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Abstract: Brain–computer interface (BCI) technology allows people with disabilities to communicate
with the physical environment. One of the most promising signals is the non-invasive electroen-
cephalogram (EEG) signal. However, due to the non-stationary nature of EEGs, a subject’s signal
may change over time, which poses a challenge for models that work across time. Recently, domain
adaptive learning (DAL) has shown its superior performance in various classification tasks. In
this paper, we propose a regularized reproducing kernel Hilbert space (RKHS) subspace learning
algorithm with K-nearest neighbors (KNNs) as a classifier for the task of motion imagery signal
classification. First, we reformulate the framework of RKHS subspace learning with a rigorous
mathematical inference. Secondly, since the commonly used maximum mean difference (MMD)
criterion measures the distribution variance based on the mean value only and ignores the local
information of the distribution, a regularization term of source domain linear discriminant analysis
(SLDA) is proposed for the first time, which reduces the variance of similar data and increases the
variance of dissimilar data to optimize the distribution of source domain data. Finally, the RKHS
subspace framework was constructed sparsely considering the sensitivity of the BCI data. We test the
proposed algorithm in this paper, first on four standard datasets, and the experimental results show
that the other baseline algorithms improve the average accuracy by 2–9% after adding SLDA. In the
motion imagery classification experiments, the average accuracy of our algorithm is 3% higher than
the other algorithms, demonstrating the adaptability and effectiveness of the proposed algorithm.

Keywords: EEG; brain–computer interfaces; domain adaptation; reproducing kernel Hilbert space; SLDA

1. Introduction

Non-invasive BCIs enable people to communicate with electronic devices by analyzing
the electrical or magnetic signals generated by the brain’s nervous system. Due to the
advantages of non-invasiveness, low cost, portability and high temporal resolution for
different brain activity monitoring modalities, electroencephalography (EEG) has been
used in many non-invasive BCI studies [1]. Depending on the strategy used to control the
device, BCIs systems can be classified as endogenous or exogenous [2]. Exogenous task
BCIs systems are based on evoked activities that require external stimuli, such as visual
evoked potentials. In contrast, endogenous BCIs are based on spontaneous activities, such
as motor imagery (MI), in which the subject needs to focus on a specific mental task [3].

Motor imagery signals are body parts that imagine movement in the absence of actual
movement. Different MI tasks lead to oscillatory activity observed in different areas of the
sensorimotor cortex of the brain [4]. Various MI-based BCI applications have been used
as rehabilitation for wheelchair and prosthetic control in disabled patients [5–8], and for
recreation in healthy individuals [9,10].

EEG signals are prone to be affected by individual mental states, such as mood and
attention. In the BCI’s MI experiment, subjects were asked to repeat the motor imagery tasks
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of their left hand, right hand, foot and tongue on two different days. This concentration
constraint is a very tiring mental task for the subjects [2]. The BCIs system uses a fixed time
interval for all subjects, which is considered as one of the drawbacks of this model [11].
The MI experiment depends on the subject and there is no way to define exactly when
the effect of motor imagery appears after the cue [12], i.e., it can appear immediately after
the cue or after a period of time. Therefore, the time interval for the onset of imagery
may vary across subjects. Human consciousness is complex and unstable, and once the
subject’s consciousness is separated in an experiment, the results can be severely biased.
It has been shown that the EEG signal of the BCI-based MI task has high variability in
the subprojects [13]. Therefore, when the data include measurements from different time
periods, there is no guarantee that the spatial distribution of EEG data is consistent across
days, even when the same task is performed. This multi-domain data poses a major
challenge for machine learning methods.

Domain adaptation learning (DAL) is a branch of transfer learning for solving cross-
domain learning problems, in which the training data and test data are from different
domains. In general, the problem of domain adaptation processing involves a well-labeled
source domain and an unlabeled target domain with different probability distributions.
The goal is to solve the task in the target domain by knowledge transfer using the labeled
information from the source domain [14]. In the BCI experience, the experimental data
of the first day can be considered as the source domain and the experimental data of
the second day can be considered as the target domain, and the knowledge obtained
from the source domain can be transferred to the target domain. This is a typical domain
adaptation problem. The methods of domain adaptation are minimizing the distribution
differences in the feature space, such as joint distribution adaptation (JDA) [15], joint
geometric and statistical alignment (JGSA) [16], and manifold embedding distribution
alignment (MEDA) [17]. Domain adaptation methods have been applied in many fields,
such as image classification, object recognition [18], text classification [14] and video event
detection [19]. Previous studies [20,21] have shown the effectiveness of domain adaptation
methods in mitigating the data distribution of different subjects or different stages in BCI.
Therefore, domain adaptation learning (DAL) is the best choice for signal recognition in
BCI systems.

The source and target domains can be transformed into another feature space by a
transformation (e.g., kernel function), and then applied by the machine learning method.
Kernel functions are a suitable class of feature mapping functions that implicitly map data
to a high-dimensional RKHS and explicitly provide the inner product of the data in the
space. RKHS subspace learning is a common framework for transfer learning, which learns
a suitable subspace in the RKHS according to a specific machine learning task.

The most commonly used nonparametric distance estimation method for measuring
the distance of statistical feature distribution between the source and target domain data
is the maximum mean difference (MMD), which was proposed by Gretton et al. [22] and
Smola et al. [23]. Based on MMD, Pan et al. [24] proposed transfer component analysis
(TCA), which maps data from the source and target domains to a high-dimensional RKHS.
However, MMD uses the first-order moments of the origin of two random variables to
measure the distance between two probability distributions, which does not accurately
describe the local differences between the two distributions. Therefore, it is common
practice to add regularization terms to compensate for the shortcomings of MMD. For
example, semi-supervised transfer component analysis (SSTCA) [24] adds a streamwise
regularization term to TCA, which can reduce the distance in data distributions between
domains and maximize label dependence in a latent space. Jiang et al. [25] proposed to
integrate the global and local metrics for domain adaptive learning (IGLDA). Based on
TCA, IGLDA considers both the local data information and overall information to make
the source and target domain data as close as possible while preserving the geometric
properties of the source domain data. Li et al. [26] proposed a domain adaptation algo-
rithm framework that maps data from two domains to RKHS with feature selection and a
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maximum regularization term for the variance of the target domain data in the subspace.
Our experiments show that their algorithm improves the classification accuracy to some
extent, but ignores the optimization problem of the source domain data and its labels. In
domain adaptation, source domain data with label is an important information source.
How to use label information is always the focus of various domain adaptation algorithms.
Lei et al. [27] applied the dictionary learning to the source domain while we borrowed the
idea of LDA.

In this paper, we develop a new approach based on RKHS subspace learning and apply
it to motor imagery recognition. It attempts to learn the coefficients of the RKHS subspace
so that the differences in data distribution across domains can be reduced when projecting
to that subspace. Machine learning approaches, such as classification and regression
models, can be used in this subspace. Additionally, to make full use of the source domain
information, we propose a source linear discriminant analysis (SLDA) regularization
term. Specifically, considering the sensitivity of BCI data, we sparsely construct the RKHS
subspace framework using the L2.1 criterion. The primary contributions of this paper are
summarized as follows:

(1) We reformulate the RKHS subspace learning framework (RKHS-DA), and propose the
SLDA regularization term to remedy the deficiency of MMD in domain adaptation.

(2) To address the problem of complex and unstable EEG signal, we choose features wisely
in the low-dimensional subspace projected to the data through the L2.1 criterion to
constrain the coefficient matrix.

(3) Experimental results show that the average accuracy of our algorithm is 3% higher
than other algorithms.

The remainder of this paper is organized as follows. Section 2 presents a general
description of our approach. Section 3 describes the proposed framework and the SLDA
regularization terms in detail. We validate our SLDA regularization and RKHS subspace
learning framework, and the experimental results are presented in Section 4.

2. Preliminaries
2.1. Notations

In this paper, we use a combination of letters and numbers to represent data. A sample
is denoted as a vector, e.g., the ith sample of x in a set is denoted as xi. We also use the
subscripts s and t to indicate the source domain and the target domain, respectively. For
a matrix M, the trace of matrix M is denoted by tr(M). For clarity, the frequently used
notations and corresponding descriptions are shown in Table 1.

Table 1. Notation and description.

Notation Description

Xs, Ys Original/subspace source data
Xt, Yt Original/subspace target data

L MMD matrix
λ, µ, γ, β Penalty parameters

K Kernel matrix
W Projection matrix
I Identity matrix

2.2. Reproducing Kernel Hilbert Spaces (RKHS)
2.2.1. Hilbert Spaces

Definition (inner product space [28]): let H be the linear space on the real number
domain R, 〈•, •〉 : H → R , with the following properties:

(1) Positive definiteness: for all x ∈ H, 〈x, x〈〉〉 and⇔x = 0;
(2) Symmetry: For all x, y ∈ H, 〈x, y〉 = 〈y, x〈〉〉;
(3) Bilinear: For all x, y, z ∈ H and α, β ∈ R,
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〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉

Then, we consider that 〈•, •〉 is the inner product of H, and (H, 〈•, •〉) is an inner
product space.

Let x be an element of inner product space (H, 〈•, •〉). In the inner product space, the
norm is defined by the inner product:

||x|| =
√
〈x, x〉 (1)

According to the nature of the positive definite inner product:

||x|| =
√
〈x, x〉 = 0 ⇔ x = 0 (2)

then we have
||x− y|| = 0 ⇔ x = y (3)

If all the basic sequences are convergent in this inner product space which is known as
a Hilbert space.

2.2.2. Definition of Reproducing Kernel Hilbert Space (RKHS)

Let H = { f | f : Ω→ R,
∫

Ω | f (x)|2 < +∞} be a square integrable function space. It is
clear that H is a linear space. We define 〈•, •〉 : H × H → R , for any f , g ∈ H

〈 f , g〉 =
∫

Ω
f (x)g(x)dx (4)

It can be shown that 〈•, •〉 is an inner product and (H, 〈•, •〉) is a Hilbert space. Further,
if there is k : Ω×Ω→ R , satisfy

(1) For any x ∈ Ω, kx = k(•, x) ∈ H;
(2) For any x ∈ Ω and f ∈ H, we have

f (x) = 〈 f , kx〉 = 〈 f (•), k(•, x)〉 (5)

Therefore, H can be called a reproducing kernel Hilbert space (RKHS), and k is the
reproducing kernel of H. Using reproducing kernel k, we can define mapping ϕ : Ω→ H :
for any x ∈ Ω, we have

ϕ(x) = k(•, x) = kx ∈ H (6)

From Equation (6), it can be proved that

〈ϕ(x), ϕ(y)〉 = 〈kx, k(•, y)〉 = kx(y) = k(y, x) = k(x, y) (7)

2.3. Hilbert Subspace Projection Theorem

Definition of projection: let (H, 〈•, •〉) be an inner product space and A be a subspace
of H. For x0 ∈ H. If x0 can be decomposed into x0 = x′0 + x′′0 , where x′0 ∈ A,

〈
x′0, x′′0

〉
= 0,

then x′0 is called the projection of x0 in subspace A.
Projection theorem: (H, 〈•, •〉) is an inner product space. A is a finite dimensional

subspace of H and {e1, · · · , ed} is the standard orthogonal basis of A. For any x0 ∈ H, the
projection x′0 of x0 in A is as follows:

x′0 =
d

∑
i=1
〈x0, ei〉ei ∈ A (8)
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Remark 1. A is a finite-dimensional subspace of H; therefore, A is complete, i.e., A is a Hilbert
subspace, so the projection of any point in H onto A exists.

2.4. Domain Adaptation Learning and MMD

There are two datasets in data space Ω: the labeled source domain data
Xs = {xs

1, · · · , xs
Ns
} ⊆ Ω, and the unlabeled target domain data Xt = {xt

1, · · · , xt
Nt
} ⊆ Ω,

and the distributions of Xs and Xt in the data space are different. We need to classify Xt
based on Xs. This problem is domain adaptation learning. In our work, we resorted to
MMD [22], a nonparametric metric to measure the distance between distributions, which
can transform the source domain data Xs and target domain data Xt onto RKHS H gener-
ated by the reproducing kernel k, i.e.,

Φ(Xs) =
{

Φ(xs
1), . . . , Φ

(
xs

Ns

)}
⊆ H, Φ(Xt) =

{
Φ
(

xt
1
)
, . . . , Φ

(
xt

Nt

)}
⊆ H (9)

In this way, the distribution of Φ(Xs) and Φ(Xt) in RKHS H can be as similar as
possible. Moreover, the similarity here can exactly be measured by MMD:

MMD2(Xs, Xt) =

∥∥∥∥∥ 1
Ns

Ns

∑
i=1

Φ(xs
i )−

1
Nt

Nt

∑
i=1

Φ
(
xt

i
)∥∥∥∥∥

2

(10)

where ϕ(·) is the mapping defined by reproducing kernel k.
In practice, it is not easy to learn an optimal RKHS H based on MMD. Most methods

based on MMD choose to learn a linear subspace spanΘ of RKHS H, so the MMD distance
can be expressed as follows:

MMD2(Xs, Xt) =

∥∥∥∥∥ 1
Ns

Ns

∑
i=1

ΦspanΘ(xs
i )−

1
Nt

Nt

∑
i=1

ΦspanΘ
(
xt

i
)∥∥∥∥∥

2

(11)

where ΦspanΘ(Xs) and ΦspanΘ(Xt) mean the projection of Φ(Xs) and Φ(Xt) in the sub-
space, respectively.

3. Domain Adaptation Based on Source LDA Regularized RKHS Subspace Learning
and Its Application in BCI
3.1. Reformulation of the RKHS Subspace Learning Framework
3.1.1. Construction of RKHS

The regenerated kernel of RKHS is used to construct the transformation from the
original data space to RKHS, rather than defining the transformation first and then using
the transformation and the inner product of RKHS to define the so-called “kernel function”,
which is not actually the reproducing kernel of RKHS. However, many studies have
used the reproducing kernel to define the transformations from original data space to
RKHS, ignoring the connection between the original data space and RKHS. Therefore, we
reformulated a mathematical framework model of RKHS in this section.

Let (H, 〈•, •〉) be the RKHS on the data space Ω, and use the reproducing kernel k of
H to define the transformation from the data space Ω to H: ϕ : Ω→ H , for any x ∈ Ω, we
define ϕ(x) = k(•, x) ∈ H, so for any x, y ∈ Ω, we have 〈ϕ(x), ϕ(y)〉 = k(x, y()).

Now, given a set of data on data space Ω,

X = {x1, . . . , xN} ⊆ Ω (12)

Feature map ϕ(·) is used to transform X to H

ϕ(X) = {ϕ(x1), . . . , ϕ(xN)} ⊆ H (13)
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The kernel matrix K is represented as

K =

 k(x1, x1) · · · k(x1, xN)
...

. . .
...

k(xN , x1) · · · k(xN , xN)

 =
[

K1Col · · · KNCol
]
∈ RN×N (14)

where k
(

xi, xj
)
=
〈

ϕ(xi), ϕ
(
xj
)〉

, and KiCol is the ith column vector of K, i = 1, · · · , N.

3.1.2. The Construction and Restraint of the RKHS Subspace

ϕ(X) is used to construct a basis of subspace of H:

θi =
N

∑
j=1

wji ϕ
(

xj
)

i = 1, · · · , d (15)

We define

W =

 w11 · · · w1d
...

. . .
...

wN1 · · · wNd

 = [W1Col . . . WdCol ] ∈ RN×d (16)

where WiCol is the ith column vector of W, and i = 1, · · · , d. We use Θ = {θ1, · · · , θd} to
span a subspace of H:

spanΘ =

{
d

∑
i=1

αiθi

∣∣∣∣∣αi ∈ R, i = 1, · · · , d

}
(17)

To constitute the orthonormal basis of subspace spanΘ, Θ satisfies the condition of
bivariate orthogonality: 〈θ1, θ1〉 · · · 〈θ1, θd〉

...
. . .

...
〈θd, θ1〉 · · · 〈θd, θd〉

 =

 WT
1ColKW1COl · · · WT

1ColKWdCOl
...

. . .
...

WT
dColKW1COl · · · WT

dColKWdCOl

 = WTKW= Id (18)

Subspace spanΘ is a d-dimensional subspace and is determined by the data trans-
formed to subspace and combination coefficient W, which satisfies the above constraints.

3.1.3. Representation of Data in the RKHS Subspace

Since RKHS is an infinite dimensional space, machine learning algorithms cannot be
directly applied to such space, so it needs to project the data in RKHS into the subspace
of RKHS. According to the projection theorem, if {θ1, · · · , θd} is the orthonormal basis of
subspace spanΘ, then the coordinates of the projection of ϕ(xi) on subspace spanΘ are

yi =

 〈ϕ(xi), θ1〉
...

〈ϕ(xi), θd〉

 =

 WT
1ColKiCol

...
WT

dColKiCol

= WTKiCol (19)

where i = 1, · · · , d. By constructing the subspace of RKHS, we implemented the transfor-
mation of data from the original data space Ω to the Euclidean space Rd:

X = {x1, · · · , xN} ⊆ Ω⇒Y = {y1, · · · , yN} ∈ Rd (20)

The working space is Euclidean space Rd, of which W will be determined according to
the specific machine learning task. The orthonormal basis of the subspace is constructed by
the linear combination of transformed samples. Due to the requirements of the orthonormal
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basis, the constraints of the combination coefficient of the subspace are obtained, rather
than based on some assumptions. The original data is transformed to RKHS and projected
to the subspace. The coordinates of this projection on the orthonormal basis of the subspace
are the final representation of the original data.

3.2. Domain Adaptation Based on SLDA Regularized RKHS Subspace Learning
3.2.1. Domain Adaptation Based on RKHS Subspace Learning and MMD

Given a set of source domain data and a set of target domain data in the original data
space Ω:

Xs =
{

xs
1, · · · , xs

Ns

}
⊆ Ω, Xt =

{
xt

1, · · · , xt
Nt

}
⊆ Ω (21)

The source domain data Xs is labeled while the target domain data Xt is unlabeled.
We define the following:

X =Xs ∪ Xt = {x1, · · · , xN} =
{

xs
1, · · · , xs

Ns
, xt

1, · · · , xt
Nt

}
⊆ Ω, N = Ns + Nt, (22)

Using the RKHS subspace learning framework proposed in Section 3.1, we have

Ys =
{

ys
1, · · · , ys

Ns

}
⊆ Rd, Yt =

{
yt

1, · · · , yt
Nt

}
⊆ Rd (23)

where ys
i= WTKiCol , i = 1, · · · , Ns and yt

i= WTK(Ns+i)Col , i = 1, · · · , Nt. In the expressions
of Ys and Yt, the matrix W is unknown and represents the subspace of RKHS, desired
distribution of Ys and Yt in the Euclidean space Rd can be achieved by learning W. To mea-
sure the difference between two distributions, MMD between Xs and Xt can be calculated
as follows:

MMD2(Xs, Xt) =

∥∥∥∥∥ 1
Ns

Ns

∑
i=1

ys
i −

1
Nt

Nt

∑
j=1

yt
j

∥∥∥∥∥
2

(24)

where ys
i = WTKiCol and yt

j = WTK(Ns+j)Col , the MMD distance in (25) can be rewritten as

MMD2(Xs, Xt) = tr
(

WT LW
)

(25)

and

L =

(
1

Ns

Ns

∑
i=1

KiCol −
1

Nt

Nt

∑
j=1

K(Ns+j)Col

)(
1

Ns

Ns

∑
i=1

KiCol −
1

Nt

Nt

∑
j=1

K(Ns+j)Col

)T

(26)

3.2.2. Domain Adaption Based on Source LDA Regularized RKHS Subspace Learning
(SLDARKHS-DA)

MMD is an approximate criterion rather than an exact one. Therefore, it is common
practice to add regularization terms to compensate for the deficiency of MMD. In transfer
learning, KNN is a commonly used classifier. To improve the classification efficiency of
KNN, we considered the reduction of the within-class scatter between the source domain
and the target domain, while increasing the between-class scatter. Since the target do-
main is usually unlabeled, the SLDA proposed in this section only applies to the source
domain data.

During the distribution matching process, it would be helpful to keep samples of the
same class close to each other while the samples of different classes are far from each other.
For this purpose, we define the transformed source domain data as C categories, and each
category has Nc data samples, which can be expressed as:

{y1, · · · , yN} =
{

ys
11, · · · , ys

1N1
, · · · , ys

C1, · · · , ys
cNc

}
, NS =

C

∑
c=1

Nc (27)

where ys
ci, c = 1, · · · , C, i = 1, · · · , Nc.
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The center of the cth class can be computed as follows:

−
yc =

1
Nc

Nc

∑
i=1

yci =
1

Nc

Nc

∑
i=1

WTKc(i)Col = WT

(
1

Nc

Nc

∑
i=1

Kc(i)Col

)
= WT

−
K

c

Col (28)

Moreover, the center of all the samples can also be computed as follows:

−
y =

1
N

C

∑
c=1

Nc

∑
i=1

yci =
1
N

C

∑
c=1

Nc

∑
i=1

WTKc(i)Col = WT

(
1
N

C

∑
c=1

Nc

∑
i=1

Kc(i)Col

)
= WT

−
KCol (29)

where
−
K

c

Col =
1

Nc
∑Nc

i=1 Kc(i)Col ,
−
KCol =

1
N ∑C

c=1 ∑Nc
i=1 Kc(i)Col

(1) To increase the distance between the different types of source domain data, the
between-class scatter can be defined and rewritten as:

Sb =
C

∑
c=1

Nc

NS
||−yc −

−
y ||2 = tr

(
WTΨW

)
(30)

where Ψ = ∑C
c=1

Nc
NS

(
−
K

c

Col −
−
KCol)(

−
K

c

Col −
−
KCol)

T

(2) To improve the discriminative efficiency of the same category data in the subspace,
the intra-class divergence can be expressed as follows:

Sw =
1

NS

C

∑
c=1

Ni

∑
i=1
||yci −

−
yc ||

2 = tr
(

WTΦW
)

(31)

where Φ = 1
NS

∑C
c=1 ∑Ni

i=1 (Kc(i)Col −
−
K

c

Col)(Kc(i)Col −
−
K

c

Col)
T

. The distance between the
same types of data in the source domain is reduced, so that the same type of data will be
more concentrated.

3.2.3. Solution

Since the target domain data is used to rely the source domain data in the subspace,
the optimization of the target domain data in the subspace will not be effective if KNN is
used to identify the target domain data in the subspace. By adding the regularization term
of SLDA, the overall objective function of our proposed SLDARKHS-DA can be formulated
as follows:

min
W

tr
(
WT LW

)
+ λtr

(
WT(Φ−Ψ)W

)
+ µtr

(
WTW

)
= tr

(
WT NW

)
s.t. WTKW = Id

(32)

where N = L + λ(Φ−Ψ) + µI. This model can be solved by the properties of generalized
Rayleigh entropy. Since K is symmetric positive definite, it can be expressed as

K = UΣ
1
2 Σ

1
2 UT (33)

where UUT = I, Σ
1
2 = diag(

√
σ1, . . . ,

√
σN), σi are the eigenvalues of K, i = 1, . . . , N.

WTKW can be rewritten as WTKW = WTUΣ
1
2 Σ

1
2 UTW = VTV = Id according to the above

restrictions, and V = Σ
1
2 UTW. We reformulate (32) by V:

tr
(

WT NW
)
= tr

(
VT MV

)
(34)
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where M = Σ−
1
2 UT(L + γ(Φ−Ψ) + µI)UΣ−

1
2 . It can be solved by the generalized Rayleigh

entropy. V is a d-dimensional row vector, which is the eigenvector corresponding to the
first d smallest eigenvalues of matrix M.

3.2.4. Computational Complexity

The computational complexity of the SLDARKHS-DA Algorithm 1 consists of the
following three main components: (1) the complexity of the feature problem optimization in
step 2, (2) computing Φ and Ψ and (3) the computing of K and L. The complexity is usually
expressed in terms of O, and the complexity of the generalized eigen-decomposition
is O(dn2) (d is the dimension of the subspace). By computing Φ, Ψ is O(dn2), and by
computing K, L is O(n2). Therefore, the total complexity of the algorithm is O((4d + 1)n2).

Algorithm 1: SLDARKHS-DA

Input: source domain data set Xs and target domain data set Xt, label information of Xs;
parameters λ, µ and subspace dimension d.
Output: projection matrix W and the label information of Xt.

1. Combine source domain data set and domain data set: X = [Xs, Xt];
2. Compute K, L, Φ, Ψ, M;
3. Eigendecompose the matrix M and select the d leading eigenvectors to construct the

projection matrix W;
4. Project both Xs and Xt to obtain data in the subspace, ys

i= WTKiCol and yt
i= WTK(Ns+i)Col .

Classify yt
i in the subspace by KNN, and ys

i is used as the reference.

3.3. Application of SLDARKHS-DA to EEG Motor Imagery Recognition
3.3.1. Description of BCI IV 2a Data

Nowadays, many BCI data recognition tasks are handled by domain adaptation
methods. Previous studies [20,21] have shown the effectiveness of domain adaptation
approaches in reducing the differences in data distribution between subjects or sessions.

The BCI competition dataset is commonly used as a benchmark dataset for BCI
domains. This 2a dataset consisted of nine subjects recorded [29]. Subjects were asked to
imagine moving four parts of their body: left hand, right hand, foot and tongue. Addressing
multi-class problems is an important challenge for the BCI system.

3.3.2. Domain Adaptation Subspace Learning Based on Sparse Regularized RKHS

Considering the complexity of BCI data, when the transformed data are projected
into the subspace, the dimensionality reduction will be performed and some irrelevant
data features should be discarded. We selected the most favorable data to improve the
recognition effect, construct the subspace by row sparse projection matrix and minimize
the geometric offset of the data.

We used the L2.1 norm to constrain the W matrix so that the rows were sparse. The
L2.1 norm of matrix A is defined as follows:

||A ||2,1 =
D

∑
j=1

√√√√ C

∑
i=1

A2
ij, A ∈ RC×D (35)

The L2.1 norm makes the L2 norm of each line as small as possible, and as many zeros
appear in the line as possible to achieve sparsity.
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3.3.3. Solution

By adding the L2.1 norm of matrix W as a sparse regularization term, the overall
objective function of our proposed SLDARKHS-DA based on sparse regularization terms is
formulated as follows, show in Algorithm 2.

min
W

tr
(
WT(L + γ(Φ−Ψ) + µI)W

)
+ λ ||W ||2,1

s.t. WTKW = Id
(36)

where tr
(
WT LW

)
represents the MMD distance between the source domain sample and

the target domain sample in the subspace. The purpose of tr
(
WT(Φ−Ψ)W

)
is to increase

the inter-class divergence and reduce the intra-class divergence of the data in the subspace.
||W ||2,1 is the L2.1 norm of matrix W to the sparse elements that make up the basis of
the subspace. The regularization term tr

(
WTW

)
can avoid the over-fitting of the model.

The constraint WTKW = Id serves two purposes: (1) to make the basis of the subspace
orthogonal, and (2) to avoid trivial solutions and ensure that W is not 0. λ, µ, γ represents
the coefficient of the regularization term.

To solve the optimization problem, we introduced a Lagrange multiplier Λ, and the
Lagrange function for the model can be obtained as follows:

L(W, Λ) = tr
(

WT(L + γ(Φ−Ψ) + µI)W
)
+ λ ||W ||2,1 − tr

((
WTKW − Id

)
Λ
)

(37)

Then, by taking the derivative of (37) with respect to W, and setting the derivative to
zero, we obtain

((L + γ(Φ−Ψ) + µI) + λG)W = KWΛ (38)

Note that ||W ||2,1 is not smooth, so we computed its subgradient G, which is a
diagonal matrix with the ith diagonal element that equals to

Gii =

{
0, i f Wi = O
1

2||Wi || , otherwise (39)

where Wi denotes the ith row of W. Thus the concatenated multiple transformations can
be solved by calculating the d smallest eigenvectors of KWΛ.

Algorithm 2: SLDARKHS-DA (Sparse)

Input: source domain data set Xs and target domain data set Xt, label information of Xs;
parameters γ, λ, µ and subspace dimension d.
Output: projection matrix W and the label information of Xt.

1. Combine the source domain data set and domain data set: X = [Xs, Xt];
2. Computer matrix K, L, Φ, Ψ and initialize G = I.

Repeat

3. Optimize W by solving the eigen-decomposition problem in (38);
4. Update G by (39).

Until convergence or max iteration

5. Project both Xs and Xt to obtain the data in the subspace, ys
i= WTKiCol and

yt
i= WTK(Ns+i)Col . Classify yt

i in the subspace by KNN, and ys
i is used as the reference.

4. Experiments

To verify the fitness of the SLDA regularization term, we first conducted experiments
on four commonly used standard benchmark datasets (faces, objects, handwritten digits
and text). We added the SLDA regularization term to the comparison algorithm. For
example, we added the SLDA regularization terms to TCA and performed comparison
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experiments with the original TCA. Second, we tested the performance of our SLDARKHS-
DA on the 4th BCI competition 2A dataset and compared it with some classical baselines
published in recent years, respectively. All the methods were programmed in MATLAB
2019 and executed on a PC (CPU: Intel i9) with 3.50 GHz and memory: 16 GB. The
source programs of the baseline methods used for the comparison can be downloaded
from GitHub. The following are available online at https://github.com/viggin/domain-
adaptation-toolbox (TCA, downloaded in April 2021), https://github.com/minjiang/iglda
(IGLDA, downloaded in April 2021) and https://github.com/lijin118/tit (TIT, downloaded
in May 2021).

4.1. Baseline and Parameter Settings

We compared the proposed method with typical subspace learning methods in domain
adaptation, such as TCA [24], IGLDA [25] and TIT [26]. The details of each baseline methods
are summarized below:

(1) TCA [24] is a typical example of RKHS subspace learning in domain adaptation.
TCA converts the original data into RKHS, then finds a subspace in this space to reduce the
dimensionality of the data, and then uses MMD to measure the distance between the two
domains. Its objective function is as follows:

min
W

tr
(
WTKLKW

)
+ µtr

(
WTW

)
s.t. WTKHKW = Im

(40)

where tr
(
WTW

)
prevents the over-fitting of data and WTKHKW = Im can maintain the

data characteristics of the source domain data and target domain data.
(2) Jiang et al. proposed the integration of global and local metrics for domain adapta-

tion learning (IGLDA) [25], which added the regularization term based on TCA. IGLDA
introduces data label information to keep source domain and target domain data as close
as possible while preserving the geometric properties of source domain data. The objective
function of this method is as follows:

min
W

tr
(
WTKLKW

)
+ αtr

(
WTKLwKW

)
+ βtr

(
WTW

)
s.t. WTKHKW = Id

(41)

where Lw represents the within-class divergence matrix.
(3) Li proposed another approach in 2019 [26], which combines the manifold reg-

ularization terms used in SSTCA, a kind of regularization terms to select features, and
regularization terms to minimize the variance in the target domain. In the experiments, the
sample selection is performed by iterative experiments, and the final objective function is
as follows.

min
W

tr
(
WTKLKW

)
+ αtr

(
WTKξKW

)
− βtr

(
WTKCKW

)
+ γ ||W ||2,1

s.t. WTKHKW = Id
(42)

where tr
(
WTKCKW

)
can be used to minimize the variance of the target domain data in the

subspace, and ||W ||2,1 selects the feature from the data.
In our experiment, we use the K-nearest neighbor (KNN) as a classifier to evaluate

the performance of the proposed method. We obtained the parameter setting with the
best classification accuracy through grid search and applied the same parameter selection
process to the baseline methods. Each of the hyper-parameters used in our experiments
was chosen. We chose the best parameter by searching in the range of [10−15, 102]. For
simplicity and clarity, we chose an acceptable common set of them, as shown in Table 2.
In the experiments of the first four data sets, we used the linear kernel as kernel function,
while in the experiments of the BCI data set, we used the radial basis function (RBF).

https://github.com/viggin/domain-adaptation-toolbox
https://github.com/viggin/domain-adaptation-toolbox
https://github.com/minjiang/iglda
https://github.com/lijin118/tit


Entropy 2022, 24, 195 12 of 23

Table 2. PARAMETER SETTINGS.

DS OD SD NoN µ λ1 λ2 λ3 λ4

AR 2580 10–100 1 1 102 10−2 10−7 10−12

4DA 800 80 5 1 102 10−2 10−7 10−12

MNIST and
USPS 256 30–150 5 1 102 10−2 10−2 10−12

Reuters-
215789 4593 ± 200 10–50 5 1 102 10−15 10−7 10−9

BCI-2a 288 10–110 5 1 10−2 10−3 10−3 10−2

DS = dataset, OD = original dimensionality, SD = subspace dimensionality, NoN = number of neighbors in KNN,
λ1 for SLDARKHS-DA, λ2 for SLDATCA, λ3 for SLDAIGLDA and λ4 for SLDATIT.

4.2. Face Recognition

In this section, we evaluate the effectiveness of the proposed algorithm in face recogni-
tion tasks. The AR dataset [30] is widely used in experiments in the field of face recognition.
In this section, we select a subset of AR data set with a total of 2600 face images. This
dataset consists of 100 people, with 50 men and 50 women. Each subject has 26 images.
The AR face images were captured twice, with an interval of two weeks between the two
shots. Each shot collected 13 pictures of different modes with different light brightness,
light angle, facial expression and occlusion (sunglasses or scarf). In this experiment, each
face image was normalized as a gray level image of pixels. The training set and test set
directly used the gray value and vectorization of the image as the input. According to
the different shooting times and states, 26 face images of each subject corresponded to
26 patterns, which were numbered as 1a to 1m and 2a to 2m. Figure 1 shows a sample of the
AR data set with 26 face images from the same subject. Figure 1a–m belongs to one group,
while 2a–2m is from another group, which is under the same conditions taken two weeks
later. We used the notation C1.a and C2.a to represent a collection of natural expressions of
the face images. In this section, C1.a and C2.a are combined as source domain data set XS.
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Figure 1. Sample images of the AR face dataset. (1a–1m) and (2a–2m) represent two groups of 13 face
pictures from left to right.

From the other 24 patterns except C1.a and C2.a, the first 18 patterns were selected,
including C1.b to C1.j and C2.b to C2.j, and the data of these patterns were taken as 18 target
domain data sets respectively and 18 classification tasks were set.

In the first experiment, we studied how our proposed SLDARKHS-DA affected the
distribution of the source and target domains. We took C1.f and C2.f as target domain XT ,
respectively, and calculated the distance between the geometric center of the source domain
and target domain and the variance of the source domain data in the original space and
subspace, to prove the effectiveness of domain adaptation. As shown in Table 3, in the
experiment with C1.f as the target domain, after the data of the source domain and target
domain are transformed from the original space to the subspace, not only do the geometric
centers of the data of the two almost coincide, but also the variance of the data is greater.
As the distance between the classes in the source domain becomes larger, the classification
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efficiency of the KNN algorithm improves. Similarly, the geometric distribution of data
with C2.f as the target domain, also shows a similar change.

Table 3. Data distribution in the original space and subspace for face recognition.

Original Space Subspace
Task D (S, T) Var (S) Var (T) D (S, T) Var (S) Var (T)

1.f 3182 1867 2065 9× 10−3 5393 5561
2.f 3060 1867 2036 1 × 10−12 5448 5624

D (S, T) = distance between the source domain and target domain, and Var = variance.

In the second experiment, we regard the data in the source domain as labeled and
the data in the target domain as unlabeled. Similarly, we combined C1.a and C2.a as the
source domains and set the target domains as C1.b to C1.j and C2.b to C2.j. A total of
30% of the images from the target domain were crystals selected as training data and the
transformation function by the domain adaptation methods obtained by XT and XS. We
set the KNN as the default classifier and the expected subspace dimensionality was fixed at
90 for the classification experiments. The experimental results are shown in Table A1 in
Appendix A.

We noted that the direct classification of XT data with the KNN was worse than the
classification of the mapped Γ(XT) data obtained by RKHS-DA with KNN. Moreover, the
classification accuracy of the SLDARKHSDA algorithm combining the regularization terms
SLDA and RKHS-DA improved by 4% on average.

Furthermore, we combined the proposed regularization term SLDA with the base-
line algorithm for comparison to form a new domain adaptation algorithm, which was
compared with the original baseline algorithm. As shown in Table A3, in terms of average
classification accuracy, the SLDA improves the TCA by 3.1%, IGLDA by 1.2% and TIT
by 2.8%, respectively. This agrees with our idea of RKHS subspace learning, because the
baseline algorithm compared with our RKHS-DA algorithm is similar in terms of domain
adaptation; therefore, SLDA also improves the performance of such an algorithm.

In the third experiment, to investigate how the dimensionality of the subspace of the
feature map affects the final performance of our algorithm, we combined C1.a and C2.a
as the source domain and took C1.f as the target domain for the classification experiment.
We mapped the data into different dimensionalities in subspace from 10-dimensional to
100-dimensional, the step size was set to 10 and other parameters were set to the same
values as in the second experiment. The experimental results are shown in Figure 2. We
observed that the larger the subspace dimension, the higher the classification accuracy.
However, the curve of classification accuracy tends to flatten out as the subspace dimension
keeps increasing. Compared with the original baseline algorithm, the baseline algorithm
combining the SLDA regularization term achieved a higher accuracy in different subspace
dimensions, which means that the SLDA regularization term proposed in this paper is
robust and stable.

4.3. Object Recognition

Caltech-256 (C, collected by the California Institute of Technology), Amazon (A, images
downloaded from amazon.com in October 2020), webcam (W, low resolution images captured
by a Web camera) and DSLR (D, high-resolution images captured by a digital SLR camera)
4 datasets domain adaptation (4DA) are the most popular benchmarks in domain adaptation.
The number of common categories in the 4 domains is 10, indicating that the number of
categories in the 4DA dataset is 10. Each category in each domain has 8 to 151 samples, with a
total of 2533 images. Figure 3 shows some samples selected from the 4DA.
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Figure 3. Sample pictures from the four datasets: (a) Caltech-256, (b) Amazon, (c) webcam and
(d) DSLR.

For all datasets, we followed [31] to preprocess the data using a similar feature extrac-
tion and experimentation protocol. By randomly selecting two different domains as the
source and target domains, a total of 4 × 3 = 12 cross-domain object recognition tasks were
constructed. In each task, we randomly selected a certain number of samples from each
category as the source domain data for the training set.

When D was the source domain, we drew 8 samples from each category; when A, C
and W were the source domains, we drew 20 samples from each category. Then, the source
domain samples were used as the training set data and the target domain samples were
used as the test set.

The results of the first experiment are shown In Appendix A, Table A2. Compared with
the original space, the geometric center distance between the source and target domains in
the subspace is greatly reduced, and the number variance of the source and target domains
is greatly increased.

The results of the classification experiments are shown in Appendix A, Table A3. The
classification accuracy of the SLDARKHSDA algorithm with the addition of the SLDA
regularization term is about 2% higher than that of the KNN and RKHS-DA algorithms.
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4.4. Handwritten Numeral Classification

In this section, the USPS+MNIST dataset is used for handwritten digit classification
experiments. The USPS dataset consists of 7291 training images and 2007 test images of
size 16 × 16. The MNIST dataset has a training set of 60,000 examples and a test set of
10,000 examples of size 28 × 28.

The images of both the MNIST and USPS datasets share 10 grayscale images of
handwritten Arabic numerals. These images were rescaled to a size of 16 × 16, which
allowed the numbers to be fixed in the center of the entire image and the images to be of
the same size. Figure 4 shows an example of MNIST and USPS data sets.
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The experiment in this section was conducted on a subset of MNIST+USPS data set,
which consisted of two parts: the first part was 2000 images randomly selected from the
MNIST data set, and the second part was 1800 images randomly selected from the USPS
data set.

Similarly, all the images in the subset were uniformly resized to 16 × 16 pixels and the
gray value of the pixels was used as a feature vector to represent each image. Thus, the
samples of MNIST and USPS lie in the same 256-dimensional feature space. To speed up
the experiments, we constructed a dataset MINST vs. USPS, randomly selected 50 sets of
digital images in MINST, with a total of 500 images to form the source data, and used all
the images in USPS to form the target data.

Like we did on the other data sets, in the first experiment, we fixed the dimension
of the subspace as 150, and after our algorithm transformation, D(S, T) was reduced from
2.96 to 1.15, Var(S) was changed from 3.6 to 3.2, and Var(T) was changed from 4 to 6.
Although the Var(S) is smaller, which is not what we expected, the ratio of Var(S)/D (S, T)
is larger, so it still verifies the effectiveness of our algorithm.

In the second experiment, we trained the KNN classifier to repeat the classification
experiment 100 times, and used a linear kernel function. The subspace dimensions were
set to 30 to 150 and the step size was 20. Figure 5 shows the experimental results. The
SLDARKHS-DA algorithm with the SLDA regularization term improves the classification
accuracy of RKHS-DA algorithm by about 3%, which is much higher than the classification
accuracy of KNN directly (51.18%). Similar results were found for other baseline methods:
the accuracy of the baseline algorithm with the SLDA regularization term was higher than
that of the original baseline algorithm. In addition, the variation of subspace dimensions
had little effect on the classification accuracy of each algorithm.
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4.5. Text Categorization

Reuters-21578 dataset (Dai et al., 2007) contains three cross-domain document cate-
gorization tasks, Orgs vs. People, Orgs vs. Places and People vs. Places. The notation “orgs
vs. Place” indicates that we have the Org subtype as the source domain data and the Place
subtype as the target domain. There are 1237 source documents and 1208 target documents
for the task of Orgs vs. People, 1016 source documents and 1043 target documents for the
task of Orgs vs. Places and 1077 source documents and 1077 target documents for the task
of People vs. Places. We randomly selected 50% of the source domain data as the training set
and used all the target domain data as the testing set.

In the first experiment, we set the subspace dimensions from 10 to 50 with a step size
of 10, and calculated the variance and the distance between the source domain and the
geometric center of the target domain. The experimental results are shown in Appendix A,
Table A4.

In the second experiment, we used the KNN classifier to verify the effect of the methods.
The experimental results are shown in Appendix A, Table A5. In almost all the

dimensions and all the experiments, the recognition rate of RKHS-DA was improved
to some extent by the SLDA regularization term. In addition, SLDA also improved the
classification accuracy of the other baseline methods used for comparison.

4.6. Motor Imagery Classification

As described in Section 3, we used the 2a dataset from the BCI competition IV, which
consists of nine subjects [32]. The subjects were sitting in an armchair in front of a computer
screen. As shown in Figure 6, at the beginning of the trial (t = 0 s), a fixation cross appeared
on the black screen. In addition, a short acoustic warning tone was presented. After two
seconds (t = 2 s), a cue appeared and stayed on the screen for 1.25 s. This prompted the
subjects to perform the desired motor imagery task (left hand, right hand, both foot and
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tongue). No feedback was provided. The subjects were asked to carry out the motor
imagery task until the fixation cross disappeared from the screen at t = 6 s.
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Figure 6. Timing scheme of one trial.

For each subject, two periods of data were recorded on two different days, with
288 tails for each period and 72 trajectories for each category. We captured data from 1.5 to
6.5 s for one trial. The recorded EEG signals were sampled with 250 Hz and filtered by a
fifth-order Butterworth filter band in the 8–30 Hz frequency band.

We took A01T to A09T as the source domain and A01E to A09E as the target domain,
respectively, while a total of 9 experiments were set up. In this experiment, the PCA
algorithm as the baseline method was added for the dimensionality reduction of the
original spatial data, and KNN was used as the default classifier of all algorithms. We set
the parameter γ of the sparse regularization item to 10−2, and the other parameter settings
are shown in Section 4.1.

Since our ultimate goal was to compare the performance of our method with the other
baseline methods on the BCI 2a dataset, in the first experiment, we fixed the dimension of
our subspace to 25 and performed the classification on different subjects from A01 to A09
for comparison. Figure 7 shows that our method outperforms the baseline algorithm in all
experiments, except for the result recorded in A04.
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In the second experiment, we compared our method with the baseline method in
terms of the dimensionality reduction. We used A01T as the source domain and A01E as
the target domain, and the dimensionality of the subspace varies from 10 to 110. As shown
in Figure 8, our SLDARKHS-DA (Sparse) outperforms the other baseline methods.
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Figure 8. Comparison of SLDARKHS-DA (Sparse) and the various baseline methods on BCI 2a
datasets in different dimensionalities of the subspace.

In the third experiment, we investigated the impact of our algorithm on the source
domain data distribution. For visualization purposes, we applied tSNE to both the original
data and the transformed data. Figure 9a shows a two-dimensional representation of
the original data vector, i.e., each point in the figure is a representative of a trial. More-
over, Figure 9b shows the representation of the transformed data vector obtained by our
SLDARKHS-DA (Sparse). In Figure 9a,b, the points are colored according to the mental
task. We observe that the source domain data are chaotic in the original space, while
our algorithm separates the four classes of data, which facilitates the accuracy of the
KNN classifier.
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In the fourth experiment, Table A6 in Appendix A shows the classification accuracy
of various original baseline algorithms and the baseline algorithm after adding the SLDA
regularization term. Firstly, from the perspective of the domain adaptation framework,
RKHS-DA and the other baseline algorithms of the domain adaptation are better than
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PAC+KNN, and the SLDARKHS-DA (Sparse) is better than the other algorithms. In
addition, it can be seen that the SLDA regularization term has certain improvements over
the other baseline algorithms used for comparison.

In the fifth experiment, we conducted experiments on subject A01, with A01T as the
source domain and A01E as the target domain. We set the range of the subspace dimension
from 10 to 110. The average classification results are shown in Figure 10. Based on these
results, we observe that the classification performance of the algorithm with regularization
SLDA is better than that of the original baseline algorithm in all the dimensions.
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5. Conclusions

In this paper, we reorganized the RKHS subspace learning framework based on the
theory of RKHS, which consists of functions defined on the original data space instead
of the Hilbert space that is independent of the original data space. We first proposed an
SLDA regularization term based on the discriminant analysis of the source domain data.
The regularization term can increase the inter-class distance and decrease the intra-class
distance. Based on the SLDA and RKHS subspace learning framework, we proposed
a domain adaptation algorithm. Based on the application of BCI, we selected the most
desired data to form the basis of the subspace by adding sparse constraints, i.e., L2.1 norm.
Extensive experiments validated the effectiveness of our algorithm.

In the future, we plan to continue our work by pursuing several avenues. First,
SLDARKHS-DA uses parametric kernels for the MMD, and we plan to develop an efficient
algorithm for kernel choice in SLDARKHS-DA. Second, to improve the sensitivity of the
MI data, we will use the frequency domain features of the MI data. Moreover, we plan to
extend SLDARKHS-DA to other BCI experiments with cross-subject settings.
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Appendix A

Table A1. Classification accuracy (in %) of face recognition in different tasks (1(a) and 2(a) for
source domain).

Task KNN RKHS-DA SLDA RKHS-DA TCA TCA + SLDA IGLDA IGLDA + SLDA TIT TIT + SLDA

1.b 98.00 97.00 97.00 97.00 97.00 99.00 97.00 97.00 99.00
1.c 89.00 89.00 95.00 89.00 94.00 90.00 94.00 88.00 94.00
1.d 57.00 63.00 64.00 63.00 65.00 64.00 65.00 60.00 66.00
1.e 15.00 88.00 91.00 88.00 91.00 90.00 92.00 85.00 90.00
1.f 11.00 74.00 84.00 74.00 88.00 81.00 88.00 75.00 83.00
1.g 3.00 63.00 67.00 63.00 67.00 64.00 67.00 59.00 69.00
1.h 48.00 63.00 64.00 63.00 65.00 68.00 65.00 61.00 61.00
1.i 33.00 57.00 49.00 57.00 54.00 58.00 54.00 52.00 49.00

2.b 96.00 97.00 98.00 97.00 98.00 98.00 98.00 95.00 98.00
2.c 92.00 95.00 99.00 95.00 99.00 95.00 99.00 93.00 99.00
2.d 65.00 69.00 64.00 69.00 68.00 70.00 68.00 67.00 63.00
2.e 21.00 88.00 93.00 88.00 95.00 90.00 95.00 88.00 93.00
2.f 17.00 78.00 83.00 78.00 86.00 79.00 86.00 74.00 82.00
2.g 2.00 48.00 72.00 48.00 73.00 55.00 73.00 43.00 72.00
2.h 38.00 68.00 56.00 68.00 61.00 67.00 61.00 63.00 56.00
2.i 41.00 59.00 54.00 59.00 58.00 61.00 58.00 57.00 49.00

Average 45.38 74.75 76.88 74.75 78.69 76.81 78.75 72.31 76.44

Table A2. Data distribution in the original space and subspace for object recognition.

Original Space Subspace
Task D(S, T) Var(S) Var(T) D(S, T) Var(S) Var(T)

A→W 1.665 27.19 27.97 0.0068 1030.64 1046.91
A→C 1.704 27.68 27.58 0.0052 1564.31 1567.77
A→D 1.678 27.78 28.03 0.0097 1017.99 979.06
C→W 1.776 27.40 27.97 0.0081 1054.88 1043.30
C→A 1.826 28.11 27.75 0.0080 1389.24 1411.04
C→D 1.851 27.03 28.03 0.0088 975.87 975.18
D→W 2.225 28.14 27.97 0.0085 1032.31 1000.64
D→A 2.298 27.62 27.75 0.0053 1242.08 1427.02
D→C 2.315 27.97 27.58 0.0049 1359.13 1502.02
W→D 1.257 27.62 28.03 0.0165 932.61 934.83
W→A 1.236 27.73 27.75 0.0129 1215.04 1399.26
W→C 1.283 28.04 27.58 0.0112 1272.64 1456.59
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Table A3. Classification accuracy (in %) of object recognition in different tasks.

Task KNN RKHS-DA SLDA RKHS-DA TCA TCA + SLDA IGLDA IGLDA + SLDA TIT TIT + SLDA

A→W 29.83 33.14 35.45 34.83 35.92 35.28 35.70 37.13 37.32
A→C 26.00 33.09 34.91 34.83 35.41 34.99 35.01 33.44 33.90
A→D 25.48 28.83 30.25 35.61 36.74 30.76 31.23 35.43 35.79
C→W 25.76 31.82 32.54 32.90 33.10 32.82 33.66 37.07 37.82
C→A 23.70 35.02 36.68 36.61 37.09 36.62 37.26 33.84 33.77
C→D 25.48 32.96 34.69 35.57 36.37 35.09 35.40 39.97 40.78
D→W 63.39 59.44 60.79 61.93 62.13 60.58 60.84 70.42 71.40
D→A 28.49 31.89 33.92 34.03 34.23 33.96 34.05 27.90 28.39
D→C 26.27 31.04 33.15 32.91 33.46 32.57 33.06 26.26 26.61
W→D 59.24 66.93 68.59 68.97 69.82 68.90 69.06 77.34 78.35
W→A 22.96 33.41 35.64 35.71 35.80 35.48 35.86 31.55 32.14
W→C 19.86 28.50 30.65 30.86 31.39 30.61 30.88 27.99 28.56

Average 31.37 37.17 38.94 39.56 40.12 38.97 39.33 39.86 40.40

Table A4. Data distribution in the original space and subspace for text categorization.

Task SD
Original Space Subspace

D(S, T) Var(S) Var(T) D(S, T) Var(S) Var(T)

People
vs.

Places

10 1.96 60.62 64.14 0.005 844.13 1283.17
20 1.98 59.95 64.14 0.005 1002.98 1763.11
30 1.96 60.44 64.14 0.010 1346.93 2049.31
40 1.93 61.05 64.14 0.008 1406.10 2240.79
50 1.92 61.56 64.14 0.002 2530.73 2463.35

Orgs
vs.

People

10 1.90 61.65 65.70 0.004 688.33 1190.34
20 1.85 62.72 65.70 0.005 1023.54 947.86
30 1.89 63.19 65.70 0.002 2046.41 2210.36
40 1.89 62.08 65.70 0.002 1299.08 2131.33
50 1.89 63.01 65.70 0.008 1447.91 1459.49

Orgs
vs.

Places

10 1.99 61.44 63.41 0.005 690.08 1161.74
20 1.99 61.18 63.41 0.007 976.39 1591.35
30 1.98 61.14 63.41 0.002 1878.04 1939.63
40 2.00 61.37 63.41 0.008 1390.50 2116.67
50 1.97 61.78 63.41 0.007 1408.70 2276.13

Table A5. Classification accuracy (in %) of text categorization in different tasks.

Task SD KNN RKHS-DA SLDA
RKHS-DA TCA TCA + SLDA IGLDA IGLDA

+SLDA TIT TIT + SLDA

People
vs.

Places

10

45.18

61.42 61.72 61.30 61.70 62.09 62.72 51.88 57.96
20 61.33 60.81 60.92 61.57 61.38 61.81 53.62 57.47
30 59.20 59.78 59.34 60.35 59.69 60.78 54.55 57.17
40 57.99 58.15 58.48 58.84 58.57 59.15 54.88 56.25
50 57.41 57.85 57.44 58.12 57.96 58.85 54.15 57.22

Orgs
vs.

People

10

45.32

76.14 76.97 76.80 77.19 77.14 76.97 58.22 68.09
20 77.99 78.91 79.16 79.77 79.17 78.91 62.85 72.51
30 78.07 79.03 78.45 79.88 79.07 79.03 63.38 74.80
40 78.57 79.41 79.18 80.21 79.26 79.41 65.56 75.82
50 78.31 79.07 79.03 79.85 79.13 79.07 66.33 75.69

Orgs
vs.

Places

10

54.39

70.27 69.88 69.77 69.79 70.60 69.88 57.03 61.94
20 72.37 72.45 72.44 73.45 71.97 72.45 60.91 63.61
30 71.84 71.81 71.71 72.38 71.76 71.81 62.69 65.48
40 71.18 71.24 71.37 71.72 71.38 71.24 63.95 65.80
50 70.97 71.55 70.89 71.58 71.30 71.55 64.66 65.88

Average 48.30 69.54 69.91 60.75 70.43 70.03 70.24 59.64 65.05
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Table A6. Classification accuracy (in %) of BCI—motor imagery on different subjects.

Subject KNN RKHS-DA SLDA
RKHS-DA(Sparse) TCA TCA + SLDA IGLDA IGLDA + SLDA TIT TIT + SLDA

A01 38.89 64.24 67.98 63.82 68.42 64.69 63.65 62.26 63.53
A02 35.07 31.94 43.19 33.26 44.71 34.69 33.85 34.03 46.48
A03 29.51 61.81 65.72 62.53 67.42 63.33 62.99 65.94 67.03
A04 26.74 33.68 30.97 34.34 32.24 34.31 29.86 29.20 30.89
A05 24.65 24.31 26.90 24.34 26.31 23.78 23.89 24.27 26.24
A06 24.31 31.94 33.78 31.91 34.57 31.74 32.29 31.98 36.58
A07 49.65 50.69 56.76 50.17 57.80 50.56 49.17 46.88 57.35
A08 26.04 57.99 66.03 59.13 66.13 59.83 59.58 55.52 55.96
A09 25.00 64.58 67.56 67.08 68.42 67.12 66.53 68.75 71.03

Average 27.99 46.80 50.99 47.40 51.78 47.78 46.87 46.54 50.56
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