuber-

culosis [8], smallpox [9], sexually-transmitted diseases [10–12], and severe acute respiratory

syndrome [13–16]. Mathematical epidemiology studies have expanded on the empirical

work to show that contact tracing effectiveness depends on the pathogen and setting, the frac-

tion of secondary cases caused by the index case that is identified through contact tracing [17],

the basic reproduction number for the pathogen, the fraction of transmission occurring

asymptomatically, and the network structure [18, 19]. However, contact tracing requires a

considerable investment of time and public health resources, even when a small number of

contacts are identified [20]. In 2004, the Iowa Department of Public Health spent 2,525 per-

sonnel hours and spent $142,452 in direct costs to contain one case of measles [21]. Given the

amount of resources required for contact tracing, there is a need to estimate the contributions

of contact tracing and public health interventions to the control and prevention of measles

transmission.

Using an agent-based model with eight different scenarios defined by three public health

interventions (MMR PEP, IG PEP, and voluntary isolation and quarantine), we estimated the

effects of contact tracing and public health interventions on the number of persons infected by

an index case and the probability of uncontrolled outbreaks. The use of an agent-based model

enabled us to model complex processes involving infectious disease transmission and a public

health response in a synthetic population of individuals in order to compare potential out-

comes among different scenarios. As a sensitivity analysis, we examined the effects of two mea-

sles vaccination coverage levels among individuals 1 to 18 years of age: (1) 95% to 100% and

(2) 85% to 95%.
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Methods

Overview

We used an agent-based model to simulate measles outbreaks while incorporating key features

of measles epidemiology. First, we assumed that imported measles cases occurred in a popula-

tion with high population immunity. Second, we used established estimates for the incubation

period and duration of infectivity, and assumed a high transmissibility. Third, we modeled a

public health response to identified cases that involved case and contact investigations with

reasonable delays. Fourth, we modeled the use of public health interventions (MMR PEP, IG

PEP, and voluntary isolation and quarantine) [22]. Using a synthetic population that con-

tained family structure, household size, age distribution, schools, workplaces, neighborhoods,

and population immunity, measles outbreaks were simulated with one infected case intro-

duced into a synthetic population each time. The agent-based model was implemented using

the Framework for Reconstructing Epidemiological Dynamics, an open-source agent-based

modeling system ([23] and http://fred.publichealth.pitt.edu). We describe the details of each of

the features and their assumptions in the sections below.

Synthetic population

The synthetic population mimicked a medium-sized county population living in California

based on California Department of Finance 2010 census data (http://www.dof.ca.gov). The

county was chosen such that the distribution of demographic characteristics (percent female,

percent under five years old, percent under 18 years old, and percent 65 years and older) were

within 10% of the state’s demographic distribution. Each individual in the synthetic population

had demographic information (e.g., age and gender) and locations of social activity (i.e.,

household, school, daycare, neighborhood, and workplace). The household is an important

setting to include because the household is a major site for transmission of respiratory patho-

gens [24]. Infectious disease transmission is known to occur at higher rates in schools because

of the close and sustained contact between students [25–27]. In addition, we allowed for the

possibility that transmission could occur in daycare settings by adding daycares to the synthetic

population based on data from the California Department of Social Services’ Community Care

License Division (http://www.ccld.ca.gov) [22]. During each simulated day, individuals inter-

acted with other individuals who shared the same locations of social activity. The details of

our model for individual interactions among the different locations of social activity has been

described previously [22]. Further details about the synthetic population can be found online

(http://www.epimodels.org/10_Midas_Docs/SynthPop/2010_synth_pop_ver1_quickstart.pdf).

Population Immunity of the Synthetic Population

Children less than one year of age were assumed to have a 67% level of protection due to

maternal antibodies [28]. We conducted two sets of simulations in which vaccine coverage

ranged from 95% to 100% and 85% to 95% among individuals ages 1 year to 18 years of age;

age-specific immunity levels were estimated based on measles vaccine coverage and vaccine

efficacy. The average transmission chain size can increase even with small decreases in the

overall level of population immunity [29]. To model clusters of susceptible children in a highly

vaccinated population, the clustering of the vaccination status of individuals 1 to 18 years of

age within households only was allowed to vary from 0 (random vaccination assignment) to 1

(completely positive assortative vaccine status); the details of clustering measurement were

described previously [22]. Values of clustering between 0 and 1 represent intermediate vacci-

nation configurations between the two extremes. The immunity levels for individuals greater
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than 18 years old were consistent with age-specific prevalence estimates of measles antibody in

the United States [30].

Modeling Measles Outbreaks

The age of the index case was sampled from the observed age distribution of measles cases in

California from 2000–2012. A susceptible individual of this age was chosen from the synthetic

population to represent the index case, the source of the imported measles virus into the syn-

thetic population. We modeled the natural history of measles using an SEIR framework [31]

where prodromal symptoms begin 8 to 14 days after exposure [32, 33]. The stochastic nature

of the model permits simulation of the probability of no transmission as well as variability in

the initial growth rate of the outbreak [34]. After the incubation period, infectious cases were

able to transmit measles to different contacts in household, daycare, school, workplace, and

neighborhood settings. We simulated transmission for 90 days after the introduction of mea-

sles into the synthetic population. Key parameters of our model are given in Table 1.

Modeling Case/Contact Investigations and Public Health Interventions

In our simulation, the health department was notified of index cases three to six days after the

onset of their symptoms. Then, health department staff followed up with identified cases via

case investigations. Contact tracing identified household, daycare, school, and/or workplace

setting contacts of index cases during their infectious period. In the model, if the identified

case cooperated with a health department’s investigation, every contact exposed to that case in

Table 1. Key parameters for the agent-based measles model.

Parameter Description Range of Values Reference

Vaccine coverage [0.95 to 1.0] and [0.85–

0.95]

[35, 36]

Clustering of vaccination status among children 0.0–1.0 Assumed

Household contact probability 0.01–1.0

Neighborhood contact rate 0.5–7.0 contacts per day

Workplace contact rate 0.0–7.0 contacts per day Synthetic population

School contact rate 3.0–20.0 contacts per day http://www.cde.ca.gov/ds/sd/dr/cefteachavgclssize.

asp

Daycare contact rate 3–20 http://www.daycare.com/california

Household transmission probability per contact 0.9–1.0 [37]

Neighborhood transmission probability per contact 0.9–1.0 [37]

Workplace transmission probability per contact 0.9–1.0 [37]

School transmission probability per contact 0.9–1.0 [37]

Daycare transmission probability per contact 0.9–1.0 [37]

Trace probability 0.9–1.0 Assumed

Intervention delay 1 1.0–3.0 days J. Zipprich, personal communication

Intervention delay 2 1.0–3.0 days J. Zipprich, personal communication

Self-report delay 1.0–6.0 days Assumed

Cooperation probability 0.9–1.0 Assumed

Contact finding probability 0.9–1.0 Assumed

MMR PEP efficacy (1 dose MMR) 0.92–0.95 [38, 39]

IG PEP efficacy 0.60–0.90 [40–42]

Home quarantine probability 0.90–1.0 Assumed

Home stay probability (the probability that someone who feels sick stays

home)

0.0–1.0 Assumed

MMR vaccine efficacy (two doses) 0.99–1.0 [38, 39]

doi:10.1371/journal.pone.0167160.t001
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the previous seven days (including the day that case was identified) had a chance to be found.

We assumed that contact investigations could not occur among neighborhood contacts

because it is unlikely that neighborhood contacts could be identified.

To minimize the likelihood of developing measles after exposure, public health interventions

were given to identified contacts as needed based on the exposure date determined for that con-

tact. One dose of MMR PEP was given to exposed, susceptible individuals over 12 months of

age within three days of exposure, if possible. In addition, immune globulin (IG) PEP was given

to exposed, susceptible individuals of any age within six days of exposure, if possible, although

current CDC recommendations now suggest restricting IGIM to individuals< 66 lbs. due to

declines in the measles IgG level in the U.S. blood supply. Exposed, susceptible individuals who

did not receive MMR PEP vaccine or IG PEP were asked to refrain from contact with non-

household members (i.e., voluntary home quarantine) until the end of their incubation period.

In the agent-based model, a person could refuse PEP or voluntary home quarantine recommen-

dations. If an identified case refused all interventions, or all interventions given to that person

failed (possible because of incomplete efficacies), that person could still transmit measles to oth-

ers if infected. However, any newly-infected individuals would eventually visit a doctor in three

to six days after the onset of his or her symptoms, and the health department would be notified

and initiate a contact investigation based on the newly-identified individual. In practice, self-

isolation is recommended if an exposed, susceptible person is symptomatic. A graphical repre-

sentation of the public health intervention decisions for susceptible contacts is given in Fig 1.

Main Outcomes

Model parameter values were selected using a Latin Hypercube sample [43, 44] of parameters

chosen uniformly from the parameter ranges given in Table 1. Using the 1024 parameter sets

derived in this way, measles epidemics were simulated over 90 simulated days to evaluate the

effectiveness of contact tracing and public health interventions for all eight different scenarios

defined by different combinations of MMR PEP vaccine, IG PEP, and voluntary isolation and

home quarantine with public health response delays. The scenario without MMR PEP, IG

PEP, and voluntary isolation and home quarantine served as the reference scenario to which

the other seven scenarios were compared. For each scenario, we conducted 28 = 256 replica-

tions in order to balance computing resource availability with having enough replications to

identify the distributions of the main outcomes. Each replication corresponds to an introduc-

tion of a measles case and following the subsequent chain of transmission. In order to evaluate

the effectiveness of contact investigations with public health interventions, we examined two

outcomes in our simulations: (1) the number of individuals a randomly chosen index case

infected (referred to as “R primary”), and (2) the proportion of the 256 iterations that resulted

in at least one measles case (i.e., someone who was infectious) at the end of the 90 simulated

days. We did not consider severity of measles infection (e.g., death and hospitalizations) as

main outcomes in our comparisons. Ninety days was chosen as the end of simulation time

because large measles outbreaks in the era of elimination have not exceeded 11 weeks in dura-

tion [45]. Thus, the simulation was repeated 256 times for each of the 1024 parameter sets

under the eight scenarios to obtain a distribution for the main outcomes; the median and

interquartile range of each outcome across the parameter sets for each of the eight scenarios is

presented. The differences in outcomes were compared under different scenarios.

Results

The median value of R primary, the average number of secondary cases caused by the index cases,

among the simulations for each of the eight scenarios in a population with high levels of
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vaccination coverage (95% to 100%) among individuals 1 to 18 years of age are given in Table 2.

The median value of R primary ranged from 0.56 in the scenario where all three interventions

were given to 0.84 in the scenario where no interventions were given. The scenarios with volun-

tary home quarantine (i.e., scenarios 2, 6, 7, and 8) had a greater decrease in the median number

of secondary cases in comparison with other scenarios that did not include voluntary home quar-

antine. The median probability of having active cases remaining after 90 days, across all parameter

sets, ranged from 0.004 (for the scenario with all three interventions) to 0.09 (for the scenario

without interventions), demonstrating that measles transmission can die out in the absence of any

interventions given the high level of vaccination coverage in the synthetic population.

Sensitivity Analysis when Vaccination Coverage is 85% to 95% among

Individuals 1 to 18 Years of Age

When measles vaccination coverage in the synthetic population was lowered to 85% to 95%

among individuals 1 to 18 years of age, all median estimates for the two outcomes increased.

The scenarios with voluntary home quarantine coupled with one or two other interventions

(i.e., scenarios 6, 7, and 8) had the largest decrease in the median number of secondary cases in

Fig 1. Public health intervention decisions for susceptible and exposed contacts. Abbreviations: MMR, measles, mumps, and rubella; IG,

immune globulin; PEP, post-exposure prophylaxis.

doi:10.1371/journal.pone.0167160.g001
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comparison with the other scenarios (Table 3). The median value of R primary ranged from

0.90 (scenario with all three interventions) to 1.52 (the scenario with no interventions). There

was a reduction in the median probability of escape across all parameter sets when considering

a scenario with no interventions with a scenario with all three interventions.

Discussion

By examining the scenario outcomes defined by different interventions aimed to prevent mea-

sles transmission using an agent-based model, we were able to demonstrate the effects of each

control component of a network-based control strategy on the number of secondary cases

caused by an index case and the likelihood of uncontrolled outbreaks in a population with a

high level of immunity. Our definition of an uncontrolled outbreak is conservative in that we

only considered infectious individuals at the end of 90 days. An exposed person could still go

on to become a case beyond 90 days but we did not include exposed individuals in our deter-

mination of uncontrolled outbreaks. The simulation results showed that the most effective

component in reducing measles transmission in this population is voluntary isolation and

home quarantine, i.e., activities that affect contact patterns among individuals.

However, our simulation results are based on making specific assumptions about popula-

tion immunity, as well as individual and public health response behaviors. First, the clustering

of population immunity parameter only considered clustering among children less than

18 years of age; we did not consider clustering of immunity among adults. This may occur

because parents make vaccination decisions for all of their children. Clustering of immunity

can occur as a result of any opinion formation process [46] or personal beliefs [47] in which

Table 2. Reduction in secondary cases caused by an index case and the probability of escape for the eight scenarios with public health response

delays and 95% to 100% vaccination coverage among children 1 to 18 years of agea.

No. Intervention Strategies Number of

Secondary

Cases Caused

by the Index

Case

Reduction in the Median Number of

Secondary Cases Caused by the

Index Case

Probability of

Escapeb
Reduction in the Median

Probability of Escape

MMR

PEP

IG

PEP

Voluntary Isolation

& Quarantine

Median IQR Median IQR

1 No No No 0.84 0.58,

1.42

0 0.09 0.01,

0.37

0

2 No No Yes 0.71 0.50,

1.05

-0.13 0.05 0.004,

0.21

-0.05

3 No Yes No 0.69 0.45,

1.20

-0.15 0.04 0, 0.25 -0.06

4 Yes No No 0.70 0.46,

1.23

-0.14 0.04 0, 0.26 -0.05

5 Yes Yes No 0.66 0.43,

1.16

-0.18 0.03 0, 0.23 -0.07

6 Yes No Yes 0.60 0.42,

0.90

-0.24 0.01 0, 0.10 -0.08

7 No Yes Yes 0.58 0.40,

0.88

-0.26 0.01 0, 0.08 -0.09

8 Yes Yes Yes 0.56 0.38,

0.85

-0.28 0.004 0, 0.06 -0.09

Abbreviations: PEP, postexposure prophylaxis; MMR, measles, mumps, and rubella; IG, immune globulin; IQR, interquartile range
a The reduction of median outcomes may not equal the difference using the numbers displayed due to rounded values.
b The probability of escape is defined as the proportion of 256 iterations in which there was at least 1 measles case at the end of 90 days of simulation.

doi:10.1371/journal.pone.0167160.t002
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the degree of clustering of susceptibility may affect the likelihood of disease outbreaks [46] and

infectious disease transmission dynamics [48]. In some instances, clustering may reduce the

contact tracing efficacy [49]. We did not explore the consequences of different levels of cluster-

ing among adults on the overall effectiveness of different components of the response to

control measles transmission, nor did we present the geographic spread of measles in the pop-

ulation as has been done previously [50]. Second, we did not explicitly consider measles trans-

mission among healthcare settings. We limited our investigations to the household, workplace,

school, and daycare settings. Although transmission could occur in the neighborhood settings,

we did not enable contact tracing to occur in the neighborhood since it would be unlikely to

identify the contacts in a neighborhood setting. Third, we obtained behavioral aspects of our

model (individual behavior and public health response behavior) from the published literature

and/or expert opinion. When input estimates were unavailable, we chose inputs that were

plausible based on the overall goals of the study. For example, we wanted to estimate the effec-

tiveness of home (volunteer) quarantine on the control of measles transmission. The level of

compliance we assumed for home quarantine recommendations would affect our effectiveness

estimates. It is likely that the true compliance would vary depending on perceived risks, the

risks and benefits of potential consequences, and perceived difficulty with compliance as has

been demonstrated previously with SARS [51]. In addition, recommendation refusals may also

be correlated with one another. Individuals who refuse MMR PEP or IG PEP may also fail to

comply with home quarantine recommendations. Furthermore, operational estimates for

measles contact tracing are not available in the published literature; further research is urgently

needed in order to refine these estimates.

Table 3. Reduction in secondary cases caused by an index case and the probability of escape for the eight scenarios with public health response

delays and 85% to 95% vaccination coverage among children 1 to 18 years of agea.

No. Intervention Strategies Number of

Secondary

Cases Caused

by the Index

Case

Reduction in the Median Number of

Secondary Cases Caused by the

Index Case

Probability of

Escapeb
Reduction in the Median

Probability of Escape

MMR

PEP

IG

PEP

Voluntary Isolation

& Quarantine

Median IQR Median IQR

1 No No No 1.52 1, 2.47 0 0.43 0.24,

0.64

0

2 No No Yes 1.26 0.89,

1.81

-0.26 0.36 0.19,

0.54

-0.07

3 No Yes No 1.13 0.74,

1.90

-0.39 0.27 0.07,

0.54

-0.16

4 Yes No No 1.18 0.76,

1.97

-0.33 0.30 0.08,

0.56

-0.12

5 Yes Yes No 1.07 0.68,

1.82

-0.45 0.23 0.04,

0.51

-0.19

6 Yes No Yes 1.00 0.69,

1.46

-0.52 0.20 0.04,

0.41

-0.22

7 No Yes Yes 0.95 0.66,

1.41

-0.56 0.16 0.02,

0.37

-0.27

8 Yes Yes Yes 0.90 0.62,

1.35

-0.62 0.10 0.008,

0.31

-0.33

Abbreviations: PEP, postexposure prophylaxis; MMR, measles, mumps, and rubella; IG, immune globulin; IQR, interquartile range
a The reduction of median outcomes may not equal the difference using the numbers displayed due to rounded values.
b The probability of escape is defined as the proportion of 256 iterations in which there was at least 1 measles case at the end of 90 days of simulation.

doi:10.1371/journal.pone.0167160.t003
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Maintaining a high level of population immunity appears to be the best way to prevent mea-

sles [47]. Exposure to a measles case is not a contraindication for vaccination and MMR PEP

can provide some protection if given within 72 hours of exposure [6]. If a person does not

receive MMR PEP within 72 hours of exposure, IG PEP may prevent or modify measles in a

susceptible person if given within six days. MMR PEP, IG PEP, isolation and quarantine can

help lower the number of secondary cases caused by the index case and the chain size should

measles outbreaks occur.

Conclusions

In this agent-based, stochastic simulation study, we simulated measles outbreaks in a synthetic

population with high immunity over a range of plausible transmission and intervention parame-

ters in order to evaluate the effectiveness of components of the public health response to control

and prevent measles transmission. The simulation results suggest that contact investigations and

interventions lower the number of cases introduced by an index case into the population. Vol-

untary isolation and home quarantine are particularly important in reducing the number of sec-

ondary cases infected by the index case and the probability of uncontrolled outbreaks.
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