
BIOINFORMATICS APPLICATIONS NOTE Vol. 25 no. 2 2009, pages 286–287
doi:10.1093/bioinformatics/btn505

Systems biology

BNFinder: exact and efficient method for learning
Bayesian networks
Bartek Wilczyński and Norbert Dojer∗
Institute of Informatics, University of Warsaw, Poland

Received on March 4, 2008; revised on September 3, 2008; accepted on September 22, 2008

Advance Access publication September 30, 2008

Associate Editor: Thomas Lengauer

ABSTRACT

Motivation: Bayesian methods are widely used in many different
areas of research. Recently, it has become a very popular tool
for biological network reconstruction, due to its ability to handle
noisy data. Even though there are many software packages allowing
for Bayesian network reconstruction, only few of them are freely
available to researchers. Moreover, they usually require at least basic
programming abilities, which restricts their potential user base. Our
goal was to provide software which would be freely available, efficient
and usable to non-programmers.
Results: We present a BNFinder software, which allows for Bayesian
network reconstruction from experimental data. It supports dynamic
Bayesian networks and, if the variables are partially ordered, also
static Bayesian networks. The main advantage of BNFinder is the use
exact algorithm, which is at the same time very efficient (polynomial
with respect to the number of observations).
Availability: The software, supplementary information and manual is
available at http://bioputer.mimuw.edu.pl/software/bnf/. Besides the
availability of the standalone application and the source code, we
have developed a web interface to BNFinder application running on
our servers. A web tutorial on different options of BNFinder is also
available.
Contact: dojer@mimuw.edu.pl

1 INTRODUCTION
Computational methods of Bayesian network inference are very
popular in many different areas of bioinformatics and other fields
of science. Examples include: regulatory network reconstruction
(Dojer et al., 2006; Husmeier, 2003) where nodes represent genes
and edges represent statistical dependencies which may indicate
regulatory interactions; predicting gene expression from promoter
sequence (Beer and Tavazoie, 2004; Segal et al., 2003) where edges
lead from promoter features (motif occurrences, their positions, etc.)
to expression patterns (affinity to overlapping expression clusters);
neural signal transduction analysis (Smith et al., 2006) where
network topology mimics the topology of connections between
different parts of the brain and many others. Despite differences in
the interpretation of network structure, the methodology of these
studies is remarkably similar [see, Needham et al. (2007) for
overview and further examples]. We aim to provide new software

∗To whom correspondence should be addressed.

which could be used for different applications of Bayesian network
reconstruction.

Most programs learning Bayesian networks from data are based
on heuristic search techniques of identifying good models. This is
due to a number of discouraging complexity results (Chickering,
1996; Chickering et al., 2004; Meek, 2001) showing that, without
restrictive assumptions, learning Bayesian networks from data is
NP-hard with respect to the number of network vertices. On the
other hand, the known exact algorithms learn the structure of optimal
networks having up to 20–40 vertices (Ott et al., 2004).

In an extensive comparison, Murphy (2007) lists over 50 software
packages available for different applications of Bayesian networks.
However, if one is searching for a free software able to infer the
structure of static and dynamic Bayesian networks from data there
are only two such applications:

• Banjo package (Smith et al., 2006): Bayesian ANalysis with
Java Objects,

• Bayes Net Toolbox (Murphy, 2002) for Matlab with an
extension for dynamic Bayesian networks inference using
MCMC (Husmeier, 2003).

Both of these software packages use heuristic search algorithms to
find the best scoring network topology in a vast space of possible
directed graphs, usually with some constraints on the maximal vertex
in-degree.

2 METHODS
For a thorough treatment of the contents of the present section, we refer the
reader to Supplementary Materials.

The BNFinder program is based on a novel polynomial-time algorithm for
learning an optimal Bayesian network structure (Dojer, 2006). The algorithm
was designed to save reasonable speed and perfect quality of learning in a
wide class of problems occurring in the computational molecular biology. It
works under the assumption that there is no need to examine the acyclicity
of the graph, which is satisfied in the following cases:

• When dealing with dynamic Bayesian networks, a dynamic Bayesian
network describes stochastic evolution of a set of random variables over
discretized time. Therefore, conditional distributions refer to random
variables in neighboring time points and the graph is always acyclic.

• In case of static Bayesian networks, the set of possible network
structures must be restricted. BNFinder lets the user divide the set
of variables into an ordered set of disjoint subsets of variables, where
edges can only lead from upstream to downstream subsets. If such

© 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://bioputer.mimuw.edu.pl/software/bnf/
http://creativecommons.org/licenses/


BNFinder

ordering is not known beforehand, one can try to run BNFinder with
different orderings and choose a network with the best overall score.

BNFinder learns optimal networks with respect to two generally used
scoring criteria: Bayesian–Dirichlet equivalence (BDe) and minimal
description length (MDL). The (default) BDe score originates from Bayesian
statistics and corresponds to the posterior probability of a network-given
data. The MDL score originates from information theory and corresponds
to the length of the data compressed with the compression model derived
from the network structure. It also has a statistical interpretation as
an approximation of the posterior probability. The algorithm works in
polynomial time for both scores, but computations with the MDL are faster,
especially for large datasets. However, we recommend using the BDe score
due to its exactness in the statistical interpretation.

Both MDL and BDe scores were originally designed for discrete variables.
Continuous variables are handled with corresponding scores, derived under
the assumption that conditional distributions belong to a family of Gaussian
mixtures.

BNFinder may learn either dynamic Bayesian networks (from time series
data) or static ones (from independent experiment data). In the second case
it is necessary to specify constraints on the network’s structure forcing its
acyclicity.

A special treatment is required for experiments, in which the values
of some variables were perturbed (e.g. knockout experiments). Since
perturbations change the structure of interactions, learning procedures have
to use data selectively. BNFinder handles perturbations in the way following
Dojer et al. (2006), i.e. for scoring sets of parents of a variable v, it takes
into account only the experiments where v was not perturbed.

A prior distribution on the network structure may be specified through
assigning weights to potential variable interactions in the way following
Tamada et al. (2003). Moreover, the size of regulator sets of each variable
may be bounded to a given number and the spaces of possible conditional
probability distributions of selected variables may be restricted to noisy-and
or noisy-or distributions.

There are important biological applications of Bayesian networks, in
which usually the amount of learning data is small relative to the network
size (e.g. reconstruction of gene regulatory networks from microarray data).
Typically in such cases suboptimal models explain the data nearly as well
as the optimal (highest scoring) one. For this reason, Friedman and Koller
(2003) propose to pay attention for network features frequently appearing
in suboptimal networks. Following this idea, BNFinder splits a potential
network structure into independently learned features, each one composed
of a vertex and its parent set. For each vertex BNFinder returns as an output
a user-specified number of suboptimal parents features with their relative
posterior probabilities. Setting this parameter to 1 causes BNFinder to learn
the optimal network structure composed of the highest scoring features.
Otherwise returned features constitute a class of suboptimal networks.

Output may be written in a few formats, supported in various graph and
Bayesian network applications.

3 IMPLEMENTATION
The BNFinder software is implemented in the Python programming
language so it can be installed and run on all popular operating
systems. The only requirement is the availability of a recent version
(>2.4) of the Python interpreter. Detailed installation instructions
can be found on the Supplementary Web Page.

Besides of the stand-alone version of BNFinder we have made
a publicly available web server which allows for using BNFinder
running on our servers on users’ data. The server uses a very simple
web form for input and sends the results to the e-mail address

provided. To save the resources, we have limited the web version to
handle at most 20 variables and 500 observations.

In order to judge the performance of our software, we have
compared it to the Banjo library (Smith et al., 2006). As a realistic
dataset, we have chosen the dataset attached as an example to the
Banjo package, consisting of 20 variables and 2000 observations,
published by Smith et al. (2006). The authors search for a dynamic
Bayesian network with an in-degree of all vertices not larger than 5.
It should be noted, that the number of such networks is extremely
large (((20×19×18×17×16)/(1×2×3×4×5))20 ∼6.4×1084).
Even though Banjo is able to analyze approximately 1 million
networks per minute on a single CPU it would take it more than
1070 years to search through all possible networks. Thanks to the
new algorithm (Dojer, 2006) our method is able to find the correct
topology for the same dataset in a few hours on the same computer.

ACKNOWLEDGEMENTS
The computational resources were provided by CoE Bio-
Exploratorium project: WKP 1/1.4.3/1/2004/44/44/115.

Funding: Polish Ministry of Science and Higher Education (No.
PBZ-MNiI-2/1/2005 and 3 T11F 021 28, partial); Foundation for
Polish Science (to B.W.).

Conflict of Interest: none declared.

REFERENCES
Beer,M.A. and Tavazoie,S. (2004) Predicting gene expression from sequence.Cell, 117,

185–198.
Chickering,D.M. (1996) Learning Bayesian networks is NP-complete. In Fisher,D.

and Lenz,H.-J. (eds), Learning from Data: Artificial Inteligence and Statistics V .
Springer-Verlag.

Chickering,D.M. et al. (2004) Large-sample learning of Bayesian networks is NP-hard.
J. Mach. Learn. Res., 5, 1287–1330.

Dojer,N. (2006) Learning Bayesian networks does not have to be NP-hard. In
Královic,R. and Urzyczyn,P. (eds), Proceedings of Mathematical Foundations of
Computer Science 2006, LNCS 4162, Springer-Verlag, pp. 305–314.

Dojer,N. et al. (2006) Applying dynamic Bayesian networks to perturbed gene
expression data. BMC Bioinformatics, 7, 249.

Friedman,N. and Koller,D. (2003) Being Bayesian about network structure. a bayesian
approach to structure discovery in bayesian networks. Mach. Learn., 50, 95–125.

Husmeier,D. (2003) Sensitivity and specificity of inferring genetic regulatory
interactions from microarray experiments with dynamic Bayesian networks.
Bioinformatics, 19, 2271–2282.

Meek,C. (2001) Finding a path is harder than finding a tree. J. Artif. Intell. Res., 15,
383–389.

Murphy,K. (2007) Software packages for graphical models – Bayesian networks. Bull.
Int. Soc. Bayesian Anal., 14.

Murphy,K.P. (2002) Bayes Net Toolbox. Technical report. MIT Artificial Intelligence
Laboratory.

Needham,C.J. et al. (2007)Aprimer on learning in Bayesian networks for computational
biology. PLoS Comput. Biol., 3, e129.

Ott,S. et al. (2004) Finding optimal models for small gene networks. Pac. Symp.
Biocomput., 557–567.

Segal,E. et al. (2003) Genome-wide discovery of transcriptional modules from DNA
sequence and gene expression. Bioinformatics, 19 (Suppl. 1), 273–282.

Smith,V.A. et al. (2006) Computational inference of neural information flow networks.
PLoS Comput. Biol., 2, e161.

Tamada,Y. et al. (2003) Estimating gene networks from gene expression data
by combining Bayesian network model with promoter element detection.
Bioinformatics, 19 (Suppl. 2), ii227–ii236.

287


