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Abstract

Plant genetic engineering, which has led to the production of plant-derived monoclonal antibodies (mAbPs), provides a safe
and economically effective alternative to conventional antibody expression methods. In this study, the expression levels and
biological properties of the anti-rabies virus mAbP SO57 with or without an endoplasmic reticulum (ER)-retention peptide
signal (Lys-Asp-Glu-Leu; KDEL) in transgenic tobacco plants (Nicotiana tabacum) were analyzed. The expression levels of
mAbP SO57 with KDEL (mAbPK) were significantly higher than those of mAbP SO57 without KDEL (mAbP) regardless of the
transcription level. The Fc domains of both purified mAbP and mAbPK and hybridoma-derived mAb (mAbH) had similar
levels of binding activity to the FccRI receptor (CD64). The mAbPK had glycan profiles of both oligomannose (OM) type
(91.7%) and Golgi type (8.3%), whereas the mAbP had mainly Golgi type glycans (96.8%) similar to those seen with mAbH.
Confocal analysis showed that the mAbPK was co-localized to ER-tracker signal and cellular areas surrounding the nucleus
indicating accumulation of the mAbP with KDEL in the ER. Both mAbP and mAbPK disappeared with similar trends to mAbH

in BALB/c mice. In addition, mAbPK was as effective as mAbH at neutralizing the activity of the rabies virus CVS-11. These
results suggest that the ER localization of the recombinant mAbP by KDEL reprograms OM glycosylation and enhances the
production of the functional antivirus therapeutic antibody in the plant.
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Introduction

Rabies virus causes a neuroinvasive disease that is typically fatal

in humans. After the penetration of the virus and the subsequent

onset of the associated clinical symptoms, there is no effective

treatment. Recombinant rabies virus vaccines provide an effective

method for the prevention of virus infections [1,2]. However, after

a rabies exposure, the currently recommended intervention

strategy is to neutralize and clear the virus with antibodies or

immunoglobulins (IgGs) through post-exposure prophylaxis (PEP)

before the virus enters the nervous system. The use of human or

equine rabies immune globulin has saved the lives of countless

patients who would have died if treated with vaccine alone.

Unfortunately, the worldwide shortage of the IgGs has hampered

global efforts to provide PEP against rabies [3].

Typically, recombinant pharmaceutical proteins such as anti-

bodies and therapeutic proteins are produced in animal systems.

Alternatively, keep plant systems can be used for the large-scale

production of these proteins. Plant systems offer several advan-

tages including low upstream cost inputs, an absence of human or

animal pathogen contaminants, and the ability to employ post-

translational modifications such as glycosylation [4–8]. Many

therapeutic and diagnostic mAbs have been expressed successfully

in plants, including full-length IgGs, Fab fragments, single variable

domains, antibody-fusion proteins, and single-chain antibodies

[5,9,10].
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The biosynthesis of N-linked glycans in plants differs from that

of mammalian cells [11]. Although plants synthesize complex N-

linked glycans containing a core Man3GlcNAc2 that bears 2

terminal N-acetylglucosamine (GlcNAc) residues, which are similar

to those found in mammals, a b(1,2)-xylose (Xyl), Lewisa epitopes,

and an a(1,3)-fucose (Fuc) exist on the Man3GlcNAc2 core in

plants. These plant-specific epitopes are absent on mammalian

glycans and are therefore recognized by allergen-reactive mam-

malian IgEs [12,13].

Glycoproteins are N-glycosylated in the ER and the Golgi

complex and then secreted into subcellular compartments such as

vacuoles and the extracellular space. Glycosylation processing in

the ER is conserved amongst almost all species and restricted to

OM (Man5–9GlcNAc2)-type glycans, whereas the Golgi-generated

glycans are highly diverse [14]. In plants, the addition of KDEL at

the C-terminal end of a protein is sufficient for the protein to be

retained in the ER [15,16]. mAbPs with KDEL fused to their

heavy chain (HC) and light chain (LC) therefore contain

exclusively non-immunogenic, OM type glycans with stable ER

accumulation [17]. Gradinaru et al. [18] found that their protein of

interest accumulated in the ER when it contained the KDEL in

mammalian cells, and this ER retention of proteins in plants

usually improved the production levels [19,20]. However, an in vivo

study in mice demonstrated that the anti-rabies mAbP with OM

type glycans was cleared from serum more rapidly than mAbH [5].

The rapid clearance might be due to a number of possibilities,

including immunogenicity resulting from KDEL itself acting as an

epitope, a glycan residue-derived conformational alteration of the

Fc domain [21], the OM structure being easily accessible to Man

binding lectin [22], and a lack of terminal sialylation, which

contributes to protein instability [23]. It has not been clearly

understood whether the shorter half-life is due to the OM or lack

of sialylation on the glycoproteins [5]. Unlike mAbs for cancer

therapy, an anti-rabies mAb for PEP with rapid clearance is

beneficial because interference between the mAbs and the vaccine

can then be avoided [5].

In the present study, we expressed and characterized a human

anti-rabies mAb derived from plants with or without the C-

terminal KDEL tag for ER retrieval and demonstrated its

effectiveness in vitro and in vivo. Both mAbPK and mAbP were

compared with the mAbH for the rabies virus in their expression

level, ER localization, N-glycan processing, neutralization activity,

and protein stability. The KDEL-tagged mAb became predom-

inantly localized in the ER, thus enhancing the mAb assembly in

the plant cells. Therefore, the KDEL tagging to the mAb helped to

enhance the final mAb yield in plants.

Results

Expression of mAb SO57 in Tobacco Transgenic Plants
Transgenic tobacco lines were obtained by Agrobacterium-

mediated transformation with plant expression vectors carrying

HC, HCK, and LC of the human mAb SO57. Both HC and

HCK cDNA were placed downstream of the alfalfa mosaic virus

untranslated leader sequence (AMV) under the control of the

enhanced cauliflower mosaic virus 35S promoter (Ca2p), while LC

cDNA was under control of the potato proteinase inhibitor II gene

(Pin2) promoter (Figure 1A). PCR amplification was conducted to

confirm the presence of HC, HCK, and LC genes in genomic

DNA isolated from the randomly selected transgenic plants

(Figure 1B). The amplified HC (1431 bp), and LC (729 bp)

fragments were detected in all samples, whereas the HCK

(1443 bp) genes were detected only in the transgenic plants with

HCK (Figure 1B). None of the transgenes were detected in the

non-transgenic plants.

Evaluation of mAb SO57 HC and LC Expression Levels by
Real-Time Quantitative Reverse Transcription-PCR (RT-
qPCR) and Immunoblotting

A RT-qPCR assay was performed to determine the transcrip-

tion levels of HC and LC in randomly selected transgenic plants

(Figure 2A). RT-qPCR products of the expected sizes for the mAb

SO57 HC (67 bp; Left) and LC (66 bp; Right) were detected in

the transgenic plants (Figure 2A). When normalized against actin

mRNA, transcript levels of both HC and LC were not significantly

different between mAbP and mAbPK (p.0.05) (Figure 2A). The

expression of the HC and LC proteins in the transgenic plants was

confirmed by immunoblot (Figure 2B). Both the HC (50 kDa) and

LC (25 kDa) bands were identified in the total leaf soluble protein

extracts from the transgenic plants by the anti-human Fcc- and

anti-F(ab9)2-specific secondary IgGs, respectively. In the immuno-

blot with the anti-human Fcc-specific IgG, HC was detected in

both mAbP and mAbPK samples. In the immunoblot with the

anti-F(ab9)2-specific IgG, LC was detected in all transgenic

samples. In addition, the expression levels of HC (Left) and LC

(Right) were higher in the mAbPK sample than that in the mAbP

sample (Figure 2B).

Localization of mAbP and mAbPK in Plant Cells
The ER, labeled red with ER tracker was observed in cells of

both mAbP and mAbPK transgenic plants (Figure 3, ER-tracker).

mAbH SO57-immunoreactive green fluorescence was seen in cells

from mAbP and mAbPK transgenic tobacco plants (Figure 3, and

S1, Human IgG, respectively) whereas no green signal was found

in cells from non-transgenic plants (NT) (Figure S1, Human IgG,

lower panel). The nuclei, which were labeled blue with TO-PRO-

3, were observed in cells from all of the plant samples (Figure 3,

TO-PRO-3). In the mAbPK transgenic plant, the strong green

fluorescent signal of antibody closely overlapped with the red

fluorescent signal of ER-Tracker in round shape (Figure 3, Human

IgG and Merge, upper panel) whereas in the mAbP transgenic

plant, the green fluorescent signal was roughly spread in cells

without close overlapping to the red fluorescent signal (Figure 3,

Human IgG and Merge, lower panel).

Figure 1. Expression of mAb SO57 in transgenic plants. (A) A
schematic diagram of the mAb SO57 HC and LC DNA constructs [7]. (B)
PCR analysis of LC (729 bp), HC (1431 bp) and HC fused to KDEL (HCK,
1443 bp) in the genomic DNA. NT, non-transgenic plant; mAbP, non-
KDEL-tagged mAbP; mAbP K, KDEL- tagged mAbP.
doi:10.1371/journal.pone.0068772.g001

Glycosylation of Monoclonal Antibody in Plant
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In the mAbPK transgenic plant, the antibody immunoreactivity

disclosed a concentric green ring (Figure S1, Human IgG and

Merge, upper panel, arrow heads) whereas in the mAbP transgenic

plant, a strong green ring shape was not observed (Figure S1,

Human IgG and Merge, middle panel). In the mAbPK transgenic

plants, the merge of green and blue showed, surrounding the

outside of the blue-labeled nucleus, a relatively strong green ring,

where the ER is distributed (Figure S1, Merge, upper panel). In

contrast, in the mAbP transgenic plants, the green did not

surround the outside of the nucleus in the plant cells. In the non-

transgenic plants, the nuclei labeled in blue were observed whereas

the green was not detected (Figure S1).

Purification of Plant-derived mAb SO57
mAbs were purified from leaves harvested from mAbP and

mAbPK transgenic tobacco plants. The protein A column

purification yielded an average of 0.4 and 1.2 mg of mAbP and

mAbPK per kilogram of fresh leaves from high mAb expressing

lines, respectively. SDS/PAGE analysis of the purified mAbP

revealed two major bands (50 and 25 kDa for the HC and LC,

respectively) (Figure 4). The LC of mAbP was slightly heavier than

that of mAbH (Figure 4). The discrepancy of mobility is due to the

different buffer composition of purified samples between plant and

human or the different signal peptide used to espress the

recombinant LC gene in transgenic plants. In this study, different

Figure 2. The RT-qPCR and immunoblot analysis of mAb SO57 HC and LC in transgenic tobacco plants. (A) Relative expression levels (Y
axis) of the HC and LC gene as determined by RT-qPCR. Amplicons generated with the RT-qPCR were confirmed by 1% agarose gel electrophoresis
(upper panel). The results of RT-qPCR are expressed as the average of three independent experiments after normalization with N. tabacum actin
bands (lower panel). Error bars represents mean relative expression values (mean 6 SD) of HC and LC to actin from the mAbP and mAbPK samples.
Transcript levels of HC and LC were not significantly different between the mAbP and mAbPK (p.0.05). mAbP, non-KDEL-tagged mAbP; mAbPK, KDEL-
tagged mAbP. (B) Western blot analysis of proteins extracted from leaves of randomly selected 4 transgenic plants without KDEL and 3 transgenic
plants with KDEL, respectively. The bands for HC (50 kDa) and LC (25 kDa) were detected with HRP-conjugated goat anti-human Fcc- or F(ab9)2-
specific antibodies, respectively. *p,0.05 compared to mAbP samples (Student’s t-test analysis). Error bars represent the mean 6 SD.
doi:10.1371/journal.pone.0068772.g002

Figure 3. Confocal analysis of the subcellular localization of
mAb SO57 and mAb SO57 K in plant leaves. Immunofluorescent
confocal microscopic photomicrographs displayed localization of mAb
SO57 in subcellular organelles of transgenic tobacco plant leaf cells. The
red signal for ER-Tracker Blue-White DPX, a photo-stable probe selective
for the ER in live cells, shows specific ER localization of mAb. The mAb
SO57-immunoreactive green fluorescence was detected by FITC-
conjugated anti-human IgG (green). The nuclei (blue) were labeled
with TO-PRO-3. Each image was merged to analyze the subcellular
localization of mAb SO57 in transgenic plants. The green fluorescent
signal of mAb SO57 K closely overlapped with the blue fluorescent
signal of ER-Tracker. Scale bars, 20 mm.
doi:10.1371/journal.pone.0068772.g003
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glycosylation is not the case since the LC does not have

glycosylation sites according to amino acid sequences.

Comparison of N-Glycan Structure and Neutralizing
Activity of Purified mAbP and mAbPK SO57

A DNA sequencer-based analysis was performed to compare

the N-glycan profiles of mAbP, mAbPK, and mAbH (Figure 5, S2,

and S3). APTS (8-amino-1,3,6-pyrenetrisulfonic acid)-labeled

glycan profiles are shown in Figure 5, and the peaks were

identified by exoglycosidase digestion and by the comparison to

glycan profiles previously assigned. Relative percents (%) for OM

and Golgi types were calculated from the sum of the correspond-

ing peak areas (Table 1). As expected, mAbP had very low

percentage of OM-type glycans. In contrast, mAbPK included a

high portion of OM-type glycans (91.7%) together with Golgi-type

glycans (8.3%). The mAbH displayed a range of complex glycans,

most of which (90%) contained a core a(1,6)-Fuc (Figure S2). In

addition, an in vitro comparison of the neutralizing activity of

mAbP and mAbPK against cell culture-adapted rabies virus (CVS-

11) indicated that both mAbP and mAbPK were as active against

the CVS-11 as was mAbH (Table 1).

Clearance of Plant-derived mAb SO57
An in vivo comparative clearance test of mAbs was conducted in

mice i.p. administered mAbP, mAbPK and mAbH. The blood

samples were collected between days 1 and 10 after injection.

Serum antibody concentrations were determined by ELISA. To

exclude the possibility to miscalculate clearance rate due to

difference in the initial antibody concentrations, the initial values

were considered as 100% at day 1 after injection. The

concentrations of antibodies in serum were expressed as relative

percent (Figure 6). Between days 1 and 10, mAb concentrations

slowly declined until day 10. The clearance trend of all three

antibodies was similar between days 1 and 10. At day 10 after

injection, the % value of mAbH (36%) was statisticallty not

different to mAbPK (39%)..

Discussion

Our data demonstrate that plant cell reprogramming with the

addition of an ER retention signal to mAb enhanced the

expression of the rabies antibody, which had a virus neutralizing

activity comparable to that of mAbH. In addition, the ER

retention signal allowed control of the subcellular localization of

the mAb and generated different glyco-structural patterns. The

expression level of the mAb and its biological activities are

essential elements for effective heterologous production of such a

highly valuable therapeutic protein. In this study, two different

plant expression vectors for the anti-rabies mAb with and without

the KDEL (mAbK and mAb, respectively), which was fused to the

HC, were designed in order to investigate the resulting expression

levels and biological activities of the ER-retained and default

secreted mAbs. The HC and LC were controlled under two

different promoters, Ca2p and Pin2p, respectively, in order to avoid

promoter-targeted transcriptional gene silencing [24]. The HCK

had about 2 times greater protein accumulation than the HC

without KDEL (HC). However, the relative transcription level of

the HCK was not significantly different. These data indicate that

the higher HC level in transgenic plants with mAbPK is due to ER

accumulation of the mAb. The LC protein expression in

transgenic plants with HCK was slightly higher compared to

transgenic plants without KDEL, whereas the LC transcriptional

level was relatively lower in HCK compared to HC transgenic

plants. These results suggest that the LC protein was assembled

together with the HCK, and consequently retained and accumu-

lated in the ER. Taken together, in transgenic plants with HCK,

protein expression levels were increased regardless of the similar

transcription level, when compared to transgenic plants with HC.

Thus, the KDEL can be applied to enhance the protein

accumulation level [25].

The confocal analysis revealed that the mAbPK was localized

around the outside of the nucleus where the ER is distributed

[25,26]. In contrast to the plants with HCK, the mAbP did not

surround the outside of the nucleus in plant cells. These

observations are consistent with previous studies where proteins

fused with KDEL were co-localized with ER surrounding the

nucleus [18]. The glycan structures of the antibody can be altered

by ER localization, and these alterations consequently impact on

the antibody stability and function, such as the antibody-

dependent cellular cytotoxicity (ADCC) [27].

In the glycosylation profiles of the mAbs analyzed using the

DNA sequencer, mAbPK and mAbP showed 91.7% and 3.2% of

OM-type glycan structures, respectively, which indicates that the

KDEL influences the glycan structure through the retention of the

mAb in the ER and supports the present confocal analysis results.

The mature glycan structures of plant proteins are characterized

by the presence of b(1,2)-Xyl and/or a(1,3)-Fuc residues, which

can cause allergenic and immunogenic responses [28,29]. Thus,

the KDEL has been added to the C-termini of proteins retained in

the ER in order to yield OM-type glycans that avoid such

glycoepitopes. Our previous studies demonstrated that OM-type

glycans of mAbPK are associated with more rapid clearance in vivo

compared with mAbH [5]. It has been proposed that the increased

clearance rate might be due to immunogenicity resulting from the

KDEL itself acting as an epitope and/or due to the glycan residue-

derived conformational alterations of the IgG Fc domain [21]. On

the other hand, OM structures can be easily internalized into

endocytic pathways in macrophages and dendritic cells upon

which the surface carrying Man receptors bind the OM of mAb

[30–32]. This internalization can be associated with faster

clearance of circulating oligomannosylated antibodies [33]. In this

Figure 4. SDS/PAGE of the mAb SO57 purified from transgenic
plants. Purified mAbs were loaded onto the gels and stained with
Coomassie brilliant blue R250. TPS, total protein extract from plant
leaves; mAbH, hybridoma-derived mAb SO57; mAbP, non-KDEL-tagged
mAbP; mAbPK, KDEL-tagged mAbP; HC, heavy chains of mAbP; LC, light
chain of mAbP.
doi:10.1371/journal.pone.0068772.g004

Glycosylation of Monoclonal Antibody in Plant
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study, however, both mAbPs, regardless of their OM or plant-

specific complex type glycostructures had similar disappearance

trends with mAbH. The mAb clearance trends observed in this

study are similar to the previous report where plant-derived anti-

hepatitis B virus mAbs with KDEL and without KDEL showed a

similar clearance trend in mice from 1 to 10 day after injection

[34]. These results suggest that the KDEL or OM glycan

structures are not closely related to the clearance trend of mAb

in mice sera. It is speculated that the non-sialylation of both mAbPs

did not affect the faster clearance of mAbs in blood circulation

regardless of OM or plant-specific complex glycan structures from

1 day to 10 day after injection. The interaction of the Fc portion of

the antibody with the Fc receptor of the immune cells is essential

to elicit ADCC, a mechanism of cell-mediated immunity whereby

natural killer cells actively promote cell death in a target cell by

triggering apoptosis. Previous studies have shown that anti-

colorectal cancer mAbs with plant-specific glycostructures had

similar in vitro interactions of Fc and the Fc Receptor I (CD64) to

their parental mAbM [7,35] and in vivo anti-tumor activity [36]. In

this study, the binding activities of mAbP, mAbPK and mAbH to

U937 cells (Human leukemic monocyte lymphoma cell line) [37]

expressing the Fc Receptor I (CD64) were determined by flow

cytometric assay (Figure 7). The FL2-H fluorescence peak (bold

line) of mAbPK (bottom) were located similarly to the mAbH

(upper), whereas the peak (bold line) of mAbP (center) was located

slightly more to the left as compared to the peak (bold line) of

mAbH (upper). Binding activity to the Fc receptor is also essential

for anti-rabies immunotherapy since the neutralization activity,

which physically blocks the rabies virus particles by mAb SO57, is

the only one required to acquire the anti-virus activity [38]. These

results indicate that an OM-type of antibody can have slightly

better interaction between Fc and Fc receptors compared to the

plant-specific glycan type.

In this study, direct comparison of clearance time and biological

activities of plant-derived anti-rabies virus monoclonal antibodies

with high mannose and plant-specific glycan structure were

performed, which has not been reported previously. Through

these data, we now see that glycan structures might not

significantly alter antibody stability. Certainly ER localization

affects glycan structure and expression of recombinant mAbs in

this plant expression system. The current results highlight the

potential of OM glycomodifications of therapeutic anti-rabies virus

mAbs produced in plants with KDEL-mediated subcellular ER

localization. Even though mAbP (plant-specific glycans) and

mAbPK (OM-type glycans) had relatively similar virus neutralizing

activity compared to mAbM, and thus similar potential for rabies

PEP application, expression in the ER can overcome concerns

about plant-specific glycoepitopes expressed by others [29] and

provide the additional benefits of higher expression and relatively

better effectiveness of Fc receptor-Fc interaction.

Materials and Methods

Ethics statement
BALB/c mice (female, 6–8 wk) were obtained from Daihan

Biolink (Eumsung, Korea) and injected i.p. with plant-derived

monoclonal antibody (mAbP) or hybridoma-derived monoclonal

antibody (mAbH). After injection, blood samples were collected

from the orbital sinus twice during the entire time period (10 days).

The animal experiments were approved by the Institutional

Animal Care and Use Committee (IACUC) of Wonkwang

University, Iksan, Korea (Approval ID: WKU11-28). All efforts

were made to minimize suffering of the animals.

Figure 5. N-glycan profiles of anti-rabies mAbPK and mAbP. mAbs were expressed from transgenic tobacco plants as dual forms with mAbPK
or mAbP. Glycan profiles of mAbP (A) and mAbPK (B) were obtained by DNA sequencer-based method for the plant N-glycan analysis. Golgi-type and
OM-type glycans were classified and confirmed by hexosamindase (H) and a(1,2)-mannosidase (a1,2-Man) digestions. The symbols of the glycan
structures are as follow: GlcNAc, black square; Man, white circle; Xyl, white triangle; Fuc, diamond with a dot inside. Non, non-digested sample.
doi:10.1371/journal.pone.0068772.g005

Table 1. Comparison of profiled glycan of mAbP, mAbPK, and
mAbH, and their virus-neutralizing activity against rabies virus
CVS-11.

Sample % of total peak area
Neutralizing Activity (IU/
ml)

Glogi type OM type

mAbH ,90 ,10 1.5

mAbP 96.8 3.2 1.5

mAbPK 8.3 91.7 1.5

OM type, oligomannose type.
doi:10.1371/journal.pone.0068772.t001

Glycosylation of Monoclonal Antibody in Plant
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Plant Transformation Vector and Generation of
Transgenic Plants

The mAb SO57 HC and LC genes were amplified by PCR with

forward and reverse primers containing NcoI and XbaI, and PstI

and BamHI sites in the 59 and 39 ends, respectively. The HC and

HCK cDNA were placed with AMV translational enhancer

element under the control of the Ca2p, and the LC cDNA were

under the control of the Pin2p in a pBI121-based plant expression

vector (Figure 1A). The two different types of HC genes were

cloned with and without fusion to the KDEL. Binary vectors for

Agrobacterium-mediated plant transformation were obtained accord-

ing to the protocol employed by a previous study [5]. The

transgenic tobacco plants were selected on kanamycin (100 mg/

ml), transplanted into soil, and maintained for subsequent

generations.

Polymerase Chain Reaction (PCR)
Genomic DNA was isolated from leaves by a DNeasy kit

(Qiagen, Valencia, CA), according to the manufacturer’s recom-

mendations. PCR amplification was applied in order to confirm

the presence of the genes encoding for mAb SO57 HC (1431 bp),

LC (729 bp) and HCK (1443 bp) using the forward (F) and reverse

(R) primers shown in Table S1. The PCR reaction was subjected

to 30 cycles of 94uC for 20 sec, 53uC for 20 sec and 72uC for

90 sec. Non-transgenic plants were used as a negative control.

Analysis of mRNA expression by RT-qPCR was performed as

described in SI Materials and Methods.

SDS-PAGE and Immunoblot Analysis
Leaf tissue (100 mg) was homogenized in Bradley buffer

(50 mM Tris, 7.5 pH, 10 mM KCl, 20% glycerol, 0.4 M sucrose,

5 mM MgCl2, and 10 mM b-mercaptoethanol). The proteins in

the homogenates were resolved by 12.5% SDS-PAGE and either

stained by using Coomassie brilliant blue R250 or transferred to a

nitrocellulose membrane (Millipore, Billerica, MA). Membranes

were incubated in 3% skim milk (Fluka, Buchs, Switzerland) in

PBS plus 0.5% (v/v) Tween 20 followed by goat anti-human Fcc
and F(ab9)2 fragment-specific antibodies conjugated to horseradish

peroxidase (Jackson Immunolab, West Grove, PA) to detect HC

and LC, respectively. Protein bands were visualized by exposing

the membrane to X-ray film (Fuji, Tokyo, Japan) using a

chemiluminescence substrate (Pierce, Rockford, IL). Non-trans-

genic plants and mAbH SO57 (Bayrab, Bayer, Elkhart, IN) were

used as negative and positive controls, respectively. Antibody levels

were densitometrically analyzed using ImageQuant v2005 soft-

ware (GE Healthcare, Freiburg, Germany).

Confocal Fluorescence Analysis
Leaf samples were fixed for 5 days with 4% paraformaldehyde

in 0.1 M phosphate buffer (pH 7.2). The fixed leaves were

dehydrated with ethanol, cleared with xylene, and embedded in

paraffin to make a paraffin block. The paraffin-embedded sample

was sectioned into 10 mm slices and attached to gelatin-coated

slides. The primary antibody (goat anti-human IgG; Animal

Genetics, Daejeon, Korea) was applied to the coated slides, and

the slides were then treated with green fluorescent Alexa-488

conjugated to a rabbit anti-goat IgG in order to detect the mAb

SO57. The slide was then incubated with the nuclear stain TO-

PRO-3 (Molecular Probes, Eugene, OR), which fluoresces blue at

633 nm.

Purification of mAbP SO57
Plant leaves (300 g) were homogenized on ice with extraction

buffer (37.5 mM Tris-HCl, 50 mM NaCl, 15 mM EDTA, 75 mM

sodium citrate, and 0.2% sodium thiosulfate) and centrifuged at

15,0006g for 30 min at 4uC. The supernatant was filtered through

a Miracloth (Calbiochem, Darmstadt, Germany), and solid

ammonium sulfate (AS) was added to produce a solution with

16% saturation. After 2 h of incubation at 4uC, the solution was

centrifuged at 15,0006g for 30 min at 4uC, the precipitate was

discarded, and AS was added to the supernatant to produce a

solution with 40% saturation. After incubation at 4uC overnight,

the solution was centrifuged as before, and the pellet was

resuspended in an extraction buffer to one-fifth of the original

volume. Soluble proteins were applied to a protein A column (GE

Healthcare), and the mAb was eluted according to the manufac-

turer’s recommendations. After overnight dialysis against 16PBS,

the mAb was concentrated by using an Amicon Ultra spin column

with a 10 kDa cut-off (Millipore) and then stored at 280uC.

Figure 6. Stability profiles of mAbH, mAbPK and mAbP in mice. The % value was calculated with the formula [1006(concentration of each
day/concentration of the first day (24 hr) after injection)], followed up to day 10. The concentration of mAb in the serum from BALB/C mice injected
i.p. with mAbH, mAbPK or mAbP was determined by ELISA. Data are presented as means 6 SD.
doi:10.1371/journal.pone.0068772.g006
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N-glycan Analysis by DNA Sequencer
Purified mAbs were digested into glycopeptides with 0.1 mg of

pepsin in 10 mM HCl buffer (pH 2.2) for 12 h at 37uC and then

incubated for an additional 12 h after the addition of a second

batch of 0.1 mg pepsin [39]. From the resulting glycopeptide

mixtures, N-glycans were released using peptide N-glycosidase

(PNGase) A (Roche, Mannheim, Germany). After the deglycosyla-

tion, the glycans were labeled by APTS and purified, as previously

described [39]. The resulting APTS-labeled glycans were dissolved

in 5 ml ultrapure water, and 1:20 diluents were dispensed into a

96-well plate. The plate was loaded onto an ABI 3130 sequencer

(Applied Biosystems, Foster City, CA) equipped with a standard

36 cm capillary array filled with POP-7 polyacrylamide linear

polymer. The running parameters for the sequencer were the same

as the previously described protocol [39,40]. The resultant

electropherograms were then analyzed using GeneMapper soft-

ware (Applied Biosystems). N-glycan analysis by permethylation

and mass spectrometry was performed as described in SI Materials

and Methods.

In Vitro Rabies Virus Neutralization Assay
The fluorescent antibody virus neutralization (FAVN) test was

carried out as previously described [41]. Each mAb and standard

reference serum containing a titer of 0.5 international units (IU)/

ml was tested in 4 replicates in a 96-well tissue culture plate.

Three-fold serial dilutions of mAbP, mAbPK, and mAbH were

incubated with the rabies virus cell cultured adapted standard

strain (CVS-11) [41] for 60 min at 37uC. After incubation, a cell

suspension containing 46105 BHK-21(baby hamster kidney cells)

[42] cells/ml were added, and the mixture was allowed to incubate

for 48 h at 37uC under 5% CO2. The plate was washed, fixed, and

stained with the FITC-labeled anti-rabies mAb (Jeno Biotech,

Chuncheon, Korea) and examined under a fluorescent micro-

scope. Every well that showed specific fluorescence was considered

to be positive. The median titer (D50) of the 4 replicate wells was

calculated by the Spearman-Kärber formula. The titer of each

mAb was expressed as IU/ml after comparison with that of

standard serum.

In Vivo Clearance of mAbs
BALB/c mice (female, 6–8 wk, n = 10 for each mAb, Daihan,

Eumsung, Korea) were injected i.p. with 7 mg of mAbP, mAbPK,

or mAbH in 100 ml of 16 PBS buffer. After injection, blood

samples were collected from the orbital sinus every day for 10

days; each mouse was bled twice during the entire time period.

Serum levels of mAbP, mAbPK and mAbH were detected by

sandwich ELISA. Plates were coated with 2 mg/ml of rabbit anti-

human IgG-Fc antibody (Bethyl Labs, Montgomery, TX) over-

night at 4uC. The plates were then incubated with mouse serum at

a dilution of 1:100 (v/v) for 4 h and then with HRP-conjugated

goat anti-human IgG Fcc fragment-specific antibody (Jackson

Immunolab) at a dilution of 1:3,000 (v/v). The plates were treated

with 3,39,5,59-tetramethylbenzidine (TMB) substrates in order to

detect the signals for approximately 20 min, after which the signal

was stopped with a TMB stop solution (KPL, Gaithersburg, MD).

The antibody titers in 3 wells per tested serum were estimated by

determining the optical densities at 450 nm using a Tecan ELISA

reader.

Flow Cytometric Analysis of mAb SO57 Binding to the
IgG receptor, the FccRI Receptor (CD64)

U937 human lymphoma cells were stimulated to express the

CD64 with 300 units/ml of interferon (IFN)-c (Boehringer

Ingelheim, Biberach, Germany) overnight at 37uC [43]. The

stimulated cells were then incubated for 1 h at 4uC with 10 mg/ml

of purified mAbH SO57, mAbP SO57 or mAbP K SO57 in PBS

containing 1% BSA and 0.02% sodium azide (immunofluores-

Figure 7. Flow cytometric analysis of binding activity of mAbH,
mAbP, and mAbP K SO57 to the FccRI (CD64). U937 cells with IFN-
c to stimulate Fc receptor expression were incubated with mAbH, mAbP

or mAbP K SO57, respectively. Binding activity of mAbH (upper), mAbP

(center), and mAbP K (bottom) to the activated cells expressing CD64
were analyzed by flow cytometry. Non-bold and bold lines indicate IFN-
c stimulated cells without any mAb, and with mAbH, mAbP and mAbPK,
respectively. The binding signals were detected with treatment of RPE-
conjugated goat anti-human IgG.
doi:10.1371/journal.pone.0068772.g007
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cence buffer, IFB). R-phycoerythrin (RPE)-conjugated goat anti-

human IgG (Southern Biotech, Birmingham, AL) was used to stain

the human mAbs bound to CD64. Fluorescein isothiocyanate

(FITC)-conjugated anti-human CD64 (eBioscience, San Diego,

CA) was applied to confirm the surface expression of CD64 on

IFN-c stimulated U937 cells. Cells were washed twice with IFB

and analyzed with a FACSCalibur flow cytometer (BD Bioscienc-

es, San Jose, CA),

RT-qPCR
The mRNA expression of the mAb HC and LC was quantified

by using RT-qPCR. Total RNA was extracted from leaves with

TRIzol reagent according to the manufacturer’s protocol. To

remove genomic DNA, 600 ng of total RNA was treated using a

TURBO DNA-freeTM (Ambion, Austin, TX) kit in a reaction

volume of 20 ml. Each RNA sample was used as a template for RT

reactions performed with AccuPower RT/PCR PreMix (Bioneer,

Daejeon, Korea). A total volume (20 ml) contained 120 ng of

template DNA-free RNA and oligo d(T)16 primer and random

hexamers. Primers for RT-qPCR were designed with the aid of

Primer Express software (Applied Biosystems) using default

parameters. The cDNA samples (2 ml) were used for the RT-

qPCR reaction, and the quantification was conducted on the the

StepOneTM Real-Time PCR System (Applied Biosystems) using

Taqman 26Universal PCR Master Mix, and primers and probe

sets specific for the mAb SO57 HC and LC. The reporter FAMTM

and nonfluorescent quencher BHQTM dyes formed 59 and 39

modifications, respectively. A StepOneTM Real-Time PCR

System was set for 1 cycle at 50uC for 2 min, 1 cycle at 95uC
for 5 min, and 40 cycles of denaturation at 95uC for 15 sec and

annealing/extension at 60uC for 1 min. A Nicotiana tabacum actin

gene [44] was used as an endogenous control in the RT-qPCR

reactions. The relative mAb SO57 HC and LC mRNA levels in

each sample have been expressed as a ratio with the relative

mRNA levels of actin for each sample. Primers used for RT-qPCR

are listed in Table S2.

N-glycan analysis by permethylation and mass
spectrometry

Prior to mass spectrometric analysis, glycans were permethy-

lated for enhancing sensitivity by solid phase permethylation using

spin-column method [45]. First, dried glycans were dissolved in a

mixture of 90 ml DMSO, 2.7 ml distilled water, 35 ml iodo-

methane. The resulting mixtures were passed eight times over a

spin-column packed with sodium hydroxide mesh beads using the

centrifugation at 4006g. After the washing step with acetonitrile,

eluates were collected by adding 400 ml chloroform. One ml of

500 mM NaCl solution was added, mixed well and then the upper

layer was carefully removed after centrifugation. This liquid-liquid

extraction step was repeated twice. The chloroform layer

containing permethylated glycans was dried and resuspended in

4 ml of 50% aqueous methanol solution for mass analysis. MALDI-

TOF mass spectrometry was performed in the reflector positive

ion mode using a Microflex TOF (Bruker Daltonik GmbH,

Bremen, Germany). For preparation of matrix solution, DHB (2,5-

dihydroxybenzoic acid) was dissolved at a 10 mg/ml concentra-

tion in 1 mM sodium acetate aqueous solution. Equal volumes of

permethylated glycans in 50% methanol solution and the prepared

matrix solutions were mixed and then applied onto a MALDI

MSP 96 polished steel Chip (Bruker Daltonik). After drying, mass

spectra were acquired with the method recommended by the

manufacture.

Statistical analysis
All experiments were repeated at least three times. Asterisks (*)

in the figures indicate differences deemed significant (P,0.05) by a

two-tailed Student’s t test. Data were shown as mean 6 SD.

Supporting Information

Table S1 Primers used for amplification of mAb SO57
HC, LC and HCK.

(DOCX)

Table S2 Primers and probes used in the RT-qPCR.

(DOCX)

Figure S1 Confocal analysis of the subcellular localiza-
tion of mAb SO57 and mAb SO57 K in plant leaves.
Immunofluorescent confocal microscopic photomicrographs dis-

played localization of mAb SO57 in subcellular organelles of

transgenic tobacco plant leaf cells. The mAb SO57-immunoreac-

tive green fluorescence was detected by FITC-conjugated anti-

human IgG (green). The nuclei (blue) were labeled with TO-PRO-

3. Each image was merged to analyze the subcellular localization

of mAb SO57 in transgenic plants. mAbPK, transgenic plant

expressing mAbPK; mAbP, transgenic plant expressing mAbP; NT,

non-transgenic plant; DIC, differential interference contrast

image; Merge (DIC), Merge image merged with DIC. Arrow

heads indicate a concentric green ring surrounding the nucleus.

The bar represents 20 mm.

(TIF)

Figure S2 N-glycan profiles of human-derived anti-
rabies monoclonal antibodies (mAbH) obtained by DNA
sequencer. The symbols of the glycan structures are as follows:

GlcNAc, black square; mannose, white circle; fucose, diamond;

galactose diamond with a dot inside. Non, no glycosidase

treatment; S, pre-treatment with a(2, 6, 8) sialidase; S+G, S pre-

treatment with b(1–4) galactosidase; S+G+F, S+G pre-treatment

with a(1–2, 3, 4, 6) fucosidase; S+G+F+H, S+G+F pre-treatment

with of b-N-acetylhexosaminidase.

(TIF)

Figure S3 N-glycan analysis by mass spectrometry.
Glycan profiles were cross-checked by mass spectrometric analysis,

which provided the possible glycan structures. After permethyla-

tion for enhancing the sensitivity, the mass of glycans prepared

from mAbP K (A) and mAbP (B) were analyzed. The symbols of

the glycan structures are as follows: GlcNAc, black square;

mannose, white circle; xylose, white triangle; fucose, diamond with

a dot inside.

(TIF)
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15. Gomord V, Denmat LA, Fitchette-Lainé AC, Satiat-Jeunemaitre B, Hawes C, et

al. (1997) The C-terminal HDEL sequence is sufficient for retention of secretory
proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of

proteins that escape the ER. Plant J 11: 313–325.
16. Pagny S, Cabanes-Macheteau M, Gillikin JW, Leborgne-Castel N, Lerouge P, et

al. (2000) Protein recycling from the Golgi apparatus to the endoplasmic

reticulum in plants and its minor contribution to calreticulin retention. Plant Cell
12: 739–756.

17. Sriraman R, Bardor M, Sack M, Vaquero C, Faye L, et al. (2004) Recombinant
anti-hCG antibodies retained in the endoplasmic reticulum of transformed

plants lack core-xylose and core-alpha(1,3)-fucose residues. Plant Biotechnol J 2:
279–287.

18. Gradinaru V, Thompson KR, Deisseroth K (2008) eNpHR: a Natronomonas

halorhodopsin enhanced for optogenetic applications. Brain Cell Biol 36: 129–
139.

19. Conrad U, Fiedler U (1998) Compartment-specific accumulation of recombi-
nant immunoglobulins in plant cells: an essential tool for antibody production

and immunomodulation of physiological functions and pathogen activity. Plant

Mol Biol 38: 101–109.
20. Sharp JM, Doran PM (2001) Characterization of monoclonal antibody

fragments produced by plant cells. Biotechnol Bioeng 73: 338–346.
21. Petruccelli S, Otegui MS, Lareu F, Tran Dinh O, Fitchette AC, et al. (2006) A

KDEL-tagged monoclonal antibody is efficiently retained in the endoplasmic

reticulum in leaves, but is both partially secreted and sorted to protein storage
vacuoles in seeds. Plant Biotechnol J 4: 551–527.

22. Armold JN, Wallis R, Willis AC, Harvey DJ, Royle L, et al. (2006) Interaction of
mannan binding lectin with alpha2 macroglobulin via exposed oligomannose

glycans: a conserved feature of the thiol ester protein family. J Biol Chem 281:

6955–6963.
23. Jowett AK, Kimber SJ, Ferguson MW (1994) Sialylation of terminal saccharides

of glycoconjugates expressed by murine molar tooth germs developing in vitro
and in vivo. J Anat 185: 85–94.

24. De Neve M, De Buck S, De Wilde C, Van Houdt H, Strobbe I, et al. (1999)

Gene silencing results in instability of antibody production in transgenic plants.
Mol Gen Genet 260: 582–592.

25. Schouten A, Roosien J, Engelen FA, Jong GA, Bakker J, et al. (1996) The C-
terminal KDEL sequence increases the expression level of a single-chain

antibody designed to be targeted to both the cytosol and the secretory pathway

in transgenic tobacco. Plant Mol Biol 30: 781–793.
26. Gallagher JW, Weinberg RB, Shelness GS (2004) apoA-IV tagged with the ER

retention signal KDEL perturbs the intracellular trafficking and secretion of
apoB. J Lipid Res 45: 1826–1834.

27. Barbin K, Stieglmaier J, Saul D, Stieglmaier K, Stockmeyer B, et al. (2006)
Influence of variable N-glycosylation on the cytolytic potential of chimeric CD19

antibodies. J Immunother 29: 122–133.

28. Garcia-Casado G, Sanchez-Monge R, Chrispeels MJ, Armentia A, Salcedo G,
et al. (1996) Role of complex asparagines-linked glycans in the allergenicity of

plant glycoproteins. Glycobiol 6: 471–477.
29. Cabanes-Macheteau M, Fitchette-Lainé AC, Loutelier-Bourhis C, Lange C,
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