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Abstract

A re-appraisal of the Richardson’s 1926 dataset [Richardson, L. F. Proc. Roy. Soc. Lond. A

100, 709–737, (1926)] displays an unequivocal non-local scaling for the pair diffusion coeffi-

cient, K � s1:564
l , quite different to the previously assumed locality scaling law� s

4=3

l , where

σl is the pair separation. Consequently, the foundations of turbulent pair diffusion theory are

re-examined here and it is shown that pair diffusion is governed by both local and non-local

diffusional processess inside the inertial subrange. In the context of generalised energy

spectra, E(k)� k−p for 1 < p� 3, the new theory predicts two non-Richardson regimes

depending on the size of the inertial subrange: (1) in the limit of asymptotically infinite

subrange, non-local scaling laws is obtained, K � s
g

l , with γ intermediate between the

purely local and the purely non-local scalings, i.e. (1 + p)/2 < γ� 2; and (2) for finite (short)

inertial subrange, local scaling laws are obtained, K � s
ð1þpÞ=2

l . The theory features a novel

mathematical approach expressing the pair diffusion coefficient through a Fourier integral

decomposition.

1 Introduction

Turbulent transport and mixing play an essential role in many natural and industrial processes

[1], in cloud formation [2], in chemically reacting flows [3] and combustion systems [4, 5],

and atmospheric and oceanographic turbulence determines the spread of pollutants and bio-

logical agents in geophysical flows [6–9]. Turbulent concentration fluctuations often play a

critical role in such systems, and this is related to the separation of nearby fluid particles.

Turbulent particle pair diffusion (or relative diffusion) was introduced by L. F. Richardson

[10], who laid the foundations for a theory of how ensembles of pairs of fluid particles (tracers)

initially close together move apart due to the effects of atmospheric winds and turbulence. Pair

diffusion is usually classified into three regimes depending on the pair separation distance l rel-

ative to the Kolmogorov length scale η of the turbulence: (i) the dissipation subrange where l
� η; (ii) the inertial subrange when η� l� L, where L is some outer length scale of the tur-

bulence (such as the integral length scale or the Taylor microscale); (iii) at much larger times
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when l� L, their motions become independent and the pair diffusion collapses to twice the

one-particle Taylor diffusion, hl2i ! 2hx2i � t [11].

Batchelor introduced a fourth regime, the so-called ballistic regime [12]. He noted that tur-

bulence is correlated in time and space, so for very short times after release the motion should

be well correlated with its initial conditions, thus the relative velocity is approximately constant

for a short time which leads to hl2i � l2
0
þ v2

0
ðt � t0Þ

2
, where v0 = v(t = t0) is the rms pair veloc-

ity at initial time t = t0. In fact, this is true in any spatio-temporally correlated velocity field and

not just in turbulence.

In this work, we focus our interest on inertial subrange scaling laws, and we will ignore the

other regimes which are fairly well understood at the present time.

Richardson argued that as particle pairs separate in a field of turbulence, the rate at which

they move apart is affected by different scales of motions, and the energies in the scales of

motion (eddies) of the same scale as the pair separation are the most effective in the diffusional

process—this is the so-called locality hypothesis. Most theories of turbulent pair diffusion

since then have assumed locality.

Richardson was also motivated by a desire to bring molecular and turbulent pair diffusional

processes into a unified picture through the use of a non-Fickian diffusion equation with scale

dependent diffusion coefficient, K(s). Assuming homogeneous isotropic turbulence, Richard-

son posed the problem in 3D in terms of the probability density function (pdf) of the pair sepa-

ration, q = q(s, t), subject to the normalization,
R1

0
4ps2qðs; tÞds ¼ 1, he suggested the

following diffusion equation to describe q,

@q
@t
¼

1

s2

@

@s
s2KðsÞ

@q
@s

� �

: ð1Þ

Here, s is the sample space variable for the random pair separation distance. K(s) is also

called the pair diffusion coefficient, or the pair diffusivity.

From observational data of turbulent pair diffusion coefficients collected from different

sources, Richardson assumed an approximate constant power law fit to the data, K(l)� l4/3.

This is equivalent to [12, 13]

hl2i � t3 ð2Þ

often referred to as the Richardson-Obukov t3-regime. l(t) is the pair separation, at time t, and

the angled brackets is the ensemble average over particle pairs.

It is no longer believed that it is possible to unify molecular and turbulent diffusional pro-

cesses because their physics are fundamentally different; Brownian motion characterizes

molecular diffusion, while convective gusts of winds that increase the pair separation in surges

characterizes turbulent diffusion [14–16]; but the idea of a scale dependent turbulent diffusiv-

ity has survived.

Richardson’s assumed 4/3-scaling law is consistent with Kolmogorov turbulence K41 [17]

in the following manner. The K41 energy spectrum in the inertial subrange is, E(l)� ε2/3 l5/3,

from which it follows that the pair diffusion coefficient depends only upon l and ε (the rate of

kinetic energy dissipation per unit mass). The typical pair relative velocity in eddy scales of

order l is vðlÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi
EðlÞ=l

p
, and from the scaling KðlÞ � lvðlÞ �

ffiffiffiffiffiffiffiffiffi
lEðlÞ

p
, we obtain directly the

4/3-scaling, K(l)� ε1/3 l4/3.

This is remarkable because Richardson effectively anticipated K41 fifteen years ahead of

Kolomogorov. It is usual to evaluate K at typical values of, l, namely at sl ¼
ffiffiffiffiffiffiffi
hl2i

p
, so this scal-

ing is replaced by, KðlÞ � ε1=3s
4=3

l . We will follow the this convention in the present work.

Turbulent particle pair diffusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0202940 October 3, 2018 2 / 29

does not alter our adherence to PLOS ONE policies

on sharing data and materials.

https://doi.org/10.1371/journal.pone.0202940


The admittance of a solution to Eq (1) from a point source implies that the initial separation

of paricle pairs is effectively zero, and therefore the Kolmogorov scale must also asymptote to

zero. Richardson’s theory is thus true strictly only in the asymptotic limit of infinite Reynolds

number, Re!1 (which is equivalent to infinite inertial subrange, Rk!1), and also l0! 0,

as t! 0.

With the 4/3-scaling for K, an explicit self-similar solution of Eq (1) exists for diffusion

from a point source with boundary conditions q(0, t) = q(1, t) = 0,

qðr; tÞ ¼
429

70

ffiffiffiffiffiffiffiffi
143

2

r
1

phl2ðtÞi

� �3=2

exp �
1287

8hs2ðtÞi

� �1=3
 !

: ð3Þ

Turbulence is both scale dependent and time correlated (non-Markovian), and it is not

clear whether the pdf in Eq (3), which describes a local and Markovian process, can accurately

represent the turbulent pair diffusion process. However, attempts have been made to derive

alternative non-Markovian models for pair diffusion, such as Levy Flight type models, [18–

23], and this remains a topic of active research in the field.

It is possible to generalize the scaling for the diffusion coefficient to be time dependent and

still be consistent with K41 and with locality, [24–26] such that,

K � εatblc ð4Þ

for some a, b, and c. Dimensional consistency then gives, 2a + c = 2 and 3a − b = 1, which

leads to a = 1/3 − b/3, and c = 4/3 − 2b/3. Thus we obtain,

K � εð1=3� b=3Þtblð4=3� 2b=3Þ ð5Þ

If the further constraint 2b + 3c = 4 is satisfied, then this yields, hl2i � t3. Thus, a t3-regime

is not a unique signature for 4/3-scaling. Indeed, Batchelor [12] proposed an explicit time-

dependent diffusivity K(t)� εt2. Richardson’s scaling corresponds to b = 0 in Eq (4), yielding

a = 1/3 and c = 4/3, and Batchelor’s scaling corresponds to c = 0, yieding a = 1 and b = 2. Both

give hl2i � t3.

However, a time dependent diffussion coefficient is hard to justify physically if we assume

steady state equilibrium turbulence, because it implies unrealistic values for K as time pro-

gresses: for b> 0 the pair diffusivity increases in time without limit; for b< 0 the pair diffusiv-

ity approaches zero in time and the separation process effectively stops. Both cases seem

unlikely, and in the ensuing we will restrict the discussion to steady state equilibrium turbu-

lence and consider only the case, b = 0.

It is worth remarking, however, that time-dependent diffusivities like Eq (4) may be appro-

priate in the context of non-equilibrium turbulence. Furthermore, Hentchel & Procaccia [26]

discuss time-dependent diffusivity it the context of clouds of particles; in this case, we are not

dealing with point-sources and the description of the pair diffusion by a diffusion-type equa-

tion like Eq (1) is questionable.

Some of the questions that we address in this work are as follows. What evidence is there

for the locality hypothesis? Can we develop a theory for turbulent pair diffusion without intro-

ducing the assumption of locality from the beginning? What scalings laws for the pair diffusion

coefficients does this yield, firstly in the limit of infinite inertial subranges (infinite Reynolds

number), and secondly for finite inertial subranges (moderate Reynolds numbers)?

Here, we construct a new theoretical framework through a novel method of analysis namely

the Fourier decomposition of the relative pair velocity. We derive the scaling laws for the pair

diffusion coefficient without making the assumption of locality from the outset.

Turbulent particle pair diffusion
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In [27], we investigate this new theory through numerical simulations and where all predic-

tions of the theory presented here have been verified.

The rest of the paper is organised as follows. In Section 2 we re-examine the body of evi-

dence available on turbulent pair diffusion especially from large scale turbulence containing

large inertial subranges. In Section 3 we focuss upon a reappraisal of Richardson’s original

1926 dataset. In Section 4, a new theory that does not a priori make the assumption of locality

is constructed through a novel mathematical method from which new scaling laws for the pair

diffusivity is derived. In Section 5 some precitions from the new theory is derived. We discuss

the implications of the theory in Section 6.

2 What is the evidence for locality?

The general consensus among scientists in the field at the current time is that the collection of

observational data, experimental data, and Direct Numerical Simulation, suggests a conver-

gence towards a Richard-Obukov locality scaling. However, the relatively low Reynolds num-

bers in the experiments and DNS, and the high error levels in collecting the data means that

this is by no means a forgone conclusion. As noted by Salazar and Collins [25], “‥ there has

not been an experiment that has unequivocally confirmed R-O scaling over a broad-enough

range of time and with sufficient accuracy.” It is not known what size of the inertial subrange

is required to observe unequivocally the pair diffusion scaling, but it is widely assumed to be

many orders of magnitude. Only geophysical turbulence, such as in the atmosphere and in the

oceans, can produce such extended inertial subranges. We define the size of the inertial sub-

range Rk to be,

Rk ¼
kZ

k1

ð6Þ

where the inertial subrange part of the energy spectrum E(k) is defined in the wavenumber

range k1� k� kη.
Observations of approximate R-O t3-regimes in geophysical flows, have been reported by

Tartarski [28], Wilkins [14], Sullivan [29], and Morel & Larchaveque [30]. More recent obser-

vations include Julian et al. [31] in the atmosphere, and Lacasce & Ohlmann [32], and Olli-

trault & Gabillet [33] in the oceans. But the high error levels and other assumptions, such as

two-dimensionality, made in these observations means that a firm conclusions cannot be

drawn from them regarding pair diffusion theories.

Cases in point are the recent experiments in the atmosphere [34] and in the Nordic sea [35].

In [34], the authors revisited The EOLE experiment in 1973 to study turbulent processes in the

lower stratosphere circulation Relative dispersion of balloon pairs was studied by calculating the

finite-scale Lyapunov exponent, an exit-time-based technique. The improved analysis supports

a k−5/3 behavior in the mesoscale range 100–1000 km. However, they were unable to deduce the

origin of this spectrum—whether it concerns 2D inverse energy cascade, gravity wave breaking

with direct energy cascade, or shear (zonal) dispersion in a diffusive (meridional) field.

In [35], the authors examine the relative dispersion of surface drifters deployed in the

POLEWARD experiment in the Nordic Seas during 2007–2008. The authors found some evi-

dence for Richardson pair diffusion but could not rule out that this may be due an inverse

energy cascade as this is a quasi-2D system. The deformation circle when shear effects become

important is small in the Nordic sea, so the Richardson diffusion was observed only in a short

range over one decade of scales, 10–100 km, in separation distance.

Direct Numerical Simulations (DNS) is inconclusive at the current time because it does not

produce a big enough inertial subrange in order to test pair diffusion laws convincingly. For

Turbulent particle pair diffusion
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example, Ishihara et al. [36] perform a DNS with 40963, at Taylor scale based Reynolds num-

bers Rλ� 1200 showing an approximate inertial subrange energy spectrum over a very short

range of just 40. Other DNS of particle pair studies at low Reynolds numbers are, Yeung [37]

at Rλ = 90, Boffeta & Sokolov [38] at Rλ = 200, Ishihara & Kaneda [39] at Rλ = 283, Yeung&

Borgas [40] at Rλ = 230, Sawford et al. [41] at Rλ = 650. Scatamacchia et al. [42] at Rλ = 300. See

also Bitane et al. [43], and Biferale et al. [44]. The maximum separation of time scales between

the integral time scale and the Kolmogorov times scale observed to date in DNS is about a fac-

tor of, 100. This is still too small to fully test inertial subrange pair diffusion scalings. For 2D

turbulence, see [45, 46].

Particle Tracking Velocimetry (PTV) laboratory experiments Mass et al. [47], and Malik

et al. [48] have been providing pair diffusion statistics at low to moderate Reynolds numbers.

Like DNS, these Reynolds numbers are too small to reliably test pair diffusion laws. Virant &

Dracos [16] obtain pair diffusion measurements from PTV. More recently, Berg et al. [49]

obtained measurements in a water tank at Rλ = 172, and Bourgoin et al. [50] and Ouellete et al.

[51] tracked hundreds of particles at high temporal resolution at Rλ = 815. Although higher

resolution tracking experiments using high-energy physics methods have been performed for

single particle trajectories [52], they have not yet been applied to particle pair studies.

Apart from experiments and DNS, many models of turbulent relative particle diffusion

have been proposed from classical stochastic random flight type models [53, 54], to more

recent multifractal models of turbulence [55]. However, none of these models address the

problem of local and non-local diffusional processes directly, and as such it is not possible to

compare them with the new model developed here. We will therefore not refer to such models

any further in this study.

Datasets, both numerical and experimental, on relative dispersion are being made available

on a number of databases such as [56] and [57].

In summary, at the current time the scaling laws for inertial subrange pair diffusion remain

inconclusive.

3 A reappraisal of the 1926 dataset

In 1926 Richrdson reported in the Proceedings of the Royal Society of London data on turbu-

lent pair diffusivities collected from different sources [10], which is reproduced here with a

brief description in Table 1. He plotted the turbulent diffusivity against the pair separation in

log-log scale, shown as the red and black filled circles in Fig 1. Motivated by an attempt to

unify pair diffusional processes across all possible scales in the limit of infinite Reynolds num-

ber, he made two important assumptions: firstly that the pair diffusion can be modeled by a

diffusion-type equation, Eq (1), and secondly that the diffusion coefficient is scale dependent

and can be modelled as a unique power law across all scales. From the collected data, he

Table 1. Datum number, source, diffussion coefficient K, and the length scale l.

Datum Number Source Diffusivity K
[cm2/s]

Scale l
[cm]

N1 Molecular diffusion of oxygen in to ntirogen [61] 1.7 × 10−1 5 × 10−2

N2 Anemometers 9 m above the ground [62] 3.2 × 103 1.5 × 103

N3 Anemometers 21-305 m above the ground [63] 1.2 × 105 1.4 × 104

N4 Pilot balloons 100-800 m above the ground [64, 65] 6 × 104 5 × 104

N5 Tracks of balloons in the atmosphere [66, 67] 1 × 108 2 × 106

N6 Volcano ash [66, 67] 5 × 108 5 × 106

N7 Diffusion from cyclones [68] 1 × 1011 1 × 108

https://doi.org/10.1371/journal.pone.0202940.t001
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assumed the scaling K� l4/3 as a reasonable fit (Fig 1, dotted blue line). This is not the least

squares line of best fit to the data, it is just an approximation to the data. The actual line of best

fit is, K� l1.248 (Fig 1, solid red line).

Later, Richardson and Stommel [58, 59] commenting on diffusion of floats in the sea noted

that their new measurements were roughly consistent with the 1926 data. At the end of their

paper they wrote, ‘Note added in proof.—After this manuscript was submitted the writers have
read two unpublished manuscripts by C. L. vonWeisaecker and W. Heisenberg in which the prob-
lem of turbulence for large Reynolds number is treated deductively with the result that they arrive
at the 4/3-law. The agreement between vonWeisaecker and Heisenberg’s deduction and our quite
independent induction is a confirmation of both’, see [60].

But they also observed that, ‘any power between� l1.3 and� l1.5 would be a tolerable fit to
the data’. Indeed, the 1926 data are from very different sources varying in length and time

scales by orders of magnitude. Apart from this there are other physical processes whose impact

on pair diffusion cannot be readily assessed, such as the effects of bouyancy, and the quasi

two-dimensionality of the atmosphere. Similar concerns can be made regarding the 1948 and

1949 data. No attempt was made to assess the magnitude of these effects, so it is not surprising

that such a wide error band in the power law scaling was given.

There is a more fundamental problem with the data. Data-point number N1 in Table 1 (Fig

1, red filled circle) is not from turbulence measurements at all, rather it is from studies of the

molecular diffusion of oxygen into nitrogen and whose length scale is stated to be of the order

of 10−2 cm. At such a small scale it cannot be turbulent, and certainly cannot contain an iner-

tial subrange. This data-point is therefore disregarded as an outlier in the current investigation

which strictly demands the existence of turbulence with an inertial subrange.

The remaining six data-points (Fig 1, black filled circles) are sound, coming from geophys-

ical turbulence settings and certainly containing extended inertial subranges. The line of best fit

Fig 1. The turbulent pair diffusivity against separation, as log(K) against log(l). The symbols are the observational

data reported by Richardson in 1926 (Table 1). The red filled circle (N1) is from of the molecular diffusion of oxygen

into nitrogen. The black filled circles (N2-N7) are from geophysical settings. The dotted blue line is Richardson’s

assumed locality scaling, K � s
4=3

l . The solid red line is the least square line of best fit to the entire 1926 dataset

(N1-N7), K � s1:248
l . The solid black line is the least square line of best fit to the revised dataset (N2-N7), K � s1:564

l ,

and the coefficient of determination is, R2 = 0.97.

https://doi.org/10.1371/journal.pone.0202940.g001
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to this new improved dataset (N2 to N7) displays an unequivocal non-local scaling, K� l1.564

(Fig 1, solid black line). The coefficient of determination, R2 = 0.97, thus all the data-points lie

close to line of best fit, Fig 1. The correct scaling must be close this; but even taking a reasonably

wide margin of error, say between� l1.5 and� l1.6, this is outside the range noted by Richard-

son & Stommel.

The 1926 dataset is used as a guide to inspire a new idea—locality in the case of Richardson.

Richardson and Stommel were aware of the wide margin of error in the data, but this did not

prevent them from making a reasoned guess on the scaling power based on this data. The situ-

ation is similar here, except that the dataset has been corrected and now shows a clear shift

towards non-locality, indicating that non-local diffusional processes cannot be ignored a priori
in a general theory of turbulent pair diffusion, which is where we turn to in the next section.

4 A new theory

Like Richardson the focus here is on the diffusion coefficient K. Although the mean square

separation hl2i is often the focus of diffusion studies, it is related directly to the diffussion coef-

ficent by the exact relation, K = 0.5dhl2i/dt. If a general scaling, K � s
g

l , is assumed then it

yields hl2i � tχ. For steady-state equilibrium turbulence χ is given by the relation,

w ¼
2

2 � g
ð7Þ

As such hl2i does not provide any additional information. We will therefore focus our atten-

tion mainly on K in the ensuing work, and refer to hl2i only where necessary. Our interest is

scaling laws inside the inertial subrange, so we will ignore discussion of the viscous diffusion

range and the long time Taylor diffusion. Furthermore, as our focus is on scalings rather than

exact quantities we will supress unimportant constants wherever possible.

We will consider turbulence with generalized energy spectra of the form, E(k)� k−p. The

term ‘wavenumber’ will be used to denote both the vector, k, as well as its magnitude, k = |k|,

and the context will make it clear. Generalised spectra of this type are routinely used in pair

diffusion studies; it helps in understanding the balance of diffusional processes as the turbu-

lence spectra changes. In the current work, generalised spectra will play an important role in

developing the new theory, and also for testing the predictions of the theory [27]. The pair dif-

fusion coefficient K(l, p) is now also a function of p. Eq (7) is true for generalised spectra as

well, with γ = γ(p), and χ = χ(p).

4.1 The statement of the problem

The problem is to determine the pair diffusivity, K = h l � v i, of an ensemble of pairs of fluid par-

ticles in a field of homogeneous turbulence with an energy density spectrum, E(k) containing an

generalised inertial subrange, E(k)� k−p, k1� k� kη, for 1< p� 3, and such that E(k)! 0 as

k! 0. The particles in a pair are located at x1(t) and x2(t) at time t, the pair displacement vector

is l(t) = x2(t) − x1(t), and the pair separation is lðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
1
þ l2

2
þ l2

3

p
¼ jx2ðtÞ � x1ðtÞj. The initial

separation at some earlier time, t0, is denoted by l0 = |x2(t0) − x1(t0)|. The turbulent velocity field

is, u(x, t), and the particle velocities at time t are, respectively, u1(t) = u(x1(t), t) and u2(t) = u

(x2(t), t), and the pair relative velocity is v(t) = u2(t) − u1(t).
We assume point source release, which in practical terms means that the initial pair separa-

tion must be close to the Kolmogorov length scale, l0� η. The particles will diffuse apart and

eventually decorrelate with the initial conditions—they will ‘forget’ their initial conditions,

(l0, v0), as Batchelor put it—after some travel time, tl0 , when the pair is inside the inertial sub-

range. During this travel time, the pair will display ballistic motion with essentially constant

Turbulent particle pair diffusion
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velocity equal to the initial relative velocity v = v0; hl2i ¼ l2
0
þ v2

0
ðt � t0Þ

2
. The transition from

the ballistic regime to the explosive inertial subrange regime occurs on a time scale of the

order of the eddy turnover time scale, tl0 � t0ðl0Þ � ε1=3l1=3

0 . If l0� η then the travel time is

approximately equal to the Kolmogorov time microscale, tl0 � ε
1=3Z1=3, which is very short. At

much longer times we can ignore the ballistic regime because t � tl0 and hl2i � l0.

Without loss of generality, it will also be assumed that, t0 = 0.

4.2 The mathematical framework

The main task here is to uncover what scales of turbulent motions contribute to the pair sepa-

ration process when the pair separation l(t) is inside the inertial subrange. For this purpose, we

decompose the pair diffusion coefficient in to its component scales using Fourier transforms.

This is be obtained as follows.

The pair relative velocity is, v(x) = d l / dt, and K is defined as the ensemble average of the

scalar product of v with l,

K ¼ hl � vi ð8Þ

For homogeneous, isotropic, incompressible, reflectional and statistically stationary turbu-

lence, the Fourier expression for the velocity field u is [69],

uðxÞ ¼
Z

AðkÞ exp ðik � xÞ d3k ð9Þ

where A(k) is the Fourier transform of the flow field, k is the associated wavenumber. The rela-

tive velocity v across a finite displacement l, is

vðlÞ ¼ uðx2Þ � uðx1Þ: ð10Þ

Using Eq (9) this is gives,

vðlÞ ¼
Z

AðkÞ½ exp ðik � lÞ � 1� exp ðik � x1Þ d
3k: ð11Þ

Taking the scalar product of v with l, and then the ensemble average h�i over particle pairs

yields an expression for hl �vi. But the left hand side is a Lagrangian quantity, while the right

hand side is an Eulerian quantity. We assume that the Lagrangian ensemble scales like the

Eulerian ensemble; such a closure is often made in diffusion studies. Thomson & Devenish

[70] for example make this assumption implicitly in their analysis of Lagrangian diffusion

models.

We thus obtain a scaling for the pair diffusivity,

KðlÞ � hl � vi �
Z

hðl � AÞ½expðik � lÞ � 1� exp ðik � x1Þid
3k: ð12Þ

Because of homogeneity, the ensemble average removes the factor exp (i k � x1) without

altering the scaling upon l. This gives,

KðlÞ �
Z

hðl � AÞ½ exp ðik � lÞ � 1�id3k: ð13Þ
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Let kl = 1/l be the pair separation wavenumber; we follow the usual convention and replace

l with the scaling, l� σl, throughout this work, so that

klðtÞ �
1

slðtÞ
; ð14Þ

where s2
l ¼ hl

2i. Note that kl(t) changes with time.

4.3 Turbulent transport processes

There are several transport processes that must to be considered. The largest eddies carry the

smaller scales of motion, as depicted in Richardson’s poem ‘Big whorls have little whorls’.

This is known as the sweeping effect, which means that in a frame of reference moving with

these large scale convective motions the small scale transport process should proceed as if

there were no large scale sweeping motions at all in a statistical sense. Thus pair diffusion

inside the inertial subrange, which is a small scale process, should be the same in both frames

of reference. This allows us to simplify the problem statement by working in the swept frame

of reference by eliminating the large scale part of the energy spectrum by setting E(k) = 0 for

k< k1. In this frame of reference, E(k)� k−p, k1� k� kη, and E(k) = 0 outside of this range

of wavenumbers.

In the swept frame of reference, consider a particle pair whose separation distance is l(t),
and the associated wavenumber is kl in Eq (14). In principle, all scales of motion in the inertial

subrange could affect the pair diffusion process.

The eddies at wavenumbers that are much bigger than kl (the smallest scales of motion)

probably act like molecular diffusion motion since the time scales are very small and the

motions are somewhat randomised due to the high frequencies at these scales.

The eddies at wavenumbers close to kl are considered to be in the local wavenumber range

to kl.
The large scale motions at wavenumbers that are much smaller than kl will be less correlated

with the motions at scale kl. The largest of these scales become the sweeping scales which are

statistically decoupled from the local wavenumbers other than carrying them en block. As the

wavenumber spectrum is continuous, it follows that between the convecting scales and the

wavenumbers local to kl, there could be a range of wavenumbers that are weakly correlated

with the motions near kl while still being inside the inertial subrange, and this we call the non-

local wavenumber range to kl.
In this picture, the hypothesis of locality corresponds to the assumption that the non-local

scales of motion do not contribute to the inertial pair diffusion process.

Here, we do not make such an assumption.

The physical assumption adopted here about the nature of the diffusional processes that are

occurring in the system is that there exist three broadly independent diffusional processes

within the inertial subrange that potentially contribute to the pair diffusion process as a whole,

each process acting from its own range of wavenumbers relative to the inverse pair separation

wavenumber kl.
The three physical processes operate, respectively, from (i) the wavenumbers that are larger

than kl, (ii) the wavenumbers that are local to kl, and (iii) the wavenumbers that are non-local

to kl. The associated frequencies are, oðkÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3EðkÞ

p
, according to the usual assumption that

the frequencies scale with the inverse turnover time of the eddy at wavenumber k. The local

eddy frequency is, ol /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3
l EðklÞ

p
, and the local eddy turnover time is, Tl� 1/ωl.

The integral in Eq (13) is then the sum of three integrals over different wavenumber ranges

which are defined as follows:
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s: the small scales such that k� kl, and |k � l|� 1, and the associated frequencies are much

larger than ωl, ω(k)� ωl.

l: the local scales such that k� kl, and |k � l|� 1, and the associated frequencies are of the same

order as ωl, ω(k)� ωl.

nl: the non-local scales such that k� kl, and |k � l|� 1, and the associated frequencies are

much smaller than ωl, ω(k)� ωl.

Eq (13) then becomes,

KðlÞ �
Z

nl
þ

Z

l
þ

Z

s

� �

hðl � AÞð exp ðik � lÞ � 1Þi d3k ð15Þ

which we rephrase as,

KðlÞ � Knl þ Kl þ Ks: ð16Þ

We might approximate the integrand in Eq (15) by expanding the exponential term such

that, exp (i k � l) − 1� i k � l. However, such an expansion is accurate only for low wavenum-

bers k� kl where, |k � l|� 1. For local wavenumbers k� kl where |k � l|� 1, this expansion is

only approximately true. For high wavenumbers k� kl where |k � l|� 1, this expansion is not

accurate.

4.4 The physics of the small scales of motion

A simplification can be made with respect to the small scales of motion whose contribution to

the diffusion process is,

KsðlÞ �
Z

s
hðl � AÞð exp ðik � lÞ � 1Þi d3k ð17Þ

There is no need to evaluate this integral directly because the net ensemble effect can be

assessed on physical grounds alone. Ks is an integral over high wavenumbers and represents

the contribution from scales of turbulent motion which are much smaller than the pair separa-

tion, i.e., from k� kl. The energy contained in these scales is very small if the energy spectrum

decreases as k increases, such as an inverse power law of the type E(k)� k−p, with p> 1.

Furthermore, these small scales are associated with the unsteadiness of high frequencies,

ω� ωl. Statistically, these high frequency motions induce random and rapid changes in the

direction and the magnitude of the pair displacement vector.

Overall, the net statistical impact of these high frequency, low energy, and random turbu-

lent velocity fluctuations on the pair diffusion process is expected to be extremely small, i.e.,

Ks�Max(Kl, Knl). Thus, we assume that Ks� 0 and Ks will be ignored from now on.

4.5 The physics of the local and non-local scales of motion

With the effect of the small scale contributions eliminated, the simplified expression for the

pair diffusivity is,

KðlÞ � KnlðlÞ þ KlðlÞ

�

Z

nl
hðl �AÞðexpðik � lÞ � 1Þi d3kþ

Z

l
hðl �AÞðexpðik � lÞ � 1Þi d3k

ð18Þ

The expansion of the exponential in the integrand to leading order is accurate only in the

non-local range because |k � l|� 1. In the local range where |k � l|� 1, such an expansion is
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only approximately true because the local eddies are moderately unsteady with frequencies

that are of the same order of magnitude as, ωl. The effect on the local diffusion process is

assumed to be likewise moderate.

We will assume that the ensemble effect of the unsteadiness from the local wavenumbers is to

reduce the magnitude of Kl, but without altering its overall scaling behaviour. Then, the expan-

sion, exp (i k � l) − 1� i k � l, can be used in Eq (18) but with the magnitude of Kl reduced by

some factor, Fl≲ 1—this constant is smaller than unity, but not too small. Then (18) becomes,

KðlÞ �
Z

nl
hðl � AÞðik � lÞid3k þ Fl

Z

l
hðl � AÞðik � lÞid3k: ð19Þ

Fl = Fl(p, Rl, C) is not expected to be a universal constant because it will depend upon vari-

ous parameters, like p, and Rl = kl/k1 (which is the size of the inertial subrange relative to the

particle pair separation), and also implicitly upon the size of an eddy in wavenumber space, C
(to be defined later). After absorbing constants, the integrands in Eq (19) become,

hl2jAjjkj cos ðaÞ cos ðbÞi ð20Þ

where α is the angle between l and A, and β is the angle between l and k. For isotropic random

fields averaging (20) over all directions, again, does not affect the scaling behaviour. α and β
are not uniformly distributed in all direction, it is well known that l aligns preferentially in the

positive strain directions, and this ensures that the ensemble average above is non-zero.

Retaining the angled brackets h�i to include averaging over all directions, Eq (19) with Eq

(20) simplifies to,

KðlÞ �
Z Z

nl
hl2akidkdAðkÞ þ Fl

Z Z

l
hl2akidkdAðkÞ ð21Þ

where a = |A|, and dA(k) is the element of surface area at radius k in wavenumber space.

If the closure, hl2aki � hl2ihaki, is assumed, then upon integrating over the surface area this

integral becomes

KðlÞ �
Z

nl
hakidkþ Fl

Z

nl
hakidk

� �

hl2 i: ð22Þ

Note that haki 6¼ 0 even though the vectors k and A are orthogonal because a and k are

magnitudes.
R
ha2idA(k) is the energy density per unit wavenumber averaged over all directions [69] and

scales like� E(k)/k. If the closure,
R
hakidAðkÞ � k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
ha2idAðkÞ

p
is assumed then Eq (22)

becomes,

KðlÞ � s2
l

Z

nl

ffiffiffiffiffiffiffiffiffiffiffi
kEðkÞ

p
dkþ s2

l Fl

Z

nl

ffiffiffiffiffiffiffiffiffiffiffi
kEðkÞ

p
dk ð23Þ

As a further check, this can also be derived as follows. The velocity variance from the scales

k to k + dk is E(k)dk, and the variance of velocity gradient is k2 E(k)dk. The particle pair veloc-

ity variance is,� hl2ik2 E(k)dk. The time scale of eddies of wavenumber k is 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k3EðkÞ

p
. So the

incremental contribution to the diffusivity from these scales is the pair velocity variance times

the time scale, dK � hl2i
ffiffiffiffiffiffiffiffiffiffiffi
kEðkÞ

p
dk, which leads to Eq (23).

To make further progress the actual form of the turbulence spectrum must be specified. In

this work, the focus is on turbulence which contains an inertial subrange. For pair diffusion

statistics, as mentioned earlier, this is implemented by working in the swept frame of reference
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by setting the spectrum in the large energy scales to zero, E(k) = 0 for k< k1, and assuming an

inverse power-law energy spectrum in the inertial subrange,

EðkÞ ¼ Ckε
2=3L5=3� pk� p; k1 < k < kZ; 1 < p � 3 ð24Þ

where Ck is a constant. A large length scale L is necessary for dimensional consistency. L scales

with some length scale that is characteristic of the large energy scales, such as the integral

length scale, or the Taylor length scale.

With the spectrum in Eq (24), and with s2
l ¼ hl

2i, Eq (23) becomes,

Kðl; pÞ � ε1=3Lð5=3� pÞ=2

Z

nl
kð1� pÞ=2dkþ Fl

Z

l
kð1� pÞ=2dk

� �

s2
l ð25Þ

This is the most general expression for K that can be derived from the present analysis with-

out any a priori assumption regarding locality.

4.6 Validation: The locality limit

To check the effectiveness of the mathematical approach adopted here in deriving Eq (25), the

locality limit from this expression must first be validated against Richardson’s locality hypothe-

sis for which there is a known theory.

The assumption of locality means that the non-local (first) term on the right hand side in

Eq (25) is ignored. To evaluate the remaining local integral we assume a cut-off wavenumber

k�l that separates the local and non-local ranges, and such that k1 � k�l < kl. Thus, k1 � k < k�l
defines the non-local kernel (range) to kl in wavenumber space, and k�l � k � kl defines the

local kernel to kl.
Using the scaling hl2i � 1=k2

l the local integral in (25) yields,

Klðl; pÞ �
2Flε

1=3

3 � p
Lð5=3� pÞ=2kð3� pÞ=2

l 1 �
k�
kl

� �ð3� pÞ=2
 !

1

k2
l

ð26Þ

Let the size of the locality kernel with respect to kl be defined by,

Cðp;RlÞ ¼
kl

k�l
; ð27Þ

where C is finite and greater than unity. The size of the inertial subrange with respect to kl is,

RlðtÞ ¼
klðtÞ
k1

; ð28Þ

Note that Rl(t) changes with time because kl(t) changes with time. Rl, is related to a local

Reynolds number through, Rel � R4=3

l . Thus, all dependencies on Rl could be replaced by

dependencies on Rel, e.g. C = C(p, Rel). We will use Rl in the current analysis.

Then Eq (26) becomes,

Klðl; pÞ �
2Fl

3 � p
ε1=3Lð5=3� pÞ=2k� ð1þpÞ=2

l 1 �
1

C

� �ð3� pÞ=2
 !

: ð29Þ

Absorbing constants, this simplifies to,

Klðl; pÞ � Flε
1=3Lð5=3� pÞ=2s

glðpÞ
l ; where glðpÞ ¼ ð1þ pÞ=2; 1 < p � 3 ð30Þ

Turbulent particle pair diffusion

PLOS ONE | https://doi.org/10.1371/journal.pone.0202940 October 3, 2018 12 / 29

https://doi.org/10.1371/journal.pone.0202940


Eq (30) reproduces the correct generalized locality scaling, γl(p) = (1 + p)/2, [30, 71, 72]. For

Kolmogorov turbulence, p = 5/3, this gives, K � s
4=3

l , which recovers the Richardson’s 4/

3-scaling law.

4.7 The influence of non-local scales

A priori there is no reason to neglect the non-local term, which is the first term on the right

hand side in Eq (25),

Knlðl; pÞ � ε1=3Lð5=3� pÞ=2

Z

nl
kð1� pÞ=2dk

� �

s2
l ð31Þ

This is equivalent to strained relative motion where each scale of turbulence in the non-

local wavenumber range, k1 < k < k�l , will set up a straining field in the neighbourhood of kl
which will alter the rate of increase of the pair separation. Previous theories have assumed that

such non-local effects are negligible. However, there are three factors that suggest that this may

be an oversimplification.

Firstly, the non-local wavenumbers, k1 < k < k�l , possess much greater energies than at the

local separation wavenumber kl, and this will increase their relative influence in the pair diffu-

sion process.

Secondly, the time scale of the non-local scales, Tnl(k), are much larger than the local turn-

over time scale, Tnl(k)� Tl� 1/ωl, so the straining fields set up by non-local wavenumbers

will persist for longer times than Tl, which will enhance their effectiveness.

Thirdly, although an individual non-local wavenumber contribution is weak, the integral is

over a large part of the energy spectrum. Again, this will enhance the effectiveness of the non-

local scales in the pair diffusion process.

Taken together, there is a fair chance that the total non-local contributions could be signifi-

cant at least in some parameter range.

Changing variables in the integrand in Eq (31) to s = k/k1, yields

Knlðl; pÞ � ε1=3Lð5=3� pÞ=2kð3� pÞ=2

1

Z

nl
sð1� pÞ=2ds

� �

s2
l : ð32Þ

Inside the integral the non-local wavenumbers in range of integration ½k1; k�l � do not scale

with kl so the integral is a definite integral producing a non-dimensional number, Snl = Snl(p,

Rl, C). Snl is not expected to be a universal constant. This gives,

Knlðl; pÞ � Snlε
1=3Lð5=3� pÞ=2kð3� pÞ=2

1 s2
l : ð33Þ

If the upper end of the inertial subrange is assumed to scale with the large scales, k1� 1/L,

then this simplifies further to,

Knlðl; pÞ � Snlε
1=3L� 2=3s

gnlðpÞ
l ; with gnlðpÞ ¼ 2; 1 < p � 3 ð34Þ

γnl(p) is the non-locality scaling, and it is always equal to 2, independent of p. Knl is thus

always strain dominated being proportional to s2
l .

4.8 A general expression for the pair diffusivity

The overall expression for the turbulent pair diffusion coefficient is therefore,

Kðl; pÞ � O Flε
1=3Lð5=3� pÞ=2s

glðpÞ
l

� �
þ O Snlε

1=3L� 2=3s2
l

� �
; 1 < p � 3; ð35Þ
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or simply,

Kðl; pÞ � O s
glðpÞ
l

� �
þ O s

gnlðpÞ
l

� �
; 1 < p � 3 ð36Þ

where,

glðpÞ ¼ ð1þ pÞ=2 local scaling ð37Þ

gnlðpÞ ¼ 2 non � local scaling ð38Þ

Eq (36) with Eqs (37) and (38) means that turbulent pair diffusion is governed by a local dif-

fusional process, and a non-local diffusional process which is produced by straining fields set

up by the large scales.

But, what is the relative balance of their contributions? What does Eq (36) imply for the

overall scaling for K?

5 The scaling laws for K

To address these questions, we need to first establish some general properties of the function C
in Eq (27).

C ¼ kl=k�l is a fundament physical quantity. It represents the range of wavenumbers close

to kl over which motions are well correlated with motions at scale kl. It is a type of non-dimen-

sionalised correlation scale for particle pairs. We call it the locality kernel, or we may call it the

locality correlation length. In essence, this means that motions with scales within this kernel

are deemed to scale locally with kl, but motions with scales outside this kernel do not scale

with kl.
C is finite, 1< C<1, and it depends on Rl, and on the energy spectrum E(k)� k−p.

E(k) becomes less steep as p! 1, so there is relatively more energy in the smaller scales

when p approaches 1; this indicates that C must increase in this limit, C� 1. On the other

hand, as p! 3, then C! 1 because all scales of motion act non-locally so that k�l ! kl.

The balance of the local and non-local diffusion is defined as the ratio, MK = Knl/Kl. MK is a

function of, p, Rl, and C, and from Eqs (29) to (34) we obtain,

MKðp;Rl;CÞ ¼
Knl

Kl
�

1 �
C
Rl

� �ð3� pÞ=2Þ
 !

FlðCð3� pÞ=2Þ � 1Þ

ð39Þ

Usually, we expect that C� 1, which simplifies the above to,

MKðp;Rl;CÞ �
1

Fl

1

Cð3� pÞ=2Þ
�

1

Rð3� pÞ=2Þ

l

 !

ð40Þ

Furthermore, in subranges that are bigger than the locality kernel, Rl/C� 1, this simplifies

further to,

MKðp;Rl;CÞ !
1

Fl

1

Cð3� pÞ=2Þ
; as Rl=C!1 ð41Þ

We can now obtain some properties of Mk, and hence predict some scalings for the pair dif-

fusion coefficient.
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5.1 Scaling for Kolmogorov turbulence p = 5/3

Before we look at the general case, 1< p� 3, it is instructive to look first at the Kolmogorov

turbulence case p = 5/3. Then in the limit of infinite subrange Rl/C!1, Eq (41) is,

MKðRl;CÞ !
1

Fl

1

C2=3
: ð42Þ

This is a finite limit and we can therefore expect the balance between local and non-local

processes to befinite. In other words, neither one process nor the other will be completely

dominant.

But in the limit of short finite subranges such that Rl/C! 1, i.e. Rk/C> Rl/C� 1, Eq (40)

gives,

MKðRl;CÞ �
1

Fl

1

C2=3
�

1

R2=3

l

 !

� 0: ð43Þ

Thus, for reasonably short inertial subranges, the non-local processes are negligible and we

expect locality to be completely dominant, at least approximately.

For an ad hoc value of Fl = 0.25, and C = 100, we obtain Mk� 0.15 in the limit of Rl/C!1.

This is illustrated in Fig 2, which shows plots of Mk against log(Rl), for p = 5/3, C = 100, and for

three choices of Fl = 0.1, 0.25, 0.5. These are only estimates, but it illustrates the finite balance

between the local and non-local diffusional processes.

If the inertial subrange is too short, Rl< C, then the above analysis breaks down and we do

not observe any kind of inertial range scaling.

In summary, for asymptotically infinite inertial subrange (Reynolds number) we obtain a

finite balance between local and non-local diffusional processes; but in the limit of short iner-

tial subrange locality is restored because the non-local processes are negligible.

Do these limiting cases also exist for general spectra?. We investigate this in the next

section.

Fig 2. MK against log(Rl), from Eq (40) with p = 5/3, C = 100, and Fl = 0.1, 0.25, 0.5 as indicated.

https://doi.org/10.1371/journal.pone.0202940.g002
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5.2 Infinite inertial subrange Rk!1 (Re!1)

First, we derive the scaling laws for the pair diffusion coefficient in the limit of infinite inertial

subrange (infinite Reynolds number). Henceforth we assume that, Fl< 1, and Rl> C> 1, and

Rk> Rl, unless otherwise stated.

From Eq (40), as p! 1, then MK! (1/C − 1/Rl)/Fl. For large inertial subranges, Rk/C>
Rl/C� 1, we obtain MK! 1/Fl C� 1, and therefore locality dominates in this limit as expected.

From Eq (39), it is easily shown that as p! 3, then MK!1, and therefore non-locality

always dominates in this limit, again as expected. (Exact non-locality corresponds to C = 1).

In the intermediate range, 1< p< 3, although the balance MK cannot be obtained quantita-

tively without the explicit form of Fl and C as a functions of p and Rl, it is instructive to investi-

gate MK with some test functions for C to uncover some general trends in MK.

For this purpose, we simplify further by assuming an ad hoc value of Fl = 0.25. We choose

smooth exponential type test functions, C(p) = 1 + 100(exp(−A(p − 1)) − exp(−2A)), such that

C� 1 at p = 1, and C = 1 at p = 3. A> 0 is a given constant. MK was calculated using C(p) in

(39).

Figs 3 to 6 show plots of log(Mk) against p for different inertial subrange size, respectively,

Rl = 101, 102, 103, and 104, for five selected values of A = 1, 2, 3, 4, 5 as shown. In all the cases,

MK� 1 as p! 1, and MK� 1 as p! 3; and MK(p) increases smoothly and monotonically as

p increases from 1 to 3.

Mk approaches relatively close to 1 in a range of p close to p = 5/3—see the case for A = 2 in

Fig 5 for example.

For any p in the range 1< p< 3, Mk increases as Rl increases indicting the increasing influ-

ence of non-local processes. This feature is highlighted in Figs 7 to 12 which show plots of log

(Mk) and against log(Rl) for selected spectra, respectively p = 1.1, 1.5, 5/3, 1.8, 2.1 and 2.5. For

the Kolmogorov spectrum p = 5/3, in Fig 8, we observe that Mk is close to unity for Rl> 103

Fig 3. log(MK) against p, Eq (39), with exponential test functions, C(p) = 1 + 100(exp(−A(p − 1) − exp(−2A)), and

Fl = 0.25, and Rl = 101. Five cases are shown, A = 1, 2, 3, 4, 5.

https://doi.org/10.1371/journal.pone.0202940.g003
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indicating that both local and non-local diffusional processes could play significant roles in

large inertial subranges.

We can draw the following conclusions for large inertial subranges where Rk/C> Rl/C� 1.

Firstly, as p! 1 then MK� 1, and therefore Knl� Kl, yielding the locality limit,

Kðl; pÞ ! Klðl; 1Þ � s1
l as p! 1: ð44Þ

Fig 5. Similar to Fig 3, except for Rl = 103.

https://doi.org/10.1371/journal.pone.0202940.g005

Fig 4. Similar to Fig 3, except for Rl = 102.

https://doi.org/10.1371/journal.pone.0202940.g004
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Secondly, as p! 3 then MK� 1, and therefore Knl� Kl, yielding the non-locality limit,

Kðl; pÞ ! Knlðl; 3Þ � s2
l as p! 3: ð45Þ

Thirdly, MK(l, p) is a smooth function of p in the range 1< p� 3 and it increases smoothly

and monotonically as p increases smoothly from 1 to 3; this indicates that the non-local scales

exert increasingly stronger influence until they are completely dominant at p = 3.

Fig 6. Similar to Fig 3, except for Rl = 104.

https://doi.org/10.1371/journal.pone.0202940.g006

Fig 7. log(MK) against p, Eq (39), with exponential test functions, C(p) = 1 + 100(exp(−A(p − 1) − exp(−2A)). Fl =

0.25 and p = 1.1. Five cases are shown, A = 1, 2, 3, 4, 5.

https://doi.org/10.1371/journal.pone.0202940.g007
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Fourthly, The influence of the non-local process increases at any p in the rangel 1< p< 3

as the size of the inertial subrange increases.

From these considerations, there is a fair chance that in the critical range of spectra close to

Kolmogorov p = 5/3 both the local and non-local processes could exert significant influence in

the diffusional process.

Fig 8. Similar to Fig 7, except for p = 1.5.

https://doi.org/10.1371/journal.pone.0202940.g008

Fig 9. Similar to Fig 7, except for p = 5/3.

https://doi.org/10.1371/journal.pone.0202940.g009
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We now apply an extension of Richardson’s second hypothesis, that at any p the diffusion

coefficient is described by a single power, say γ(p), across all scales in the limit of infinite iner-

tial subrange. This is plausible because self-similarity is exact in this limit—that is you cannot

tell the difference in the scaling at different scales, so you must observe the same power at all

scales.

Fig 10. Similar to Fig 7, except for p = 1.8.

https://doi.org/10.1371/journal.pone.0202940.g010

Fig 11. Similar to Fig 7, except for p = 2.1.

https://doi.org/10.1371/journal.pone.0202940.g011
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Since MK is a smooth and continuous function of p in the range 1< p� 3, then K(l, p)

must also be a smooth and continuous function of p in this range and it must display a smooth

transition between its asymptotic limits, Kðl; 1Þ � s1
l and Kðl; 3Þ � s2

l , as p passes smoothly

from 1 to 3.

Is it possible that either one of the local or non-local processes dominates throughout the

inertial subrange for any given p? That would imply a discontinuous jump between locality

and non-locality scalings at some value of p in order to satisfy the asymptotic limiting cases in

(44) and (45), but this would violate the continuity in K as a function of p.

Thus, K(l, p) must be a power law scaling which is intermediate between the purely local

and non-local scalings,

Kðl; pÞ � s
gðpÞ
l ; as Rk=C!1 with glðpÞ < gðpÞ < gnlðpÞ; 1 < p < 3: ð46Þ

The scaling powers γ(p) are such that, as p! 1 then γ(p)! 1, and as p! 3 then γ(p)! 2.

Globally, 1< γ(p)� 2. Furthermore, γ(p) must transform smoothly between these limiting

cases as p goes from 1 to 3.

Eq (46) is the main prediction of the new theory in the limit Rk/C!1, with γl(p) and γnl(p)

given by (37) and (38). This is equivalent to the mean square separation scaling, hl2i � tχ(p),

with χ(p) given by Eq (7). Eq (7) is a non-linear relation between γ and χ, so small changes in γ
could produce large changes in χ.

For Kolmogorov turbulence, E� k−5/3, the new theory predicts that, γ> 4/3, and χ> 3.

For turbulence with intermittency μI> 0, such that E� k−(5/3+μI), the scaling is again greater

than from a purely local theory,

gmI
> gl

mI
¼ 4=3þ mI=2: ð47Þ

It is interesting to note that even under the classical locality assumption, in real turbulence

with intermittency p = 1.72 we should obtain the scaling γl = 1.36, and χl = 3.125; thus, the

Fig 12. Similar to Fig 7, except for p = 2.5.

https://doi.org/10.1371/journal.pone.0202940.g012
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classical RO-t3 regime does not actually exist! This is important for another reason because it

gives us a way of testing how close current DNS is to at the locality limit—see Discussion, Sec-

tion 6.

A non-local 4/3-law, K � s
4=3

l , is precited for some spectrum, E � k� p� , where p�< 5/3 and

γ(p�) = 4/3. This is equivalent to hl2i � t3, with χ(p�) = 3, which is a new non-Richardson-Obu-

khov t3-regime for the mean square separation.

We define Mγ(p) to be the ratio of the scaling power γ(p) to and local scaling powers γl(p),

MgðpÞ ¼
gðpÞ
glðpÞ

: ð48Þ

Mγ(p) is equal to 1 at both p = 1 and p = 3, and since Mγ> 1 in the range 1 < p< 3, then

there must be a maximum in Mγ at some p = pm for an energy spectrum E� k−pm, where

1 < pm< 3.

Richardson’s 1926 dataset, Fig 1, from real geophysical turbulence (i.e. including intermit-

tency) suggests a scaling of, gmI
� 1:564, i.e. KmI

� s1:564
l . The theory developed here in Eq (46)

is more consistent with this data than previous theories. However, not all large-scale measure-

ments agree with this, as discussed in Section 2.

The preditions for asymptotically infinite inertial subrange Rk!1 is summarised in the

sketch in Fig 13 which shows the predicted log-log plots of K against σl as p increases from 1

to 3.

Finally, we remark that corrections from the ends of the inertial subrange may modify

some of the regimes predicted above. Ultra-violet corrections from the high wavenumber close

to kη, and infra-red corrections from the low wavenumbers close to k1 may penetrate some

way in to the inertial subrange, but the degree of penetration is unknown. Nevertheless, for

very large subranges, we still expect to observe unambigous inertial range scalings over an

extended inner part of the subrange.

5.3 Exposing the local process—Short inertial subrange, Rk�1 (Re�1)

Eq (36) means that turbulent pair diffusion is governed by two broadly independent local and

non-local processes. This excites a compelling question; are there circumstances in which we

can ‘turn off’ either one of the processes thus exposing the other process explicitly?

The non-local process, which is the first term in Eq (36), exists in the wavenumber range

½k1; k�l �; but suppose that the inertial subrange itself is so small that it is close to the size of the

locality kernel? Then the non-local range of scales would be absent to good approximation,

and we might then observe a purely local diffusional process, as illustrated in the sketch in

Fig 14.

However, due to the small size of the inertial subrange, the infra-red and ultra-violet correc-

tions from the ends of the inertial subrange may have a relatively greater influence than in very

large inertial subranges. So such a regime may only be approximately local in nature—i.e. a

quasi-local regime,

Kðl; pÞ � s
ð1þpÞ=2

l ; for Rk � C ð49Þ

As we progressively increase the size of the inertial subrange we would expect to see a

smooth transition from the locality regime at moderate inertial subrange to the non-locality

regime at very large (effectively infinite) subrange, as illustrated in the sketch in Fig 15.

Such a quasi-local regime if it exists is non-Richardson in character because locality was

hypothesised for strictly infinite inertial subranges by Richardson.
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5.4 Exposing the non-local process—Very small initial separation l0� η
We can ‘turn off’ the local process in Eq (36) by simply removing the ‘local’ part of the spec-

turm—this is equivalent to taking a very small initial separation l0� η. Then there is a spectral

gap between the k0 = 1/l0 and kη� k0 where E(k) = 0. If this gap is large enough then the spec-

trum between k1� k� kη will in efffect be non-local to the pair separation process so long as

σl(t)� η.

Strictly speaking, this is not inertial range scaling any more because the separation is out-

side the inertial subrange, but because this system can be used to test the fundamental premise

of the new theory, we will consider it here. According to the theory described in Eq (36), with

the local range removed we should now observe purely strain dominated pair separation

which has the diffusion coefficient scaling,

Kðl; pÞ � s2
l ; for sl � Z ð50Þ

for all p. In fact, this scaling is independent of the size of the inertial subrange and also of the

form of the spectrum, so long as σl� η. Eq (50) is equivalent to exponential growth in time,

σl(t)� l0 exp(St), where S depends upon the form of E(k).

But as σl approaches η from below, i.e. σl/η! 1, the inertial subrange scaling will begin to

take effect and we expect the scaling in (50) to change over.

Fig 13. Sketch of the pair diffusion coefficient K against σl for 1< p� 3, as predicted from the current theory in

the asymptotic limit of very large inertial range Rk/C!1, (or Re!1), Eq (46).

https://doi.org/10.1371/journal.pone.0202940.g013
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Fig 14. Sketch of the pair diffusion coefficient K against p for 1< p� 3, as predicted from the current theory for

finite (short) inertial subranges, Rk� C�1, (or Re�1), Eq (49).

https://doi.org/10.1371/journal.pone.0202940.g014

Fig 15. Sketch of the pair diffusion coefficient K against σl, for Kolmogorov spectrum p = 5/3 as predicted from

the current theory as the size of the inertial subrange increases from Rk = 10 to Rk!1.

https://doi.org/10.1371/journal.pone.0202940.g015
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6 Discussion

Richardson’s hypothesis of locality was based on the 1926 data-set of pair diffusion coefficients.

However, the reappraised 1926 data presented here shows an unequivocal non-local scaling

for the turbulent pair diffusivity, K � s1:564
l , Fig 1. Consequently, the foundations of turbulent

pair diffusion theory have been re-examined here in an effort to resolve one of the most impor-

tant and enduring problems in turbulence.

A novel mathematical approach has been developed by expressing the pair diffusion coeffii-

cient through a Fourier integral decomposition. a priori assumptions regarding locality have

not been made, and this has led to an expression for K as the sum of local and non-local contri-

butions in Eq (36).

The main contribution of this investigation is to propose a new local-non-local theory of

turbulent particle pair diffusion based upon the principle that the turbulent pair diffusion pro-

cess in statistically stationary homogeneous turbulence is governed by both local and non-

local diffusional processes. The theory preditcs the existance of two non-Richardson pair diffu-

sion regimes in turbulence with generalized energy spectra, E(k)� k−p.

For asymptotically infinite inertial subrange the pair diffusion coefficient scales like,

Kðl; pÞ � s
gðpÞ
l , with (1 + p)/2< γ(p)� 2, in the range 1< p� 3, Eq (46), which is intermediate

between the purely local and purely non-local scaling power laws. The reappraised 1926 geo-

physical data, Fig 1, provides support for the new theory in this limit.

For short inertial subrange quasi-local regimes are predicted in which the pair diffusion

coefficient scales approximately locally like, Kðl; pÞ � s
ð1þpÞ=2

l , in the range 1< p� 3.

The theory also predicts that the existence of the local and non-local diffusional processes

can be demonstrated in principle by islolating each one; first by taking short inertial subranges

which would expose the local process, and then by taking very small initial separations which

would expose the non-local process.

In summary, the new theory predicts the following two non-Richardson pair diffusion

regimes:

local : KðlÞ ¼ s
glðpÞ
l ; glðpÞ ¼ ð1þ pÞ=2; Rk=C � 1 ðRe�1Þ ð51Þ

non � local : KðlÞ ¼ s
gðpÞ
l ; glðpÞ < gðpÞ � 2; Rk=C!1 ðRe!1Þ ð52Þ

The new theory could explain why DNS studies in pair diffusion have failed to observe

non-local regimes of pair diffusion—because DNS would have to generate inertial subranges

orders of magnitude bigger than currently possible. It was shown in Section 5.2 that in the

locality limit, we should obtain the scalings KðlÞ � s1:36
l and hl2i � t3.125 if we assume an inter-

mittent spectrum of p = 1.72. However, no DNS study has so far reported a scaling greater

than hl2i � t3, which indicates that the size of the inertial subrange produced in DNS has not

reached the minimum needed to observe locality scaling at the current time.

It is important to note that the theory presented here is based upon fundamental physical

principles, and as such it is not dependent on any specific numerical method of simulation.

However, the theory cannot predict quantitatively the power laws γ(p) themselves, or the pre-

cise size of the inertial subrange that will yield either of the two non-Richardson regimes. For

these quantities, and in order to investigate other predictions of the new theory, ideally we

would need experiments or DNS.

Neither laboratory experiments nor DNS can produce extended inertial subranges at the

current time, which is an essential requirement in the present theory. However, some Lagrang-

ian diffusion models can generate large inertial subranges. In a companaion paper, [27], such a
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numerical simulation method is used to investigate the new theory where all predictions of the

new theory have been verified.
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