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Abstract

SARS-CoV-2 is the agent responsible for the coronavirus disease (COVID-19), which has been 
declared a pandemic by the World Health Organization. The clinical evolution of COVID-19 
ranges from asymptomatic infection to death. Older people and patients with underlying 
medical conditions, particularly diabetes, cardiovascular and chronic respiratory diseases 
are more susceptible to develop severe forms of COVID-19. Significant endothelial damage 
has been reported in COVID-19 and growing evidence supports the key pathophysiological 
role of this alteration in the onset and the progression of the disease. In particular, the 
impaired vascular homeostasis secondary to the structural and functional damage of the 
endothelium and its main component, the endothelial cells, contributes to the systemic 
proinflammatory state and the multiorgan involvement observed in COVID-19 patients. This 
review summarizes the current evidence supporting the proposition that the endothelium 
is a key target of SARS-CoV-2, with a focus on the molecular mechanisms involved in the 
interaction between SARS-CoV-2 and endothelial cells.

Introduction

Sars-CoV-2 (severe acute respiratory syndrome coronavirus 
2) is the agent responsible for coronavirus disease 2019 
(COVID-19), which has been declared a pandemic by 
the World Health Organization (WHO). According to 
the WHO report, there were 46,403,652 cases of COVID-
19 and 1,198,569 related deaths as of early November 
2020 (https://www.who.int/emergencies/diseases/novel-
coronavirus-2019). However, the number of cases is likely 
to be underestimated since a significant proportion of 
asymptomatic or mildly symptomatic people is not tested 
for the disease. The infection is transmitted through direct 
contact with infected persons, via airborne droplets, or 
indirectly, through contaminated objects or surfaces. The 

presence of SARS-CoV-2 in fecal swabs and blood suggests 
additional transmission ways (1). Infected people, both 
symptomatic and asymptomatic, can transmit the virus 
(2). SARS-CoV-2 belongs to the family of coronaviridae, 
with a positive single-strand RNA genome of ~30 kb 
nucleotides. Host cell receptor recognition is the first step 
of the infection. SARS-CoV-2 preferentially interacts with 
the ACE2 (angiotensin-converting enzyme 2) receptor, 
although alternative receptors are also available for 
binding. The virus surface Spike (S) protein, responsible 
for the coronavirus entry into the cell, contains a receptor-
binding domain (RBD) which specifically recognizes ACE2 
(3). The cellular proteases transmembrane protease serine 
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2 (TMPRSS2) and cathepsin B and L (CatB/L), located 
on the surface of human cells, then cleave the S protein 
promoting the fusion of the viral envelope with the 
host cell membrane. Viral RNA is then released into the 
cytoplasm and a replication-transcription complex (RTC) 
is formed, which leads to the generation of additional viral 
particles (3, 4). The clinical evolution of COVID-19 ranges 
from asymptomatic infection to death. Fever, cough and 
shortness of breath are the most common symptoms, 
highlighting the primary involvement of the respiratory 
system. However, severe cases are also characterized 
by the presence of excessive systemic inflammation 
and additional cardiovascular, urinary, hematopoietic, 
gastrointestinal and nervous system compromise (5, 
6). Older people and patients with comorbidities, in 
particular diabetes, cardiovascular disease, and respiratory 
disease, are more susceptible to develop severe forms 
of COVID-19 (7). The presence of excessive systemic 
inflammation suggests the key pathophysiological role 
of the endothelium in COVID-19 onset and progression. 
Vascular endothelial cells form a highly effective barrier 
between the circulation and peripheral tissues and play 
a key role in the maintenance of vessel tone, hemostasis, 
immune response, coagulation and production of 
extracellular matrix (ECM) components. Significant 
endothelial dysfunction/injury has been reported in 
COVID-19 (8, 9, 10, 11). In this review, we discuss the 
molecular mechanisms involved in the interaction 
between SARS-CoV-2 and endothelial cells (ECs) and the 
clinical consequences of this interaction.

ECs and the ACE2 receptor

The angiotensin-converting enzyme 2 (ACE2) is a 
transmembrane protein with a large catalytic extracellular 
domain, which functions both as viral receptor and 
as metallopeptidase on a wide variety of substrates. As 
metallopeptidase, ACE2 is part of the renin-angiotensin 
system (RAS) and plays a primary role in cardiovascular 
homeostasis, controlling blood pressure and promoting 
vasodilation. ACE2 catalyzes the hydrolysis of the 
vasoconstrictor Angiotensin II into Angiotensin I, a 
vasodilator; the opposite reaction is catalyzed by another 
enzyme, ACE (12, 13). An imbalance between the two 
enzymes activity with an increase of ACE activation can 
lead to excessive vasoconstriction and cardiovascular 
disease development (14). ACE2, previously identified 
as the receptor that interacts with SARS-CoV (the virus 
responsible for SARS) (15), is also primarily involved in 

the entry of SARS-CoV-2 into cells (16). Both viruses share 
a genome similarity of about 80% (17), however, the 
receptor-binding domain (RBD) of the Spike SARS-CoV-2 
protein differs from that of the SARS-CoV for several 
amino acids. This might explain the higher binding 
affinity to the ACE2 receptor, and consequently, the 
greater pathogenicity of SARS-CoV2, when compared to 
SARS-CoV (18, 19). The SARS-CoV-2 viral entry into the 
cell is associated with structural modifications of ACE2 
which lead to a loss of its cardioprotective activity (18). 
Immunolocalization studies report the presence of the 
ACE2 receptor in many organs and tissues. However, 
the expression is particularly abundant in vascular ECs 
and, consequently, in highly vascularized organs such as 
the lung and the kidney (20). In this regard, recent data 
obtained in engineered human blood vessel organoids 
derived frm induced pluripotent stem cells confirmed that 
SARS-CoV-2 can directly infect blood vessel cells. Indeed, 
SARS-CoV-2-infected blood vessel organoids showed 
a viral RNA increasing after 3–6 days post-infection 
indicating an active viral replication (21). Moreover, since 
viral particles have a size of ∼80–100 nm (22), SARS-CoV-2 
preferentially enters into vascular ECs prior to migrating 
to different organs and tissues, unless a structural and/or 
functional alteration is present in the infected tissues (22).

The ACE2 receptor is also expressed in 
precursors of ECs

Endothelial progenitor cells (EPCs) are a population of 
bone marrow-derived mononuclear cells (23). A small 
circulating EPCs subpopulation, characterized by the 
overexpression of CD34, CD133, and VEGFR-2 markers, 
possess the ability to transdifferentiate into ECs and play 
a role in neo-angiogenesis and vascular homeostasis (23, 
24, 25). Recent studies have highlighted the important 
role of the renin–angiotensin system (RAS) in the 
physiology of vascular progenitor cells as both ACE 
and ACE2 are expressed in CD34 positive circulating 
bone marrow-derived hematopoietic stem/progenitor 
cells (26). ACE2 deficiency in these cells can promote 
atherosclerosis, inflammation, bone marrow dysfunction 
and microvascular complications (27, 28). The expression 
of ACE2 in the stem cell compartment suggests that SARS-
CoV-2 may potentially infect and damage this important 
source of cells with consequent long-term deleterious 
effects on organ and tissue regeneration. In this context, 
recent studies have reported the expression of both ACE2 
and TMPRSS2, two proteases involved in viral activation, 
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in hematopoietic and ECs precursors known as very small 
embryonic-like stem cells (VSELs). The ACE2-SARS-CoV-2 
interaction in VSELs leads to the activation of NLRP3 
inflammasome, a multimeric protein complex responsible 
for a cascade of inflammatory events that ultimately lead 
to cell death by pyroptosis (29). Hence, the interaction 
between Sars-CoV-2 and progenitor cells might negatively 
impact their regenerative potential, increasing the risk of 
long-term clinical sequelae.

Alternative receptors for SARS-CoV-2 are 
highly expressed in ECs

Although, as discussed, ACE2 represents the main gate 
entry of SARS-CoV-2 into cells, its expression is reduced 
in older adults and patients with cardiovascular disease, 
groups that are particularly susceptible to develop 
severe infection (30). One possible explanation for this 
paradox is that ACE2 is not the only entry route for SARS-
CoV-2. Indeed, alternative receptors that are also highly 
expressed in ECs, particularly Neuropilin and CD209L, 
have been proposed as facilitators of viral entry. The 
CD209L receptor, already known as a target of SARS-CoV 
infection, is a C-type lectin transmembrane glycoprotein 
that is highly expressed in human type II alveolar cells 
and lung ECs (31). CD209L can mediate SARS-CoV-2 
entry and infection following recognition and interaction 
with the RBD domain of the SARS-CoV-2 spike protein. 
In addition, immunofluorescence analysis of human 
tissues from SARS-CoV-2 infected organs indicates a high 
expression of CD209L in the endothelium of small and 
medium vessels, especially in the lung and the kidney (32). 
Neuropilin-1 receptor (NRP1) also recognizes and binds 
to the SARS-CoV-2 spike protein (33). Noteworthy, both 
NRP1 and protein to neuropilin-2 receptor (NRP2) genes 
are upregulated in SARS-CoV-2 infected blood vessels (34). 
NRP1 regulates multiple biological processes, including 
cardiovascular system development, angiogenesis and 
formation of neuronal circuits. Analysis of tissues and 
cells from COVID-19 patients has revealed that the NRP1 
receptor is mainly expressed in the epithelium facing the 
nasal cavity; moreover, NRP1-positive endothelial cells of 
small and medium-sized vessels have been shown to be 
infected with SARS-CoV-2. Additional in vivo experiments, 
using mice infected following intranasal administration 
of SARS-CoV, have provided evidence that NRP1 can 
mediate the entry of the virus into the CNS (35). See Fig. 
1 for an overview of SARS-CoV-2 activated receptors and 
tissues/organs involved in COVID-19

SARS-CoV-2 can directly affect ECs and 
induce endothelial injuries

The presence of viral particles within ECs of different 
organs in biopsies of COVID-19 patients is a clear evidence 
of direct endothelium infection. Viral elements have 
been found not only in ECs of the most affected organs, 
such as the lung, heart, and kidney, but also of the skin 
(34, 36, 37). COVID-19-related cutaneous involvement 
is heterogeneous for type, onset and symptoms, and 
secondary to different degrees of inflammation and 
microvascular damage (38). Chilblain-like skin lesions 
have raised particular interest among dermatologists 
since they predominantly affect young people and are 
mostly asymptomatic or associated with minor COVID-
19 symptoms. In addition, many of these cases were 
associated with negative serological and microbiological 
SARS-CoV-2 tests, making it difficult to establish a 
causal relationship with COVID-19 (38). However, the 
presence of SARS-CoV-2 viral particles in ECs from skin 
biopsies has allowed a direct correlation, indicating 
chilblain-like lesions as a consequence of COVID-19 (36). 
A possible explanation for these COVID-19 cutaneous 
manifestations might be the presence of a non-specific 
and rapid response of the innate immune system or a 

Figure 1
Overview of SARS-CoV-2 entry points into the body and tissues/organs 
involved in COVID-19. NRP1, Neuropilin-1 receptor; ACE2, angiotensin-
converting enzyme receptor; CD209L, C-type lectin transmembrane 
glycoprotein, also called L-SIGN, DC-SIGNR and DC-SIGN2; CRS, 
cardiorespiratory system.
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different antibody response (39). Skin biopsies have also 
highlighted signs of damage, endotheliitis and thrombosis 
of small vessel along with EC injury. Endotheliitis, a 
vascular inflammation characterized by ECs swelling and 
damage and separation from the underlying basement 
membrane by subendothelial lymphocytes, is emerging 
as an important hallmark of SARS-CoV-2 infection. Signs 
of diffuse endothelial inflammation, accumulation of 
inflammatory cells, endothelial apoptosis and necrosis 
have been detected in the lung, heart, kidney, liver, 
small intestine and skin, as well as the presence of viral 
elements within ECs (34, 36, 37). A recent study reported 
a stroke in a young and previously healthy SARS-CoV-2-
infected patient without any sign of hyperinflammatory 
state or blood coagulation activation. However, a 
significant increase of factor VIII and von Willebrand 
factor (vWF) indicated endothelial activation. Based on 
this observation, the authors suggest endotheliitis as 
a putative cause for the cryptogenic stroke associated 
with COVID-19 (40). Therefore, widespread endothelial 
dysfunction and endotheliitis are considered the result of 
a direct SARS-CoV-2 endothelial invasion which triggers 
endothelial inflammation with leukocyte recruitment and 
initiation of innate immune responses. This inflammation 
status is the cause of micro-thrombotic complications 
which ultimately lead to deep vein thrombosis, pulmonary 
embolism and stroke (41). A recent study suggests that 
the activation of complement pathways is also involved 
in the development of thrombotic microvascular injuries. 
Indeed, histological analysis of lungs and skin from 
COVID-19 patients has showed extensive endothelial and 
subendothelial deposits of complement components, C4d 
and C5b-9, within the thrombosed artery. Co-localization 
of both SARS-CoV-2-specific spike glycoproteins 
and envelope proteins with C4d and C5b-9 was also 
observed (42). Regardless of the exact triggering event 
leading to thrombosis, the endothelium is undoubtedly 
a key pathophysiological target in COVID-19 and its 
involvement is clinically relevant.

Circulating endothelial cells (CECs) and 
circulating endothelial progenitors (CEPs) 
are biomarkers of endothelial damage 
in COVID-19

Circulating endothelial cells (CECs) are mature ECs 
released from the intima into the blood following 
endothelial damage/stress (43). Increased numbers of 
CECs have been detected in cardiovascular disease, 

inflammatory states, infections and ischemia (43, 44). 
CECs are therefore important cellular biomarkers of 
endothelial health and their increase is directly correlated 
with disease severity. CECs have been assessed in two 
studies of 99 and 30 COVID-19 patients, hospitalized 
or admitted to the intensive care unit (ICU) (45, 46). 
CECs count was significantly higher in patients admitted 
to ICU and was positively correlated with the length 
of hospital stay and with an increased concentration 
of inflammatory cytokines. Therefore, the widespread 
endothelial injury observed in the severe forms of 
COVID-19 is a direct consequence of a proinflammatory 
activation within the vessels (46). A possible limitation of 
the assessment of CECs in COVID-19 patients is that other 
concomitant disease states associated with endothelial 
damage, for example, cardiovascular diseases, diabetes 
and atherosclerosis, might affect result interpretation. 
On the other hand, the presence of excessive CECs 
in COVID-19 patients might reflect increased disease 
severity and multiorgan involvement (45). To address 
the issue of distinguishing between viable, necrotic and 
apoptotic ECs, a study assessed the ratio between viable 
and apoptotic cells. Although the absolute number of 
CECs in mild and severe COVID-19 patients was similar to 
that in healthy controls, the viable/apoptotic CECs ratio 
indicated that the CECs were less apoptotic in COVID-19 
patients that this imbalance was of a greater magnitude 
than that reported in other vascular diseases or neoplastic 
conditions (43, 44, 47). On the other hand, the number 
of both viable and apoptotic CEPs in COVID-19 patients 
was higher than healthy controls, however, no correlation 
with disease severity was observed (43, 44, 47). An 
interesting positive correlation was also found between 
the copies of viral RNA and the percentage of apoptotic 
CEPs in severe COVID-19 patients which suggests that 
progenitor cells, as well as mature ECs, might be a direct 
target of SARS-CoV-2. However, as also suggested by the 
authors, this hypothesis requires confirmation (48).

Endothelial cell membrane-located human 
chaperones share epitopes with SARS-CoV-2 
and elicit the autoimmune response

Morphologic and molecular analysis of lungs from 
patients with SARS-CoV-2 highlight a marked endothelial 
injury with disruption of intercellular junctions and 
demolition of the endothelial membrane. This distinctive 
feature, as well as the presence of SARS-CoV-2 within 
ECs confirmed also by other studies, suggests that the 
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endothelium is the primary site of attack by SARS-CoV 
(34). As previously discussed, additional features of the 
SARS-CoV-2 infection include the strong autoimmune 
and autoinflammatory response and the systemic nature 
of the disease (49). In this context, molecular chaperones, 
intracellular molecules expressed under stress conditions, 
can be released, probably in a modified form, into the 
extracellular environment as part of the autoimmune 
response (50). A recent study identifies chaperones that 
might generate an immunological cross-reactivity due to 
molecular mimicry phenomena in SARS-CoV-2 infection. 
Using a bioinformatics prediction tool, the amino acid 
sequences of all SARS-CoV-2 proteins were compared with 
20,365 human proteins. There was an exact identity of 
six or more amino acids with 17 molecular chaperones. 
Moreover, the shared peptides were immunogenic 
epitopes with a high possibility of recognition by the 
human immune system. Therefore, the molecular 
chaperones, sharing epitopes with SARS-CoV-2, can 
potentially elicit a mechanism of autoimmunity where 
cross-reactive antibodies and effector cells can damage 
or destroy human cells. Notably, some of the molecular 
chaperones detected in this study, heat shock proteins 
HSP90, HSP60 and HSP70 are already known to localize in 
the EC membrane under stress conditions (51, 52, 53). This 
further supports the proposition that the endothelium 
represents a key target in SARS-CoV-2 infection. Indeed, 
hypertension and diabetes, main risk factors for COVID-
19, are associated with EC stress and consequent release 
and localization of chaperones on the EC membrane. This 
condition potentially induces an autoimmune response 
which in turn exacerbates the SARS-CoV-2 induced 
endothelial damage (54).

Increased D-dimer in COVID-19 may be 
related to endothelial cell apoptosis

There is good evidence that coagulation disorders such 
as thrombosis, disseminated intravascular coagulation 
(DIC), and hemorrhage are associated with viral infections 
(55). Most viral infections can induce DIC, small blood 
vessel thrombosis due to clot formation. An increasing 
number of studies have reported that COVID-19 patients 
with DIC or thrombosis also have abnormal coagulation 
parameters, particularly high levels of D-dimer and 
fibrinogen and longer prothrombin times (56, 57). ECs 
produce both anticoagulant (thrombomodulin and 
antithrombin) and procoagulant (tissue factor and 
plasminogen activator inhibitor-1) factors and viral 

infection can trigger EC-mediated coagulation (55). A 
recent hypothesis suggests that the excess D-dimer in 
SARS-CoV-2 infection may be the result of a coagulopathy 
induced by ECs apoptosis (58). Apoptosis is common 
during viral infection and can result from either a direct 
interference of the virus with apoptotic pathways or a 
response of the immune system. In addition, apoptotic 
vascular ECs exhibit procoagulant activity which 
contributes to the development of a prothrombotic state 
(59). EC apoptosis with procoagulant activity has been 
observed in several viral infections (e.g. human influenza 
virus, Zika virus, chikungunya) (58, 60, 61). Endothelial 
apoptosis in SARS-CoV-2 infection has been demonstrated 
by Varga et al. by histological analysis of COVID-19 tissues 
(37). As ACE2 is the main receptor used by SARS-CoV-2 
to enter the target cells it is plausible to speculate that 
tissues or cells carrying the ACE2 receptor are particularly 
susceptible to virus-induced apoptosis (58). 

Endothelial dysfunction is the common 
denominator of all COVID-19 risk factors

Although the endothelium has been traditionally 
considered a simple monolayer of cells that line the 
interior surface of blood vessels, it has a key role in the 
regulation of vascular tone and homeostasis. Indeed, 
beside acting as permeable barrier between the blood 
and the tissues, it can also respond to physical and 
chemical signals by releasing a wide range of regulatory 
factors involved in vascular tone, blood clotting, cellular 
adhesion and vessel wall inflammation (62). ECs-
mediated nitric oxide (NO) biosynthesis is instrumental 
in the maintenance of vascular homeostasis. NO is 
responsible for vasodilation, angiogenesis, endothelial 
cell growth, and protection of vessels from injury. The 
availability of NO depends on a balance between ROS 
production and the activity of endothelial nitric oxide 
synthase (eNOS), responsible for NO synthesis. Indeed, 
increased oxidative stress is associated with a reduced 
NO availability and synthesis due to an altered function 
of eNOS which generates superoxide instead of NO (63). 
This imbalance between ROS generation and antioxidant 
defense mechanisms is the primary cause of endothelial 
dysfunction (64). Endothelial dysfunction can be defined 
as a systemic pathological state of the endothelium that 
is characterized by a proinflammatory and procoagulant 
state. Endothelial dysfunction represents the hallmark 
of many cardiovascular and metabolic diseases, such 
as hypertension, chronic heart failure, atherosclerosis, 
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diabetes, obesity, as well as chronic inflammatory and 
autoimmune diseases (65). Dysfunctions of vascular 
endothelium have also been reported in many viral 
infections (Influenza A, hemorrhagic viruses, SARS-CoV, 
Middle East Respiratory Syndrome/MERS-CoV) as well as 
in SARS-CoV-2 (66, 67, 68). In fact, viruses can directly 
(or indirectly by the immune response) damage the 
vascular endothelium inducing its excessive activation. 
In this context, the hyperproduction of inflammatory 
mediators (cytokines storm) and endothelial dysfunction 
are the hallmarks of COVID-19 patients with a fast and 
fatal disease progression. Indeed, SARS-CoV infection 
induces the release of proinflammatory cytokines which, 
besides to induce the increase of vascular permeability, 
loss of the normal endothelium antithrombotic and 
anti-inflammatory functions, are also responsible for 
the secretion of additional cytokines and chemokines 
along with platelet activation and leukocyte recruitment 
(69, 70). It is hard to establish whether endothelial 
dysfunction is the direct outcome of the viral invasion 
or rather a phenomenon secondary to the virus-elicited 
cytokine storm. Based on the current knowledge, it 
is conceivable to assume that both events may occur 
in parallel. Finally, endothelial dysfunction is the 
common denominator of both SARS-CoV2 infection and 
comorbidities (diabetes, obesity, cardiovascular diseases) 
which are often correlated with the worst outcomes of 
COVID-19. In the authors’ opinion, this also indirectly 
confirms the important role played by the endothelium 
in the pathophysiology and clinical evolution of 
COVID-19. In patients with comorbidities such diabetes, 
hypertension and cardiovascular disease, as well as older 
patients, who already exhibit a dysregulation of the 
redox status, the SARS-CoV2 infection will likely further 
increase oxidative stress. Indeed, as reported with other 
viruses, oxidative stress plays an important role also in 
the pathogenesis of SARS-CoV2 infection. The interplay 
between oxidative stress and the cytokine storm plays a 
key role in determining tissue injury, hypoxia, and organ 
failure (71). Therefore, the detrimental effects of oxidative 
stress on endothelial function are also biologically and 
clinically relevant in SARS-CoV2 infection. 

Conclusion

The data summarized in this review indicate the 
endothelial cell (EC) as a primary SARS-CoV-2 target and 
support the clinical relevance of endothelial dysfunction 
in the pathophysiology of COVID-19. ECs are highly 

present in the major SARS-CoV-2 entry points into the 
body and the viral infection can directly (or indirectly by 
the immune response) damage the vascular endothelium, 
triggering a cascade of events that drives both clot 
formation and inflammation. Based on the clinical, 
pathological and molecular features of COVID-19 patients 
it is plausible to consider COVID-19 as a systemic disease 
with important hallmarks of vascular damage. Therefore, 
targeting endothelial cell functions involved in pathways 
where the endothelium plays a key role, such as hyper 
inflammation and clotting, might help to attenuate 
disease progression and/or severity,
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