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Host-guest complexation 
of cucurbit[8]uril with two 
enantiomers
Zhong-Zheng Gao1, Rui-Lian Lin2, Dong Bai1, Zhu Tao1, Jing-Xin Liu2 & Xin Xiao1

Host-guest complexation of cucurbit[8]uril (Q[8]) with two enantiomers, D-3-(2-naphthyl)-alanine 
(D-NA) and L-3-(2-naphthyl)-alanine (L-NA), has been fully investigated. Experimental data indicate 
that double guests reside within the cavity of Q[8] in both aqueous solution and solid state, generating 
highly stable homoternary complexes D-NA2@Q[8] and L-NA2@Q[8].

The recognition and sensing of amino acids, peptides and proteins in aqueous solution by artificial receptors has 
attracted much interest in supramolecular host-guest chemistry and pharmaceutical science in the recent past1–5. 
The interest is stimulated by its potential applications in diverse fields such as drug delivery, nutritional analysis 
and disease diagnosis. Various examples of the use of artificial receptors for amino acid (or peptide/protein) rec-
ognition have been reported6–12. Cucurbit[n]urils (n =  5–8, 10, abbreviated as Q[n], Fig. 1a) are a family of unique 
macrocyclic cavitands possessing two identical carbonyl-laced portals and a rigid hydrophobic cavity, which can 
selectively accommodate and interact with various organic molecules13–17. In the past decade, Q[n]s have been 
exploited for binding amino acids, peptides and proteins18–35. For example, Urbach and co-workers studied the 
combining power of Q[7] to a number of amino acids, peptides and proteins, and found that the Q[7] prefer to 
bind guests containing an N-teminal aromatic residue18–21. Kim group systematically studied the binding proper-
ties of Q[7] to a series of amino acids in both solution and the gas phase28. Scherman et al. reported heteroternary 
and homoternary complexes between Q[8] and peptides with aromatic residues30.

It is well known that all alpha amino acids but glycine usually exist in two enantiomers (L- or D-amino acid). 
To the best of our knowledge, however, the detection and recognition of specific enantiomeric amino acids by 
Q[n]s have never been reported. Previous investigation revealed that the host Q[8] is large enough to accom-
modate two phenyl, naphthyl or other aromatic groups simultaneously through host-stabilized charge-transfer 
interactions14,36–38. This observation prompted us to explore the possibility of the formation of homoternary com-
plexes between Q[8] and enantiomeric amino acid containing naphthyl residue, D-3-(2-naphthyl)-alanine and 
L-3-(2-naphthyl)-alanine (abbreviated as D-NA and L-NA, respectively, Fig. 1b). In the present work, we studied 
the host-guest complexation of Q[8] with D-NA and L-NA in aqueous solution by NMR, UV and fluorescence 
spectroscopy, MS and isothermal titration calorimetry (ITC), and in the solid state by X-ray crystallography.

Results and Discussion
Binding Behaviors in Aqueous Solution. The 1H NMR spectroscopy measurements indicate that both 
D-NA and L-NA form host-guest inclusion complex with Q[8] host. Given that the changes induced by Q[8] 
host in the 1H NMR spectra of guests D-NA (Fig. 2) and L-NA (Figure S2) are similar, guest D-NA is taken as 
a representative to depict their binding interactions. In the presence of small amount of the Q[8] host (Fig. 2b), 
the signals of both free and complexed guests are simultaneously observed and are very broad, indicating slow 
exchange of free and complexed guests on the NMR time scale. All guest aromatic protons move upfield consid-
erably, revealing deep insertion of the naphthyl group inside the cavity. On the other hand, the proton H1 and one 
of the CH2 protons of D-NA move downfield slightly, which indicates that they are located outside the cavity. At a 
2:1 ratio of D-NA to Q[8], the aromatic peaks are completely shifted upfield. These observations suggest that the 
naphthyl moiety of the D-NA guest was encapsulated into the cavity of the Q[8] host.

To better understand the host-guest interaction between Q[8] and both enantiomers in aqueous solution, we 
carried out UV and fluorescence titration experiments. According to the UV absorption spectroscopic results, 
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Fig. 3(A), upon the gradual addition of Q[8] into D-NA in H2O, the absorption underwent a slight bathochromic 
shift from 220 to 227 nm in addition to a significant decrease in its intensity due to the strong interaction between 
Q[8] and D-NA. This is actually also true for the case of Q[8] with L-NA (Figure S3).

We also studied the fluorescence properties of both D-NA and L-NA in the presence of Q[8]. As can be seen 
in Fig. 3(B), the D-NA shows an emission peak at 334 nm in aqueous solution, when the excitation is λ  =  274 nm. 
Successive addition of Q[8] caused decrease in the fluorescence intensity at 334 nm and appearance of a new 
emission peak at around λ  =  410 nm. Moreover, we found that an isobestic point appears at 364 nm. These sub-
stantial changes in emission profiles further confirm the strong host-guest interaction between Q[8] and D-NA. 
When the D-NA is replaced by L-NA, similar fluorescence spectra are also observed (Figure S3).

Their Job’s plots (based on the continuous variation method) clearly show that both UV and fluorescence 
spectra data of both enantiomers fit well to 1:2 stoichiometry of the host-guest inclusion complexes (Fig. 3, inset). 
The formation of the homoternary complexes D-NA2@Q[8] and L-NA2@Q[8] was also established by the MS 
experiments. Their MALDI-TOF spectra (Figure S4, Supporting Information) gave doubly-charged peak at 
m/z =  880.2700 for the D-NA2@Q[8], and m/z =  880.2884 for the L-NA2@Q[8] (calculated for [2D-NA@Q[8]-
2Cl−]2+/2 and [2L-NA@Q[8]-2Cl−]2+/2, 880.8958).

Figure 1. Structures of the Q[n] and guests used in this study. 

Figure 2. 1H NMR spectra of 5.0 mM D-NA (a), D-NA and Q[8] in the ratio of 0.6 (b), 1.1 (c), 2.2 (d), 3.1 (e), 
and Q[8] (f) in D2O at 293 K.
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Structural Analysis. X-ray structure analysis provided unequivocal proof of the formation of homoternary 
complexes between Q[8] and both enantiomers. Crystals of D-NA2@Q[8] were grown by slow evaporation of a 
solution containing the host Q[8] and the guest D-NA under 3.0 M aqueous hydrochloric acid solution in the 
presence of CdCl2. X-ray structural analysis has established that the D-NA2@Q[8] crystallize in the monoclinic 
crystal system, space group P21/c. As can be seen in Fig. 4, the naphthyl moiety of the D-NA guest was located 
inside the cavity of the Q[8] host, which is in agreement with what we have observed in the aqueous solution by 
1H NMR spectroscopy. Obviously, the van der Waals contacts between the naphthyl groups and the inner wall of 
the Q[8] cavity, together with the electrostatic interactions between the protonated nitrogens in the guests and 
the carbonyl oxygens at the portals of the Q[8] host, and strong hydrogen- bonding: N(18)–H···O(4) 2.860(5) Å, 
N(34)–H···O(11) 2.902(3) Å, contribute to the formation of the inclusion complex D-NA2@Q[8]. Furthermore, 
the π ···π  interactions between two encapsulated D-NA molecules play a critical role in the formation of this 
host-guest inclusion complex. Outside of the inclusion complexes, neighboring D-NA molecules contact with 
each other through not only π ···π  interaction, but also C–H···π  interactions.The synthesis and structure of 
L-NA2@Q[8] (Figure S5, Supporting Information), is similar to that of D-NA2@Q[8], except that the D-NA is 
replaced by the L-NA.

It is should be noted that the homoternary complex D-NA2@Q[8] is completely different from the 
host-stabilized charge-transfer complexes, which Kim group perviously reported14. In the homoternary complex 
D-NA2@Q[8], the two encapsulated D-NA molecules are connected together through π ···π  interactions. In the 
latter, the encapsulated guests were electron donor and acceptor pair, and the major driving force for the ternary 
complex formation appears to be strong charge-transfer interaction between the guests14.

Description of ITC. ITC study (Fig.  5) on the complexation of Q[8] with both D-NA and L-NA 
affords the thermodynamic parameters (Table S1), and further confirms that the binding stoichiometry 
of Q[8] to both enantiomers is 1:2. From the Δ H and TΔ S values in the Table S1, it is clear that the forma-
tion of both homoternary complexes is enthalpically driven. The observed negative enthalpy change (Δ H1 =   
−50.12 ±  2.59 kJ·mol−1, Δ H2 =  −6.17 ±  2.56 kJ·mol−1 for D-NA2@Q[8]; Δ H1 =  −48.97 ±  4.42 kJ·mol−1,  
Δ H2 =  −3.97 ±  4.77 for L-NA2@Q[8]) is probably due to the cooperativity of above mentioned four kinds of weak 
interactions. On the basis of the corresponding experimental results, we also obtained the association constants 
of Ka =  (6.51 ±  0.19) ×  1011 M−2 and (3.17 ±  0.05) ×  1011 M−2 for Q[8] with D-NA and L-NA, which are much 
larger than that of Q[8] with tripeptides reported by Urbach21. Such a high binding constant suggests the relatively 
strong host-guest interaction between Q[8] and D-NA or L-NA, indicating the construction of stable homoter-
nary complexes D-NA2@Q[8] and L-NA2@Q[8] in aqueous solution.

Conclusion. In summary, we have investigated the host-guest complexation of Q[8] with two enantiomers 
D-NA and L-NA in both aqueous solution and solid state by using NMR, UV and fluorescence spectroscopy, MS, 
isothermal titration calorimetry (ITC), and X-ray crystallography. Driven by the cooperativity of electrostatic 
interactions, multiple C–H···π  interactions, and hydrogen-bondings, both D-NA and L-NA can be encapsulated 
into the cavity of Q[8] to form stable homoternary complexes D-NA2@Q[8] and L-NA2@Q[8]. This study sug-
gests that Q[8] host may be very useful in dimerisating specific amino acids, peptides and proteins with suitable 
binding groups.

Methods
Materials and methods. 3-(2-naphthyl)-D-alanine and 3-(2-naphthyl)-L-alanine were obtained from 
Aldrich and used as supplied without further purification. Q[8] was prepared according to a literature method39,40. 

Figure 3. UV spectra of D-NA (2.0 ×  10−5) (A) and fluorescence spectra of D-NA (2.0 ×  10−5) (B) with 
increasing concentration (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 equiv) of Q[8]. The 
inset shows the formation of a 1:2 host-guest complex.
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All the 1H NMR spectra were recorded on a Bruker DPX 400 spectrometer in D2O. Absorption spectra of the 
host-guest complexes were recorded on an Aglient 8453 spectrophotometer at room temperature. Fluorescence 
spectra of the host-guest complexes were performed with a Varian RF-540 fluorescence spectrophotometer. 
MALDI-TOF mass spectrometry was recorded on a Bruker BIFLEX III ultra-high resolution Fourier transform 
ion cyclotron resonance (FT-ICR) mass spectrometer with a-cyano-4-hydroxycinnamic acid as matrix.

Single-crystal X-ray crystallography. Single crystals of D-NA2@Q[8] and for L-NA2@Q[8] were grown 
from hydrochloride acid solution by slow evaporation. Diffraction data of both complexes were collected at 
273(2) K with a Bruker SMART Apex-II CCD diffractometer using graphite-monochromated Mo-Kα radiation 
(λ  =  0.71073 Å). Empirical absorption corrections were performed by using the multi-scan program SADABS. 
Structural solution and full-matrix least-squares refinement based on F2 were performed with the SHELXS-97 
and SHELXL-97 program packages, respectively41,42. Non-hydrogen atoms were treated anisotropically in all 
cases. All hydrogen atoms were introduced as riding atoms with an isotropic displacement parameter equal to 1.2 
times that of the parent atom. Hydrogen atoms were given for all isolated water molecules.

Crystal data for D-NA2@Q[8]: [(C13H14NO2)2@(C48H48N32O16)]·(CdCl4
2−)2·(C13H14NO2)2·10(H2O), 

Mr =  2882.77, monoclinic, space group P21/c, a =  18.875(2) Å, b =  12.5113(16) Å, c =  27.418(3) Å, β =  112.540(6)°,  
V =  5980.2(12) Å3, Z =  2, Dc =  1.601 g cm−3, F(000) =  2959, GOF =  1.008, R1 =  0.1183 (I >  2σ(I)), wR2 =  0.3541 
(all data).

Crystal data for L-NA2@Q[8]: [(C13H14NO2)2@(C48H48N32O16)]·(CdCl4
2−)2·(C13H14NO2)2·10(H2O), 

Mr =  2882.77, monoclinic, space group P21/c, a =  18.875(2) Å, b =  12.5113(16) Å, c =  27.418(3) Å, β =  112.540(6)°,  
V =  5980.2(12) Å3, Z =  2, Dc =  1.601 g cm− 3, F(000) = 2959, GOF =  1.007, R1 =  0.1164 (I >  2σ(I)), wR2 =  0.3555 
(all data).

CCDC 1451630 and 1451631 contain the supplementary crystallographic data for this paper. These data 
can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/
data_request/cif.

Figure 4. (a) X-ray crystal structure of the homoternary complex D-NA2@Q[8]. Free D-NA molecules, 
solvate water molecules and [CdCl4]2− anions are omitted for clarity. (b) The C–H···π  interaction between two 
neighboring D-NA molecules outside of the Q[8].

http://www.ccdc.cam.ac.uk/data_request/cif
http://www.ccdc.cam.ac.uk/data_request/cif
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Preparation of D-NA2@Q[8] and L-NA2@Q[8]
Synthesis of the crystal D-NA2@Q[8]. To a solution of D-NA (10.8 mg, 0.050 mmol) and CdCl2 (3.6 mg, 
0.050 mmol) in 3.0 M HCl (2 ml), Q[8] (6.2 mg, 0.005 mmol) was added. The resulting reaction mixture was 
stirred for 5 min at 50 °C and filtered. Slow solvent evaporation of the filtrate in air over a period of about two 
weeks provided rhombic colorless crystals of D-NA2@Q[8] with the yield of 1.8 mg (20%).

Synthesis of the crystal L-NA2@Q[8]. To a solution of L-NA (10.8 mg, 0.050 mmol) and CdCl2 (3.6 mg, 
0.050 mmol) in 3.0 M HCl (2 ml), Q[8] (6.2 mg, 0.005 mmol) was added. The resulting reaction mixture was 
stirred for 5 min at 50 °C and filtered. Slow solvent evaporation of the filtrate in air over a period of about three 
weeks provided rhombic colorless crystals of L-NA2@Q[8] with the yield of 1.7 mg (18%).

Isothermal titration calorimetry (ITC) experiments. ITC data were obtained on a Nano ITC instru-
ment (TA, USA). Titration were performed with Q[8] concentration of approximately 0.1 mM in the sample cell 
(1.3 mL), and D-NA or L-NA concentration of approximately 2 mM in the syringe (250 μ L). The heat of dilution 
was corrected by injecting the guest solution into deionized water and subtracting these data from those of the 
host-guest titration. All titrations were repeated three times. Computer simulations (curve fitting) were per-
formed using the Nano ITC analyze software.
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