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Abstract: Waveguide-based photonic sensors provide a unique combination of high sensitivity,
compact size and label-free, multiplexed operation. Interferometric configurations furthermore
enable a simple, fixed-wavelength read-out making them particularly suitable for low-cost diagnostic
and monitoring devices. Their limit of detection, i.e., the lowest analyte concentration that can
be reliably observed, mainly depends on the sensors response to small refractive index changes,
and the noise in the read-out system. While enhancements in the sensors response have been
extensively studied, noise optimization has received much less attention. Here we show that
order-of-magnitude enhancements in the limit of detection can be achieved through systematic
noise reduction, and demonstrate a limit of detection of ∼10−8 RIU with a silicon nitride sensor
operating at telecom wavelengths.

Keywords: limit of detection; coherent detection; silicon photonics; interferometer; biosensors

1. Introduction

Photonic integrated biosensors have been the subject of intense research in the last decade due to
their capability to detect small quantities of biochemical substances such as protein biomarkers, DNA or
toxins, indicative of the presence of a disease or environmental pollution without time-consuming
labeling steps [1–3]. Indeed, lab-on-chip and point of care devices based on such sensors have been
proposed for a variety of applications, including environmental safety, food control, and clinical
diagnosis [4–6]. Realizing such biosensors in silicon platforms enables dense, multiplexed operation
while CMOS fabrication compatibility minimizes costs [7]. The basic physical variation detected by
photonic biosensors is a change in refractive index. Consequently, the sensitivity of such sensors is
often expressed as the rate of change of the output signal per refractive index unit (RIU). Analogously,
the limit of detection (LOD) is given as the smallest refractive index change that can be reliably
detected. Photonic sensors only become specific to a certain analyte by a proper biofunctionalization
protocol of the corresponding selective bioreceptors on the sensor surface. In order to detect very
low concentrations of a certain analyte, even when the analyte is present in a complex medium,
both a highly selective biofunctionalization able to generate an antifouling sensor surface and
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a very good photonic LOD are thus required. Since the biofunctionalization is inherently application
dependent, optimizing the photonic sensor LOD is usually the first step in a sensor development.
The LOD is given by LOD = 3σ/S in refractive index units, where σ is the system noise, and S
is the sensitivity. An improvement in both sensitivity and noise will thus result in enhanced limits
of detection.

In photonic waveguide sensors light interacts with the analyte via the evanescent tail of
the waveguide mode. The waveguide sensitivity, Swg, is defined as the change in the mode
effective index resulting from a change in the refractive index of the medium surrounding the
waveguide. The mode effective index change is then transduced into a measurable quantity such as
a change in output power or resonance wavelength via the sensing architecture, e.g., a Mach-Zehnder
interferometer (MZI) or a ring resonator. The overall sensitivity depends both on the waveguide
sensitivity and the specific sensing architecture [1,8,9]. The waveguide sensitivity can be significantly
enhanced by using slot-waveguides [10,11], subwavelength gratings (SWG) [2,12–19], or by using
transverse-magnetic (TM) instead of transverse-electric (TE) modes [20], with values up to
Swg ∼ 0.8 RIU/RIU. Two different sensing architectures are widely used in photonic biosensing:
resonant and interferometric arrangements [21]. Single rings or multiple rings using the Vernier effect
have been shown to reach state-of-the-art LODs of around 10−6 RIU [14,16,17,22–24]. Unfortunately,
to read the sensor signal they require a tunable laser source or a white light source and a spectrum
analyzer [23], thereby increasing the complexity of the overall sensing system. Interferometric
Mach-Zehnder sensors, conversely, only require a fixed wavelength source and direct power
detection at the output. While basic Mach-Zehnder configurations suffer from sensitivity fading
and phase ambiguity [25], different techniques have been proposed to overcome this limitation,
e.g., wavelength [26] and thermal [27] modulation. Coherently detected interferometers provide
completely linear phase read-out [28,29], offering state-of-the-art bulk LOD [22] and calibration
techniques than can cancel hardware imperfections [30]. Most recent MZI-based sensors report LODs
of the order of 10−7 RIU [4,11,18,21,22,26,27,31,32]. An exceptionally low LOD of 2.7× 10−8 RIU was
reported in [22], albeit using an imbalanced silicon MZI with a 9 mm length difference, which exhibits
a stronger sensitivity to laser phase jitter than a balanced interferometer.

Read-out noise reduction has received much less attention than sensor optimization, despite its
significant impact on the LOD [8,33,34]. Previous theoretical efforts have shown that interferometric
sensors can reject amplitude and phase noise of the laser source, so that detection becomes
fundamentally limited by thermal and shot noise, as well as intrinsic waveguiding losses [8].
Here we provide a holistic approach for LOD optimization through which this fundamental limit can
be approached in practical sensing systems. Specifically, we show how by systematic experimental
characterization of mechanical and electrical noise sources (shot noise, amplifier noise and quantization
noise) and subsequent read-out optimization, the LOD can be enhanced significantly, as illustrated in
Figure 1a. With the proposed procedure we are able to demonstrate a bulk LOD of 1.4× 10−8 RIU with
a 5 s averaging time, using a balanced MZI with 6 mm long silicon nitride waveguides that exhibit
a comparatively low sensitivity Swg ∼ 0.2 RIU/RIU.

The paper is organized as follows. In Section 2 (Methods) we theoretically analyse the sensitivity
and the noise sources in an interferometric biosensing setup and quantify their impact on the limit
of detection. In this section we also describe the equipment and the procedure to measure the LOD.
A practical guide to LOD enhancement, addressing both mechanical and electrical noise, is presented
in Section 3, together with the experimental validation of the LOD improvement. Finally, in Section 4,
conclusions are drawn.
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Figure 1. (a) Measured limit of detection of the integrated waveguide-based sensing system as
different noise sources are addressed. (b) Sensor calibration with NaCl solutions shows a sensitivity of
≈3700 rad/RIU. The reduced noise shown in the inset is only achieved after dampening of mechanical
noise and 2 Hz low-pass filtering (0.5 s averaging), i.e., steps I-III in Figure 1a.

2. Methods

In this section we present the sensitivity of the interferometric sensors (Section 2.1), analyse the
different noise sources (Section 2.2) and study their impact on the LOD (Section 2.3). In Section 2.4 the
experimental procedures are described.

2.1. Sensitivity

The interferometric sensing setup shown in Figure 2 is considered in the following. Note that
although a coherent 2× 3 read-out is used for linear phase read-out [28,29,31,32], the techniques we
outline are equally applicable for a single photodiode read-out. A laser emits light with wavelength λ0

and power P0, rotated to horizontal polarization. After amplification in an erbium doped fiber amplifier
(EDFA) and optional modulation via a variable optical attenuator (VOA) light with mean power Pin

couples into the photonic sensor chip. Light injection into the chip is performed by fiber-to-chip
surface grating couplers with a coupling efficiency η0. The sensor chip itself consists of a balanced
MZI with a sensing arm, exposed to the aqueous buffer containing the analyte, a reference arm,
and a 2 × 3 multimode interference coupler (MMI); further details about the sensing chip are given
in Section 2.4. A refractive index change in the buffer causes a phase shift ϕ(t) = 2π/λ0Ls∆neff,s(t),
where Ls is the length of the reference and sensing waveguides and ∆neff,s is the change in the
mode index due the presence of the analyte. The three different outputs of the MMI, k = {1, 2, 3},
couple out of the chip with different coupling efficiencies ηk. The power Pout,k at each output is
then photo-detected, linearly converting the received optical power into a electrical current ik(t)
with responsivity R. A consecutive transimpedance amplifier (TIA) linearly converts the current into
a voltage vk(t) = Gik(t), with a certain gain G. A data acquisition board (DAQ) samples and quantizes
the continuous signal into its digital representation, v[n] = v(t = n/ fs), where n is an integer and fs is
the sampling frequency. From the three photocurrents illustrated in Figure 2, digital signal processing
computes the complex current ic(t) = Iout exp(jϕ̂) [28,29], where Iout ∝ RPout is its amplitude, j the
imaginary unit and ϕ̂ is an estimate of the optical phase shift ϕ. The overall sensitivity of the system is
given by [8]

S = (2π/λ0)LsSwg Iout. (1)
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Figure 2. Setup of the employed interferometric sensing system, with mechanical and electrical
noise sources. Mechanical vibrations result in time dependent coupling efficiencies η(t) to/from the
sensor chip, while photo-detection, amplification, sampling and quantification add shot noise (SN),
thermal noise (TN), aliasing and quantization noise (QN), respectively. The presence of noise hinders
the accurate estimation (ϕ̂) of the sensed phase shift (ϕ) resulting in a deterioration of the limit of
detection.

2.2. Noise Sources

Several noise sources appear in the detection process. Due to vibrations, the in- and out-coupling
efficiencies will be time dependent, which results in a spurious amplitude modulation of the sensor
signal, i.e., mechanical noise (MN). The detected photocurrent carries electrical shot noise (SN), and the
amplification adds thermal noise (TN). The digitization of the sensor signal produces quantization
noise (QN) and, possibly spectral aliasing. The noise in the system will generally depend on the
power spectral density (PSD) of the noise sources and measurement bandwidth (Bd), or, equivalently,
the integration time, i.e., σ2 =

∫
Bd

PSD d f . Referring all the noise sources to the input of the
transimpedance amplifier, the power spectral densities of the different components of the noise
current are given by

PSDSN = 2qRPoutϑus, (2)

PSDTN = R2[NEP(G)]2ϑus, (3)

PSDQN =
γ2

G2
2
fs

(
2Vmax

2M

)2
, (4)

PSDMN ∝ P2
in, (5)

where q = 1.6× 10−19 C is the elementary charge, η2 is the mean of the product of the in- and out
coupling efficiencies, Pout ∝ η2Pin is the mean received optical power of one photodiode, NEP is
the noise equivalent power of the amplifier (which is normally dependent on the gain setting G),
γ is the quality factor of the DAQ, Vmax > vk ∝ Gη2Pin is the maximum input voltage of the DAQ,
M is the number of quantization bits, fs is the sampling frequency, and ϑus is a broadband noise
under-sampling correction factor , ϑus = 2Bw/ fs with Bw the bandwidth of the photodiode-amplifier
system (Bw > Bd) [35]. This under-sampling factor is not relevant if a high-end DAQ card with
integrated anti-aliasing filters is used. The expressions for shot and thermal noise were given in [8],
while the expression for quantization noise is derived in Appendix A.1. The mechanical noise results
in an amplitude modulation of the input signal, so that its power scales directly with the input power.

Note that the two-sided power spectral density of the noise signal can be computed directly from
the measured signal v[n] via a Fourier-Transform,
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PSD[ fn = n fs/N] = |F{v[n]}|2 /(N fs) [V2/Hz], (6)

where F denotes the discrete Fourier transform [36], N is the number of samples, and n is an integer.
This PSD this can be referred to the amplifier input by dividing by G2.

2.3. Impact of Noise on the Limit of Detection

The overall noise is proportional to the squared sum of the individual noise contributions, and the
sensitivity (see Equation (1)) is directly proportional to the output current, which in turn is proportional
to the input power, so that the LOD is directly proportional to

LOD =
3σ

S
∝

σ

Pin
∝
√
(σ2

SN + σ2
TN + σ2

QN + σ2
MN)/P2

in. (7)

Writing out the individual factors and including only the terms that can be readily modified in the
read-out, we find

LOD2
SN ∝

Bd

Pin
ϑus, (8)

LOD2
TN ∝

[NEP(G)]2

P2
in

ϑusBd, (9)

LOD2
QN ∝

(
Vmax

GPin

)2 Bd
fs

, (10)

LOD2
MN ∝

∫
Bd

psdMN( f )d f , (11)

where psdMN is a function of frequency that only depends on the mechanical properties of the setup.
From Equations (8)–(11) it is then clear that with increasing input power (Pin) the impact of shot
and thermal noise will be limited, while the impact of mechanical noise does not depend on the
optical or electrical parameters of the setup. For a certain voltage range of the DAQ, the impact of
quantization noise decreases with increasing signal power, and the best noise performance is achieved
when the full range of the DAQ is used. However, if the signal is increased beyond the DAQ range
(by either increasing the input power or the amplification), a wider range has to be chosen, resulting
in a quadratic increase in quantization noise. A careful strategy is thus required to simultaneously
minimize the impact of all noise sources.

2.4. Experimental Methods

The equipment used in the read-out system shown in Figure 2 consists of a Santec WSL-100
laser source, an IPG Photonics erbium doped fiber amplifier (EAD-500C) and the V1550A variable
optical attenuator from Thorlabs for the generation of the input light. A custom fiber array from O/E
Land is used for light coupling to and from the chip (see Figure 3a). At the output photo-detection
and amplification is performed with the PDA10CS-EC from Thorlabs, and the signal is digitized
using the USB-6210 DAQ by National Instruments. The main parameters of the devices are listed
in Table A1 in the Appendix A.2. Processing of the three output signals is performed with Matlab.
The sensing chip (≈ 5 mm× 10 mm), based in a silicon wafer with 2.5µm BOX and 300 nm silicon
nitride film, was fabricated at the Instituto de Microelectrónica de Barcelona, Centro Nacional de
Microelectrónica (IMB-CNM), CSIC [37] through a Multi Project Wafer approach offered by VLC
Photonics. Twelve sensors in a row are integrated into the chip as shown in Figure 3b, each covering
an area of approximately 0.4 mm2. The sensing waveguide was optimized for single-mode operation
and low propagation losses, having a width of 1µm. Improving the waveguide sensitivity was not an
objective and was not considered during the design process. The waveguide sensitivity was computed
using the Fimmwave mode solver by Photon Design [38]: first, the effective index of the fundamental
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TE mode was calculated for a water cladding (nH2O = 1.3162 for a wavelength of 1.55µm); then, this
effective index was recalculated for a small variation in nH2O. A linear fit was used to extract the
waveguide sensitivity. A PDMS flowcell containing a microfluidic channel with a width of 3 mm,
a length of 9 mm, and a height of 0.5 mm, is fixed on top of the sensing surface enabling a constant
stream of the buffer media throughout the entire channel (see Figure 3a).

Gratings for in/out coupling

Sensors

PDMS
Flowcell

Microscope

Fiber
Array

1 mm

(a) (b)

Figure 3. (a) Part of the experimental setup showing the fiber array for light coupling and the flowcell
covering the photonic sensing chip. (b) Sensing chip highlighting the coupling zone for the fiber array
and the sensor region.

In order to identify different noise sources we examine the noise at one of the three output
photo-detectors (see Figure 2). The potential impact of the noise source on the LOD is then estimated
using Equations (8)–(11). The LOD is experimentally determined using a commonly used calibration
procedure [22]. Four different sodium chloride (NaCl) solutions (0.5 M, 1.0 M, 1.5 M, 2.0 M) diluted
in de-ionized, purified water (Milli-Q) are injected with a flow rate of 20µL/min. Since the sensor
response is linear, and the sensitivity is thus independent of the specific refractive index change
(see Equation (1)), the sensitivity does not depend on the concentrations for the evaluation. With the
refractive indexes (n) of the solutions and their differences (∆n) to the buffer, shown in Table 1,
calculated according to [39], a phase-to-refractive-index response curve can be determined as shown
in Figure 1b. The shown data is available as part of the Supplementary Material.

Table 1. Refractive index details of the different injected NaCl solutions at a wavelength of 1.55µm.

Solution n [RIU] ∆n [RIU]

Purified Water (Milli-Q) 1.3162 -
NaCl 0.5 M (3% Mass Perc.) 1.3211 4.9× 10−3

NaCl 1.0 M (6% Mass Perc.) 1.3262 1.0× 10−2

NaCl 1.5 M (9% Mass Perc.) 1.3313 1.5× 10−2

NaCl 2.0 M (12% Mass Perc.) 1.3466 2.0× 10−2

Its slope represents the overall sensitivity in rad/RIU, i.e., S/Iout (see Equation (1)). We found an
average experimental bulk sensitivity of 4200 rad/RIU, which agrees reasonably with the prediction
from Equation (1), i.e., S/Iout = 4900 rad/RIU, for the values given in Table A1. The molecular binding
processes that are monitored with photonic biosensors often take place on time scales of seconds or
even minutes, so initially a sampling frequency of 50 Hz is chosen, with a low pass filter at Bd = 25 Hz.
The noise was computed as the standard deviation of the extracted phase ϕ̂, i.e., σ/Iout, when only
purified water was running over the sensor and was found to be 45 mrad (dominated by mechanical
noise as described below). Note that the electrical and optical noise in the system do not depend on the
specific refractive index change. Under these conditions we obtained an initial LOD of 3× 10−5 RIU,
as shown in Figure 1a.
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3. Enhancement Strategies

3.1. Sampling Frequency and Mechanical Noise

While a comparatively low sampling frequency of 50 Hz is reasonable in terms of the time
constants involved in molecular binding processes, in terms of noise analysis much higher sampling
frequencies are required. This is illustrated in Figure 4a, which shows the noise at one of the electrical
outputs of the sensing system in Figure 2 when no sensing is taking place, sampled at 50 Hz and at
the maximum rate of 83 kHz of our DAQ system; the DC component of the signal has been removed
for clarity. In the setup a fiber array is used to couple light to/from the chip, therefore mechanical
vibrations create micro-misalignments, resulting in a modulation of the power coupled into and out of
the chip. While the strength of the modulation is strongly dependent on the specific alignment between
fiber array and the chip, its natural frequency is determined by the mechanical construction of the
setup. The modulation becomes apparent if a sufficiently fast sampling rate is chosen, revealing, in our
case, a mechanical oscillation mode with a natural frequency of ∼ 50 Hz (see blue line in Figure 4a).
The mechanical origin of these oscillations was confirmed by placing accelerometers on the fiber
array holder and mechanically exciting the alignment stages with a small impact hammer, revealing
a vibrational mode around ∼ 50 Hz.

0 0.05 0.1 0.15 0.2 0.25 0.3
-0.06

-0.04

-0.02

0

0.02

0.04

0.06
(a)

10-1 100 101 102 103 104
10-25
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10-15

10-10(b)

Figure 4. (a) Signal of one of the photodiodes at the sensor output in the presence of mechanical
vibrations in the setup for a sampling frequency of (a) 50 Hz and (b) 83 kHz. Only the fast sampling
rate reveals the harmonic nature of the oscillations. (b) Power spectral density of the photodiode signal.
The higher sampling frequency removes the spectral aliasing.

The unilateralized power spectral densities of the noise signal are shown in Figure 4b, referred
to the amplifier input, i.e., divided by G2. Note that the higher sampling rate yields a reduction in
the power spectral density, as spectral aliasing is now avoided. Indeed the noise power σ2 in the
25 Hz bandwidth, computed as the integral of the power spectral densities in Figure 4b, is reduced by
a factor ∼188. Assuming a similar reduction is achieved in all three photodiodes, Equation (7) predicts
a LOD enhancement of sqrt

√
188 ≈ 13.7. Sensing experiments carried out with the 83 kHz sampling

frequency reveal a reasonable match with an enhancement factor ∼8, to a LOD of 3.8 × 10−6 RIU
(see Figure 1a—step I). Furthermore, reducing the filter bandwidth to a more aggressive 2 Hz,
reduces the noise power by an additional factor 52, which according to Equation (7) should improve
the LOD by a factor

√
52 ≈ 7.2. A measured LOD enhancement of ∼2.5 to 1.5× 10−6 RIU has been

experimentally determined as illustrated in Figure 1a—step II. The discrepancy between the predicted
and experimentally observed LOD enhancements is attributed to the different mechanical noise
characteristics of each of the three outputs.

Finally we observe in Figure 4b that the power spectral density drops significantly for frequencies
beyond 100 Hz, suggesting that mechanical noise is the dominant noise source at low frequencies.
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For further optimization it is thus critical to dampen these oscillations, which can be achieved,
for instance, by improving the mechanical isolation of the setup, or by gluing the input/output
fibers to the integrated chip.

A separate set of measurements was used to assess the noise reduction that can be achieved
through mechanical damping. Figure 5a compares the noise power spectral density when the fiber
array is positioned above the chip and when it is brought into direct contact with the chip. A significant
reduction, of approximately two orders of magnitude (a factor 100) is achieved. This should provide
a further LOD enhancement of

√
100 = 10 according to Equation (11). Indeed, sensing experiments

reveal a LOD enhancement from 1.5× 10−6 to 3.5× 10−7 RIU (a factor 4.3) as shown in Figure 1a.
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(a)
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0

0.005
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0.015

0.02

0.025

0.03
(b)

Figure 5. (a) Shows the theoretical shot (fine orange), electrical (purple dashed), quantization
(green dashed) current power spectral densities, and the measured power spectral densities with
mechanical noise and with dampened mechanical noise. (b) In the presence of dominant quantization
noise the LOD is expected to follow the ratio Vmax/(GPin), which is in good agreement with the
experimental results.

3.2. Quantization, Shot and Thermal Noise

With the initially dominant mechanical noise dampened, we focus on electrical noise sources,
i.e., shot, thermal and quantization noise. Representative values for the relevant setup parameters are
Pout = 160 µW, R = 1 A/W, Bw = 450 kHz, fs = 83 kHz, NEP = 1.25 pW/

√
Hz, Vmax = 5 V, γ = 0.7

and G = 31 kV/A. Comparison of the noise floor in Figure 5a with the theoretical power spectral
densities given by Equations (2)–(4) reveals that the noise level is dominated by quantization noise,
with smaller contributions from shot and thermal noise. Taking into account Equations (8)–(10) the
basic strategy is to use a high input power to minimize the impact of thermal and shot noise while
aiming to use the full range of the DAQ to mitigate quantization noise. We use the following procedure
to achieve this:

1. Choose a large value of the DAQ voltage range (Vmax).
2. Increase the input power (Pin) as much as possible without saturating the DAQ, possibly with

the help of an external fiber amplifier (EDFA). This helps reduce the impact of shot, thermal and
quantization noise.

3. If the DAQ is not close to saturation, increase the gain of the amplifier (G). Depending on the
specific amplifier, this may reduce the amplifier NEP.

4. If the DAQ is not close to saturation, decrease the DAQ voltage range to minimize
quantization noise.

In a situation where the quantization noise is dominant, the above procedure should enhance the
LOD according to the change in the ratio Vmax/(GPin) (see Equation (10)). As illustrated in Figure 5b,
there is indeed a good agreement between this ratio and the experimental LOD improvement that
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is obtained by increasing the input power. This electrical optimization step improves the LOD from
3.5× 10−7 to 7.4× 10−8 RIU, as shown in Figure 1a.

3.3. Residual Baseband Noise

In Figure 5a we observe that the noise power floor at frequencies in the kHz range is still almost
three orders of magnitude, i.e., a factor 1000, lower than at baseband, which may be either due to
residual mechanical noise or flicker noise in the electronics [40]. While modulating the input signal
to kHz frequencies will not reduce any residual mechanical noise (because it is itself a modulation of
the signal), it would eliminate flicker noise. However, modulating the signal comes at the cost of lost
power: even a perfect amplitude modulation Pin(0.5 + 0.5 cos(ωmodt)) only transfers 1/8 of the power
to the modulation frequency ωmod. According to Equation (7), the expected improvement in LOD is
therefore reduced to a factor ∼

√
1000/82 = 4. We used a variable optical attenuator to modulate the

input signal to 800 Hz, and repeated the LOD experiments, performing a software demodulation of the
signal (this could alternatively be done with a lock-in amplifier). We observed an improvement in the
LOD from 7.4× 10−8 to 3.6× 10−8 RIU, i.e., a factor ∼ 2 improvement, indicating that some residual
mechanical noise is still present. Indeed, a simple sinusoidal model for the mechanical oscillations [41]
shows that for our experimental conditions movements of the order of only ∼ 150 nm limit the LOD to
the observed values.

Finally, in this situation an additional improvement in LOD of a factor ∼ 2.6 can be observed
by increasing the integration time of the digital filter from 0.5 s to 5 s, specifically from 3.6× 10−8 to
1.4× 10−8 RIU. A comparison of our results with a selection of state-of-the-art sensors is shown in
Table 2, revealing that with effective noise treatment even waveguides with a comparatively poor
sensitivity like ours (Swg ∼ 0.2 RIU/RIU) can yield excellent LOD values.

Table 2. Comparison of bulk LOD values achieved with recent resonant and interferometric
photonic sensors.

Type Reference Year LOD [RIU]

Ring Resonator [24] 2011 1.6× 10−5

Ring Resonator [16] 2016 2× 10−6

Ring Resonator [17] 2016 3.9× 10−4

Ring Resonator [14] 2017 3.7× 10−4

Ring Resonator [22] 2017 2.4× 10−6

Ring Resonator [23] 2017 8.5× 10−7

MZI [32] 1998 5× 10−6

MZI [26] 2012 1.9× 10−7

MZI [11] 2013 5.4× 10−6

MZI [18] 2016 5× 10−7

MZI [21] 2017 8.8× 10−7

MZI [22] 2017 2.7× 10−8

MZI [4] 2018 3× 10−6

MZI [27] 2018 4.7× 10−7

MZI [31] 2019 3.7× 10−7

MZI This work 2019 1.4× 10−8

We note that if the mechanical oscillations were completely dampened (e.g., by integrating the
photodiodes into the chip), the theoretical analysis presented in [8] predicts that an LOD below
10−9 RIU should be attainable for our experimental conditions, when quantization noise is considered
as described in Appendix A.1. Even better LODs are possible by further increasing the input power,
using lower noise electronics or employing a specialized DAQ with more than 16 quantization bits,
opening exciting prospects towards ultra-low detection limits.
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4. Conclusions

Different types of read-out noises can have a significant impact on the limit of detection of
photonic biosensors. We have shown that by identifying mechanical and electrical noise sources,
and systematic fine-tuning of readily adjustable system parameters, such as sampling rate, DAQ range,
input power, and amplifier settings, as well as adequate averaging, LOD enhancements of several
orders of magnitude can be achieved. Indeed, using an interferometric sensing chip, with comparatively
low sensitivity waveguides, our optimization strategy yields a limit of detection of ∼10−8 RIU.
We are confident that our approach can be readily extended to other biosensing architectures, paving
the way for integrated sensors with ultra-low limits of detection.

Supplementary Materials: The following is available online at http://www.mdpi.com/1424-8220/19/17/3671/
s1: experimental data (Figures 1, 4, 5a) is available as *.mat or *.csv file and is accessible with the Matlab software
[42] via the provided Matlab scripts (*.m).
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Appendix A

Appendix A.1. Quantization Noise

Quantization noise results from the digitalization process of the data acquisition board (DAQ) [35].
The continues signal v(t) is sampled at tn = n/ fs, and its value is quantized resulting in the digital
signal v[n]. The quantization step depends on the number of bits, M, of the DAQ, and the range of
input voltages [−Vmax,+Vmax]:

∆vqs =
2Vmax

2M . (A1)

The noise added at the input of the TIA can be formulated as

σ2
QN =

γ2

G2 ∆v2
qs

2
fs

Bd = PSDQNBd, (A2)

where γ is the unitless quality factor of the DAQ, the factor 1/G2 results from the transfer of the noise
from the output of the DAQ to the input of the TIA, while the factor 2/ fs stretches the noise over the
Nyquist-spectrum.

Appendix A.2. Equipment Parameters

The configuration parameters of the equipment used in the setup in Figure 2 are given in the
table below.

http://www.mdpi.com/1424-8220/19/17/3671/s1
http://www.mdpi.com/1424-8220/19/17/3671/s1
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Table A1. Exemplary equipment and parameters for the setup in Figure 2.

Parameter Value Unit
Laser - WSL-100 (Santec)

P0 [7...15.5] dBm
λ0 1.55 µm

EDFA - EAD-500C (IPG Photonics)
Poutput [16.5...27] dBm

Photo Detection - PDA10CS-EC (Thorlabs)
R 1.05 A/W
G [0.99, 3.12, 9.94, 31.33, 95.86] kV/A

NEP(G) [60, 10, 3, 1.25, 1.4] pW/
√

Hz
Bw 450 kHz

DAQ - NI USB-6210 (National Instruments)
fs,max 250 kHz

γ 0.7 –
M 16 –

Vmax [0.2, 1.0, 5.0, 10.0] V
fs fs ≤ fs,max/3 kHz

General
η2 ≈ 1/100 –
Ls 6 mm

Swg 0.2 (simulated [38]) RIU/RIU
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