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A robust and tuneable mid-infrared optical switch
enabled by bulk Dirac fermions
Chunhui Zhu1,2,*, Fengqiu Wang1,2,*, Yafei Meng1,2,*, Xiang Yuan2,3, Faxian Xiu2,3, Hongyu Luo4, Yazhou Wang4,

Jianfeng Li4, Xinjie Lv2,5, Liang He1,2, Yongbing Xu1,2, Junfeng Liu6, Chao Zhang7, Yi Shi1,2, Rong Zhang1,2 &

Shining Zhu2,5

Pulsed lasers operating in the mid-infrared (3–20 mm) are important for a wide range of

applications in sensing, spectroscopy, imaging and communications. Despite recent advances

with mid-infrared gain platforms, the lack of a capable pulse generation mechanism remains a

significant technological challenge. Here we show that bulk Dirac fermions in molecular beam

epitaxy grown crystalline Cd3As2, a three-dimensional topological Dirac semimetal,

constitutes an exceptional ultrafast optical switching mechanism for the mid-infrared.

Significantly, we show robust and effective tuning of the scattering channels of Dirac fermions

via an element doping approach, where photocarrier relaxation times are found flexibly

controlled over an order of magnitude (from 8 ps to 800 fs at 4.5 mm). Our findings reveal the

strong impact of Cr doping on ultrafast optical properties in Cd3As2 and open up the long

sought parameter space crucial for the development of compact and high-performance

mid-infrared ultrafast sources.
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S
hort-pulsed lasers have proved indispensable for many
branches of science and engineering such as spectroscopy,
biomedical research and telecommunications1,2. The key

component to achieve pulsed operation is a passive optical
switch, also termed saturable absorber, which can transit between
different absorption states on an ultrafast timescale3. Although an
optical switch may take different physical forms, semiconductor
saturable absorber mirrors (SESAMs), a breakthrough in ultrafast
photonics in the early 1990s (ref. 4), are at present the most
prevalent approach used for ultrashort pulse generation in the
near-infrared. Compared with alternative technologies, a most
compelling advantage of SESAMs is the ease with which device
parameters can be precisely customized with great reprodu-
cibility5, thanks to the use of mature semiconductor growth
techniques, for instance, molecular beam epitaxy (MBE). The
design freedom of SESAMs has also opened a desirably large
parameter space, enabling the access to robust pulsation regimes
and continuous improvement of output characteristics for near-
infrared ultrafast lasers3.

The development of compact short-pulsed lasers in the mid-
infrared has historically been hindered by the poor availability of
gain materials, thus expedient techniques based on near-infrared
sources and nonlinear frequency conversion have become today’s
norm for mid-infrared pulse generation6–8. The rapid maturing
of mid-infrared gain platforms9–11 in recent years is calling
for saturable absorbers with performance levels on par with
their near-infrared counterparts. While being a powerful optical
switching solution12–15, SESAMs nevertheless exhibit a relatively
narrow nonlinear optical bandwidth and limited long-wavelength
access, that is, typically B3 mm (ref. 16). Low-dimensional mate-
rials, including carbon nanotubes17,18, graphene19–21, transition-
metal dichalcogenides22, black phosphorus23,24 and other
emerging two-dimensional materials, have been considered for
low-cost substitutes for SESAMs25,26. However, the defect-prone
exfoliation and transfer processes inevitably lead to poor
repeatability and reliability and it has been challenging to
tune the intrinsic nonlinear optical response in these material
systems. Therefore, improving the performance levels of current
mid-infrared short-pulsed lasers critically depends on the
availability of a capable mid-infrared optical switch, preferably
with figures of merit on par with those of SESAMs.

Cd3As2, a representative three-dimensional topological Dirac
semimetal (TDS), exhibits stable bulk Dirac states where
conduction and valence bands touch at the Dirac nodes and the
Dirac fermions disperse linearly along all three momentum
directions27,28. Interband transitions between the two Dirac
bands in Cd3As2 naturally provides a highly robust and amenable
light-Dirac fermion-interaction platform, ideally suited for
enabling new optical functionalities in the mid-infrared range.

Here, by probing the mid-infrared optical response of bulk
Dirac fermions, we show that MBE-grown Cd3As2 can act as an
ultrafast (o10 ps) optical switch in the mid-infrared with
operation covering at least the 3–6 mm range. Through an
element doping scheme (that is Cr atoms replacing Cd atoms in
the compound), flexible tuning of the photocarrier recovery
time over an order of magnitude is achieved. Furthermore, the
robust parameter customization of Cd3As2 allows the access
to different pulsation regimes in a 3 mm fibre laser in an
on-demand manner, pointing to the potential of greatly
upgraded performance levels of mid-infrared pulsed lasers.
Although various exotic physical phenomena, such as ultra-
high mobility and giant negative magnetoresistance, have been
uncovered in three-dimensional TDS systems29–32, our findings
show that this emerging class of quantum materials can be
harnessed to fill a long known gap in the field of mid-infrared
lasers and photonics.

Results
Cd3As2 film growth and characterization. We first prepared
high-quality Cd3As2 films under ultra-high vacuum in MBE
system (see Methods section). The thickness of the film was
in situ monitored by reflection high-energy electron diffraction
(RHEED). As shown in Fig. 1 inset, a typical RHEED pattern of
Cd3As2 films shows bright and streaky lines, indicating a good
surface morphology and crystallinity. X-ray diffraction mea-
surements were also performed (Fig. 1). A series of peaks can be
well resolved and indexed as {112} crystal plane (the un-indexed
peaks come from the mica substrate), further confirming the good
crystallinity of the sample33. Magneto-transport measurements
on the Cd3As2 films were conducted using a physical property
measurement system with a superconducting magnet (9 T). The
Shubnikov–de Haas oscillations, non-trivial Berry phase and
vanishingly small effective mass confirmed the Dirac nature of
Cd3As2 thin film (see Supplementary Fig. 1). Hall measurements
revealed an electron mobility of B3,300 cm2 V� 1 s� 1 at room
temperature and 5,400 cm2 V� 1 s� 1 at low temperature (2.5 K).

Ultrafast nonlinear optical spectroscopy. Photoexcitation and
carrier relaxation are fundamental processes that govern the
optical response of materials. For Cd3As2, an optical conductivity
over broad mid-infrared wavelengths that is linked to the intrinsic
Dirac band dispersion provides an important prerequisite for
robust and tuneable light–matter interactions34. To investigate
the ultrafast optical switching characteristics of Cd3As2,
mid-infrared ultrafast pump-probe spectroscopy is performed
(see Methods section). It should be noted that, while degenerate
probing is known to better approximate saturable absorber
dynamics35, non-degenerate measurements offer the advantage of
convenient scaling of probe wavelengths, owing to the ease of
beam alignment (B6 mm in our setup). Figure 2a and Supple-
mentary Fig. 2a show the non-degenerate and degenerate
transient transmission spectra, respectively (a 400 nm thick
Cd3As2 film is used to avoid quantum confinement effects).
Both measurements reveal photobleaching signatures arising
from Pauli blocking36, indicating that Cd3As2 exhibits saturable
absorption over the entire spectral range investigated (1.6–6 mm).
We further confirm this nonlinear optical response by a pump
fluence-dependent change of DT/T0, as shown in Supplementary
Fig. 3. A pure mica substrate is found to yield no transient
response under the same conditions. Supplementary Fig. 2b
illustrates the correlation between the non-degenerate and
degenerate photocarrier processes, where tnondeg is seen to
reproduce the value of tdeg2. We therefore attribute the fast
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Figure 1 | Characterizations of Cd3As2 thin film. X-ray diffraction pattern

for Cd3As2 thin film sample. The marked peaks correspond to {112} crystal

plane of Cd3As2, while the other peaks come from the mica substrate. The

inset is an in situ RHEED pattern.
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component tdeg1 to the coherent nonlinear optical response
resulting from carrier–carrier scattering37 and the slow compo-
nent tdeg2 (tnondeg) to the incoherent response, typically
associated with carrier–phonon coupling38. In addition, we
qualitatively investigate the relative weight of the two relaxation
components by plotting the ratio of the slow component’s
amplitude, defined as DT/T0 at 3 ps, to the fast component’s
amplitude, defined as DT/T0 at 0 ps, as a function of probe
wavelength. The increasing ratio shown in Supplementary Fig. 2c
indicates that the slower, incoherent carrier processes have an
increasingly dominant role as the excitation photon energy shifts
closer to the Dirac node. Figure 2b summarizes all the fitted time
constants for the pump-probe investigation, where tnondeg is seen
to slow down from 4 to 9.3 ps as the probe wavelength was
increased to B6 mm. It should be noted that these time constants
are appreciably longer than two-dimensional Dirac fermions
in graphene. As theoretical investigations reveal that carrier–
acoustic phonon scattering occurs on the microsecond
timescale39, it is reasonable to attribute the primary relaxation
process to optical phonon coupling, and the increase of the
recovery time can be accounted for by the reduced optical
phonon energy in Cd3As2 (B15 meV) with respect to graphene
(162–198 meV)36,40. In brief, these experimental results
unambiguously confirm that MBE-grown Cd3As2 thin films
exhibit ultrafast saturable absorption over broad mid-infrared
wavelengths from 3 to 6mm.

To directly reveal the saturable absorption properties of
Cd3As2, we further performed a nonlinear absorption measure-
ment at a wavelength of 3 mm with an optical parametric
amplifier (OPA) delivering B100 fs pulses. Figure 2c shows the
power-dependent transmittance of Cd3As2. A rollover typically
seen in saturable absorbers at high intensity irradiation is
observed at fluences exceeding 7 GW cm� 2 and the sample is
found substantially damaged at a fluence of B12 GW cm� 2

(ref. 41). The measurement data can be fitted by a simple
saturation model42, T(I)¼ 1�DT� exp(� I/Isat)�Tns, where I,
DT, Isat and Tns are the input intensity, modulation depth,

saturation intensity and non-saturable absorbance, respectively.
This yields a modulation depth of B4.4% and a saturation
intensity of B0.78 GW cm� 2. At a wavelength of 2 mm, we
obtain a modulation depth of B3.4%, a saturation intensity of
B0.25 GW cm� 2 and a damage threshold of B10 GW cm� 2

with B100 fs pulse irradiation (Supplementary Fig. 4a). Similar
figures of merit were obtained by using a longer (6 ps) 2mm
pulses from a mode-locked fibre laser (Supplementary Fig. 4b).

Photocarrier recovery time customization. Flexible and precise
parameter customization is the most important feature that
differentiates SESAMs from other saturable absorber technologies
and makes SESAMs adaptable to various laser formats, that is
fibre, solid-state or semiconductor chip lasers3–5. However,
flexible parameter tuning has not been experimentally achieved
for mid-infrared saturable absorbers. Among various device
parameters, recovery time represents the most fundamental
one. Other properties, such as modulation depth and saturation
intensity, can typically be controlled by engineering either the
recovery time or the device geometry5. It should be noted that, for
saturable absorber operation, the slow recovery component
typically has a more dominant role than the fast component,
especially during the initial pulse formation stage3. Therefore,
various strategies targeting the tuning of the slow component of
the relaxation time of SESAMs have been proposed43–45, of which
low-temperature growth44 and postgrowth ion-implantation45

have proven most effective. Here we introduce chromium (Cr) as
a dopant to the Cd3As2 film (see Methods section). Compared
with low-temperature growth and ion-implantation, one potential
advantage of using the Cr doping approach is significantly
reduced defects in the sample lattices. In Supplementary Fig. 5,
Supplementary Fig. 6 and Supplementary Note 1, we show that
the Cr atoms occupy specific (f1) positions instead of distributing
randomly (Supplementary Tables 1 and 2), which subsequently
leads to the opening of a quasi-particle gap (B50 meV for the 2%
Cr-doped sample)46,47. The optical conductivity of Cr-doped
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Figure 2 | Ultrafast nonlinear optical properties of Cd3As2 films with 400 nm thickness. (a) The non-degenerate ultrafast pump-probe results with the

probe wavelength varying from 3 to 6 mm, and red solid lines correspond to a mono-exponential fit for tnondeg. (b) Fitted relaxation time constants t versus

probing wavelengths for both the degenerate (black and red points) and non-degenerate (blue points) measurements. (c) The nonlinear absorption at a

wavelength of 3mm (black points) and fitting with a simple saturation model (red line), T(I)¼ 1�DT�exp(� I/Isat)� Tns, where I, DT, Isat and Tns are the

input intensity, modulation depth, saturation intensity and non-saturable absorbance, respectively. A modulation depth of 4.4% and a saturation intensity

of B0.78 GWcm� 2 are obtained. The horizontal black line is the base line.
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Cd3As2 was also calculated (see Supplementary Note 2). As
shown in Supplementary Fig. 7, the linear optical absorption is
not sensitively dependent on Cr doping for the photon energies of
interest. However, the gap opening is expected to lead to strong
impact on the photocarrier relaxation dynamics48. Figure 3a
presents the non-degenerate pump-probe results at 6 mm for
Cd2As3 films with different Cr concentrations (up to 2 at.%). The
photocarrier recovery times of Cr-doped Cd3As2 become
appreciably faster at higher Cr concentrations for all
wavelengths within 3–6 mm (Supplementary Fig. 8). The time
constants as a function of Cr concentration are summarized in
Fig. 3b. Without any particular optimization, a relaxation time
tuning across an order of magnitude (for example, from 8 ps to
800 fs at B4.5 mm) is already achieved, which opens up the long
sought-after parameter space for mid-infrared optical switches.

To elaborate the physical mechanisms for the observed
relaxation time tuning, we analysed the relaxation dynamics by
considering Fermi’s golden rule and the Boltzmann equation. It is
assumed that the Cr doping opens a gap at the Dirac point, and
the gap size is directly proportional to the dopant concentration
in the lowest-order coupling49. The eigenvector of the current
system is shown in Supplementary Note 2. Based on Fermi’s
golden rule, the carrier relaxation rate (inverse relaxation time)
from the initial state |k, si to the final state |kþ q, s0i is given
by39,50–53,

Wfi ¼
2p
h

X
M�j j2 nph oq

� �
þ 1

� �
d Es0 kþ qð Þ� Es kð Þ�oq
� �

þ nph oq
� ��

þ Mþj j2nph oq
� �

d Es0 k� qð Þ� Es kð Þþoq
� ��

:

ð1Þ
where nph is the phonon distribution function, oq is the phonon
energy and M± is the electron–phonon interaction matrix
element for emitting and absorbing one phonon. The
Boltzmann equation for the electron distribution function, f s

k ,

can be written as,

@f s
k

@t
¼ �

X
k0;s0

f s
k 1� f s0

k0

� 	
Ws;s0 k; k0ð Þ � f s0

k0 1� f s
k

� �
Ws;s k0; kð Þ

h i
:

ð2Þ
From this equation, the energy loss rate P can be calculated53, and
the relaxation time is given by, tt¼E/P. The dependence of the
relaxation time on the doping concentration can be qualitatively
analysed as follows. The interaction matrix element is given as,

M ¼ ft;sðkÞ jHint jft0;s0 ðkþ qÞ

 �

: ð3Þ

For phonon-mediated carrier relaxation, only two processes
contribute to the transition, intranode/interband (11, 11)
scattering and internode/interband (11, � 11) scattering. The
second contribution vanishes in pure Dirac system where the
phonon scattering between states from the different nodes are
forbidden54. However, in the present system, where Cr doping
induces a band gap opening, both scattering terms contribute.
The scattering matrix elements now include (using the
eigenvectors shown in Supplementary Note 2),

M 11; 11ð Þ ¼ C qð Þ
ðEþk þMzkzÞðEþkþ qþMz kz þ qzð ÞþA2k� kþ qþð ÞþD2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Eþk Eþkþ qðEþk þMzkzÞðEþkþ qþMz kz þ qzð Þ
q

Þ
: ð4Þ

M 11; � 11ð Þ ¼ C qð Þ Aq�Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Eþk Eþkþ q Eþk þMzkz

� �
Eþkþ qþMz kz þ qzð Þ
� 	r : ð5Þ

where k� ¼ kx � iky and E� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

z k2
z þA2k2

jj þD2
q

. It
should be noted that C(q) depends on the details of electron–
phonon interaction, the deformation parameter, electron effective
mass and the phonon frequency but is independent of the
band gap. Now the scattering rate (inverse scattering time)
is the sum of the rate owing to each scattering channels,
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Figure 3 | Relaxation time customization by element doping. (a) Time-resolved DT/T0 traces at a probe wavelength of 6.0mm for the Cd3As2 samples

with different Cr concentrations, showing faster photocarrier relaxation times for higher Cr concentrations. (b) The fitted recovery time constants as a

function of Cr concentration at probe wavelengths of 3.0, 4.5 and 6.0mm. The data points obtained from the same sample are connected by dashed lines to

guide the eye. (c) Linear relationship between the inverse relaxation time t� 1 and the square of the doping concentration n2. The lines (linear fitting) reveal

that the scattering rate agrees with the equation t� 1
t totalð Þ ¼ t� 1

t 0ð ÞþDD2, where D is the doping-induced band gap and t� 1
t 0ð Þ and D are constants that

are independent of the band gap.
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t� 1
t totalð Þ ¼ t� 1

t intranodeð Þþ t� 1
t internodeð Þ. The leading

correction in both |M(11,11)|2 and |M(11,� 11)|2 is propor-
tional to D2 if higher-order terms are ignored. It is given in the
form

t� 1
t totalð Þ ¼ t� 1

t 0ð ÞþDD2: ð6Þ

The change of the relaxation rate owing to the gap opening is thus
dt� 1

t ðDÞ ¼ DD2. Although both t� 1
t 0ð Þ and D need to be

calculated numerically, the fact that the relaxation rate increases
with the band gap size always holds. This band gap dependence
has been confirmed in our numerical simulation. To investigate
whether our experimental results agree with the above numerical
analysis, we plot the experimental inverse relaxation time as a
function of the square of the doping concentration n2 in Fig. 3c.
Rather good agreement with the theoretical prediction is
obtained. From these results, it is reasonable to assign the
observed faster relaxation time (at higher Cr concentrations) to
additional doping-induced scattering channels as well as the
enhancement of intranode scattering, arising from the alteration
of the band structure near the Dirac point.

On-demand pulsed operation in a mid-infrared laser. To
illustrate the benefits of an enlarged parameter space, we
demonstrated on-demand access to different pulsation regimes in
a home-built 3 mm fluoride fibre laser using Cd3As2 films with
different relaxation times. We chose to employ a fibre laser test
bed because it is readily available in our laboratory; the

demonstration may be performed on other mid-infrared laser
types, such as an extracavity semiconductor laser. Figure 4a shows
the pulsed laser setup (see Methods section for details). First, the
un-doped Cd3As2 film with relatively long time constant (B7 ps
at a wavelength of B3mm) was used. When the pump power
reached 58 mW, continuous wave (CW) emission turned into
Q-switched mode-locking envelope as shown in Fig. 4b. With
further increasing pump power, both the duration and period of
the Q-switched envelope decreased as expected for Q-switching
operation55. The Q-switched mode-locking state changed swiftly
into CW mode-locking at a pump power of 80 mW and could be
maintained up to a pump power of 290 mW as shown in Fig. 4c.
The pulse period of 70 ns matched well with the calculated cavity
round trip time. The optical spectrum of the mode-locked pulses
is shown in Fig. 4d. A centre wavelength of 2,860 nm and a
full-width half-maximum of 6.2 nm were achieved. Furthermore,
the radio-frequency spectra of the pulses were also measured,
confirming robust and stable mode-locking operation (Fig. 4e).
The pulse duration was measured by a home-built mid-infrared
autocorrelator and a pulse width of 6.3 ps was inferred (Fig. 4f). It
is clear that stable mode-locking is achieved with the un-doped
sample. Then the Cr-doped Cd3As2 films with shorter relaxation
times were introduced into the cavity in turn. It was found that
the threshold to achieve CW mode-locking increased with
shortening relaxation time of the Cd2As3, as higher intensities
are now required to saturate the conduction band5.
More specifically, in the case where the Cd2As3 film with the
relaxation time of 0.5 ps (2% Cr doping concentration) was used
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only the Q-switched pulsation regime was accessible as shown in
Supplementary Fig. 9. The simple adjustment of the mid-infrared
optical switch is expected to greatly facilitate more thorough
studies of pulsation regimes of various mid-infrared lasers. It
should be noted that, although the technical characteristics of the
demonstrated mode-locked laser are similar to those enabled by
SESAMs or low-dimensional materials (such as graphene and
black phosphorus)56–60, Cd3As2 possesses advantages in terms of
scaling to longer mid-infrared wavelength as well as flexibility in
customizing the relaxation time.

Discussion
It is worth pointing out that the high level of parameter
customization of Cd3As2 has broad implications. For example,
quantum cascade lasers (QCLs) provide an excellent gain
platform in the mid-infrared range11,61–63. However, up until
now, robust mode locking of QCLs is only achievable through
active mode locking techniques64–67. Our findings make it
possible to verify whether mid-infrared QCLs might be
passively mode-locked, a subject that can only be fully
investigated with a flexibly configurable optical switch.

In conclusion, we have demonstrated a highly robust and
tuneable mid-infrared optical switch based on the emerging
three-dimensional Dirac semimetal Cd3As2. Owing to the strong
light–matter interaction of bulk Dirac fermions and the
compatibility with MBE growth, the use of Cd3As2 ensures
synthesis scalability, broadband operation and flexible parameter
control. These features effectively make the Cd3As2-based
approach a capable mid-infrared counterpart to the highly
adaptable near-infrared SESAMs. Our work represents a step
forward in the development of compact mid-infrared ultrafast
sources for advanced sensing, communication, spectroscopy and
medical diagnostics. It may be further extended to active photonic
devices, including optical modulators and light-emitting devices,
working in the mid- to far-infrared range.

Methods
Cd3As2 film growth. A series of Cd3As2 thin films were grown in a CREATEC
MBE system with base pressure o2� 1010 mbar. The substrates were degassed
at 350 �C for 30 min to remove any molecule that was absorbed on the mica
substrates prior to the growth. The Cd3As2 thin film deposition was carried out
by co-evaporating high-purity Cd (99.999%) and As (99.999%) from dual-filament
and valve-cracker effusion cells, respectively. The beam flux ratio of Cd to As was
fixed around 3, and the growth process was in situ monitored by RHEED. For Cr
doping, another cell with Cr (99.999%) was used for co-evaporation and the doping
concentration was precisely controlled by adjusting the cell temperature, and the
doping concentration is calibrated by energy-dispersion X-ray spectroscopy inside
a scanning electron microscope.

Pump-probe measurement. Both the degenerate and the non-degenerate
pump-probe setup is based on an 800 nm, 1 kHz Ti: Sapphire amplifier system
(Libra, Coherent Inc.). For the non-degenerate pump-probe experiment, a portion
of the laser output energy with a wavelength of 800 nm is used to excite photo-
carriers in the sample, and the remaining part is fed into an optical parametric
amplifier (OPA-SOLO, Coherent Inc.) to generate probe beam with wavelengths
from 1.6 to 6 mm. For the degenerate pump-probe measurement, the idler beam
(1.6–2.6 mm) of the OPA is split into pump and probe. Both pump and probe
pulses have durations of B100 fs. For all the measurements, the used pump fluence
is about 300 mJ cm� 2, except for the pump fluence-dependent measurement.
In addition, the pump fluence is 20 times larger than the probe fluence. The
pump-induced change of probe is detected using a lithium tantalate pyroelectric
detector (DET-L-PYC5-R-P, Newport) photodetector and a lock-in amplifier
referenced to a 500 Hz chopped pump.

Nonlinear absorption measurement. The 2 and 3 mm femtosecond pulses
(B100 fs) were generated by the same OPA system used in the pump-probe
measurements, and picosecond pulses (B6 ps) were obtained from a mode-
locked thulium fiber laser (NPI Lasers, Inc.) operating at 1,950 nm with 32 MHz
repetition.

3 lm fibre laser setup. The pulsed fibre laser setup is described in Fig. 4a.
Two commercially available diode lasers (Eagleyard Photonics, Berlin) centred at
B1,150 nm were employed to pump the gain fibre after polarization multiplexing
via a polarized beam splitter (PBS) and then focussed by an antireflection-coated
(for B1150 nm) ZnSe objective lens (Innovation Photonics, LFO-5-6-3 mm,
0.25 NA) with a 6.0 mm focal length. Note that this objective lens also acts as the
collimator of the light out-coupled from the fibre core. A dichroic mirror with
B96% transmittance at 1150 nm and 95% reflectance at B3 mm was placed
between the PBS and ZnSe objective lens at an angle of 45� with respect to the
pump beam to direct the laser. Another specifically designed dichroic mirror with
80% reflection at B3 mm was used to act as output coupler. A 3 mm filter with a
full-width half-maximum of 500 nm was used to block the residual pump. The gain
fibre (Fiberlabs, Japan) was a piece of commercial double-cladding Ho3þ /Pr3þ

co-doped fluoride fibre. It has an octangular pump core with a diameter of 125 mm
and NA of 0.5 and a circular core with a diameter of 10 mm and NA of 0.2. The
concentration of the Ho3þ and Pr3þ were 30,000 and 2,500 p.p.m., respectively,
thus the selected fibre length of 6.8 m provided 490% pump absorption efficiency.
Both ends of the fibre were cleaved at an angle of 8� to avoid parasitic lasing in the
cavity. First, the laser from the angle-cleaved fibre end far from the pump source
was collimated employing a ZnSe objective lens with a specifically designed coating
(Innovation Photonics, LFO-5-12-3mm, 0.13 NA) with a focal length of 12 mm
(495% transmission at 3 mm, and o10% transmission at 1150 nm). Then the
collimated light was focussed with a second identical ZnSe objective lens onto
the terminated feedback assembled by pasting the Cd2As3 films on a commercial
gold-protected mirror (Thorlabs), as shown in the inset of Fig. 4a. Here the
terminator was mounted onto a high-precision six-dimension adjuster to perform
position optimization.

Data availability. All important data supporting the findings of this study are
included in this published article (and its Supplementary Information files).
Further data sets are available from the corresponding author on reasonable
request.
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