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[Au]/[Ag]-catalysed expedient synthesis of
branched heneicosafuranosyl arabinogalactan
motif of Mycobacterium tuberculosis cell wall
Shivaji A. Thadke1,*, Bijoyananda Mishra1,*, Maidul Islam1, Sandip Pasari1, Sujit Manmode1,

Boddu Venkateswara Rao1, Mahesh Neralkar1, Ganesh P. Shinde1, Gulab Walke1 & Srinivas Hotha1

Emergence of multidrug-resistant and extreme-drug-resistant strains of Mycobacterium

tuberculosis (MTb) can cause serious socioeconomic burdens. Arabinogalactan present on the

cellular envelope of MTb is unique and is required for its survival; access to arabinogalactan is

essential for understanding the biosynthetic machinery that assembles it. Isolation from

Nature is a herculean task and, as a result, chemical synthesis is the most sought after

technique. Here we report a convergent synthesis of branched heneicosafuranosyl arabino-

galactan (HAG) of MTb. Key furanosylations are performed using [Au]/[Ag] catalysts. The

synthesis of HAG is achieved by the repetitive use of three reactions namely 1,2-trans

furanoside synthesis by propargyl 1,2-orthoester donors, unmasking of silyl ether, and

conversion of n-pentenyl furanosides into 1,2-orthoesters. Synthesis of HAG is achieved in

47 steps (with an overall yield of 0.09%) of which 21 are installation of furanosidic linkages in

a stereoselective manner.
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M
ycobacterium tuberculosis (MTb) is the causative
agent of Tuberculosis, the deadly disease
that is plaguing mankind1–6. Robert Koch noticed

that MTb has a thick and waxy cellular envelope, which was
later shown to not only act as a large obstruction to the entry
of antibiotics but also modulate the host immune system3,4.
Some of the currently administered frontline drugs are
demonstrated to inhibit the biosynthesis of cell wall7,8. The
complete structure of the cell wall of MTb has been unravelled to
observe that it has two major components termed as mycolylara-
binogalactan and lipoarabinomannan wherein arabinose
and galactose are in furanosyl and mannose in the pyranosyl
form9–14. Araf- and Galf- are xenobiotic to humans and,
therefore, understanding the biosynthesis of the cell wall
components containing them is of particular significance for
developing novel therapeutic agents12. Prospect of biological
significance coupled with the challenge of large oligofuranosides
synthesis has cajoled many synthetic carbohydrate chemists
to develop strategies for assembling AG and lipoarabinomannan
fragments15–29.

Synthesis of oligosaccharides is an art of its own and
each synthesis poses a unique challenge and demands deployment
of multiple glycosyl donors30–32. To date, the largest fragment of
the mycobacterial arabinogalactan was synthesized independently
by groups headed by Lowary and Ito; but without
Galf residues (Fig. 1)33,34.

In this Article, we show that the highly branched heneicosa-
furanosyl arabinogalactan (HAG) can be synthesized by
the repeated use of gold-catalysed activation of alkynyl
1,2-O-orthoester chemistry that was developed in our labora-
tory35–40.

Results
Retrosynthesis. Retrosynthetic disconnections of heneicosafur-
anoside 1 recognized that the assembly of heneicosafuranoside
requires four major constituents namely cassettes A–D (Fig. 2).
Heneicosafuranoside 1 can be synthesized by the 1,2-trans
diastereoselective furanosylation between propargyl 1,2-orthoe-
ster of tetrasaccharide 2 and the tridecasaccharide-aglycon under
gold-catalysed glycosidation conditions. Synthesis of trideca-
saccharide 3 can be envisaged from 1,2-orthoester of a
hexasaccharide cassette B (4) and the heptasaccharide-aglycon
5. Heptasaccharide synthesis can be realized by the gold-catalysed
furanosylation between a tetraarabinofuranosyl orthoester
cassette C (6) and the trisaccharide cassette D (7). Synthesis
of cassettes A–D is envisioned from building blocks 8a–8d, 9, 10.
Propargyl 1,2-orthoesters are envisioned from corresponding
n-pentenyl glycosides wherein n-pentenyl moiety serves as an

excellent protecting group that can be transformed to anomeric
bromide in transit to the orthoester preparation38,41.

Synthesis of monosaccharide-building blocks. HAG synthesis
started with the development of methods for the large-scale
synthesis of building blocks 8a–8d (Fig. 3). Easily accessible
1,2-orthoester 11 (ref. 36) was saponified under Zemplén
deacetylation conditions to afford a diol, which was treated
with one molar equivalent of TBDPS-Cl to get the alcohol 12.
A portion of the compound 12 was esterified using BzCl/py
to obtain building block 8b (see Supplementary Figs 1–3) and
the remaining portion was converted into disilyl ether
8d (see Supplementary Figs 7–9).

Further, gold-catalysed glycosidation conditions36 were
employed on glycosyl donor 8b to obtain n-pentenyl furanoside
13 followed by the deprotection of TBDPS group using Py �HF to
obtain the desired building block 8a in very high yields.
Gold-catalysed glycosidation between orthoester 8d and
4-penten-1-ol resulted into the n-pentenyl furanoside 14, which
was subsequently transformed into acetate 15. Deprotection
of silyl ethers in presence of Py �HF followed by esterification
afforded the compound 16. n-Pentenyl furanoside 16 was
converted into the 1,2-orthoester-building block 8c employing
a recently established protocol38. Compound 16 was treated
with Br2/CH2Cl2/4 Å mass spectrometry (MS) at 0 �C for 15 min
to obtain the glycosyl bromide that was immediately treated
with propargyl alcohol and 2,6-lutidine to afford the building
block 8c in 85% yield over two steps (see Supplementary
Figs 4–6).

Galactofuranoside 17 (ref. 42) was uneventfully converted into
orthoester 9 in two steps followed by the gold-catalysed
furanosylation to afford compound 18 that was converted into
building block 10 in four steps namely saponification of
compound 18 resulting into a tetraol, locking of C-5 and
C-6 hydroxyls as isopropylidene using 2-methoxypropene/
p-Toluenesulfonic acid (PTSA) in dichloromethane,
esterification of C-2 and C-3 hydroxyl groups, and cleavage of
isopropylidene using PTSA in MeOH with an overall yield of 70%
(see Supplementary Figs 13–15; Fig. 4). Conversion of n-pentenyl
furanosides into propargyl 1,2-orthoesters is considered to
increase the reactivity of the donor and also conduct the reactions
under catalytic conditions38.

Synthesis of cassettes A–D. Synthesis of Heneicosafuranoside
commenced with the preparation of cassettes A–D. Towards
this affect, one molar equivalent of Galf orthoester 9 was added
dropwise to a solution of diol 10 in CH2Cl2 and allowed to react
under standard gold-catalysed glycosidation conditions to obtain
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Figure 1 | Arabinogalactan motif of Mycobacterium tuberculosis cell wall. Arabinan is attached at the C-5 position of the galactan. Both arabinose and

galactose are in the furanosyl form. Galf(1-6)Galf linkages and Araf(1-3 or 5)Araf linkages are all in the 1,2-trans manner, whereas Araf(1-2)Araf

linkages are 1,2-cis mannered.
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the Galf(1-6)b-Galf disaccharide regioselectively in 70% yield.
In continuation, the first arabinofuranosyl residue was attached
at the C-5 hydroxyl group of disaccharide 19 under gold-cata-
lysed conditions using the orthoester 8b to afford the arabino-
galactan 20 in 85% yield, which was converted to cassette
D (7) by F-mediated cleavage of silyl ether (Fig. 5).

Synthesis of cassette C (6) commenced with the gold-catalysed
glycosidation reaction between donor 8a and aglycon 8b in
CH2Cl2 to obtain disaccharide 21 (ref. 38). Deprotection of silyl
ether resulted in the aglycon 22 and the treatment of disaccharide
21 with Br2 in CH2Cl2 followed by propargyl alcohol and 2,6-
lutidine, TBAI afforded the glycosyl donor 23 in 85% yield. An
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uneventful reaction between aglycon 22 and donor 23 employing
AuCl3/AgOTf conditions afforded the tetrasaccharide 24, which
was converted into cassette C (6) in two well-optimized steps
(Fig. 6).

En voyage to the synthesis of heneicosafuranoside 1, synthesis
of cassettes A and B continued with the successful synthesis
of disaccharide 25 from arabinofuranosyl donor 8d and aglycon
8a. n-Pentenyl disaccharide 25 was converted to diol 26 under
Py �HF/THF/4 h/80% and reacted with donor 8b (2.5 eq.)
to obtain a tetrasaccharide 27, which was converted into a diol
that was immediately treated with 2.5 molar equivalents of donor
8b to afford the hexasaccharide 28 commissioning gold-catalysed
glycosidation conditions. Finally, conversion of n-pentenyl
furanoside was converted into the cassette B (4) in two steps
by reacting with Br2/CH2Cl2/4 Å MS/0 �C/15 min followed by
propargyl alcohol/2,6-lutidine/CH2Cl2/4 Å MS/0-25 �C/10 h
in 86% yield over two steps. Similarly, diol 26 was treated
with donor 8c (2.5 eq.) to obtain a tetrasaccharide 29, which
was converted into cassette A (2) via glycosyl bromide
intermediate (Fig. 7).

Synthesis of HAG. In continuation of this expedition, gold-
catalysed glycosidation between donor cassette C (6) and acceptor
cassette D (7) afforded the heptasaccharide (30) containing five
Araf- residues and two Galf- residues in 1,2-trans disposition.
The successful synthesis of heptasaccharide was confirmed by the
13C NMR spectral studies, wherein all seven anomeric carbons
of compound 30 were noticed between 105.3 and 106.7 p.p.m.
(see Supplementary Fig. 59).
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The C-5 hydroxyl group at the non-reducing end
of heptasaccharide 30 was unmasked by the addition of Py �HF
in THF to obtain alcohol 5, which was coupled with n-pentenyl
donor 28 to obtain the required tridesaccharide 31 in 24% yield
after 4 days. However, the reaction between heptasaccharide
5 and cassette B (4) under the standard gold-catalysed conditions
afforded tridecaoligosaccharide 31 in 65% yield (Fig. 8).

Unmasking of the silyl ether using Py �HF/THF afforded
the glycosyl acceptor 3 that can be glycosylated with a
tetrasaccharide-donor cassette A (2). The gold-catalysed glycosi-
dation between acceptor 3 and 2.5 equivalents of the donor 2 was
performed at 25 �C for 24 h to afford the HAG (32) in fully
protected form. In the 1H NMR spectrum, all singlets between
d 4.97–5.75 p.p.m. indicated the presence of all 1,2-trans linkages
at the anomeric position and in the 13C NMR spectrum,
resonances due to 21-anomeric carbons appeared between
d 105.2–106.7 p.p.m. (see Supplementary Fig. 71). Further,
matrix-assisted laser desorption/ionization–time of flight–mass
spectrometry (MALDI–TOF–MS) also supported the formation
of HAG (32) of MTb cell surface (Fig. 9). Zemplèn deacylation
using 0.5 M NaOMe in MeOH afforded the fully deprotected
HAG with methyl butanoate linker at the reducing end. In the
1H and 13C NMR spectra, resonances due to the benzoate moiety
completely disappeared. The 150 MHz 13C NMR spectrum

showed signals at d 176.9, 52.2, 30.6 (�CH2), 24.2 (�CH2)
p.p.m. confirmed the presence of the methyl butanoate linker at
the reducing end. Resonances in the anomeric region did not
resolve fully for complete assignment even at this field, although
two resonances at d 108.60 and 108.63 p.p.m. confirmed the
presence of two b-Galf- residues on the basis of previous
assignments (see Supplementary Figs 72,73). In addition,
the high-resolution MALDI–TOF mass spectrum of compound
1 showed a molecular ion of the sodium adduct at
m/z¼ 2,974.2810 (see Supplementary Fig. 74), matching satisfac-
torily with that of calculated exact mass of compound 1.

In summary, the synthesis of HAG containing nineteen
1,2-trans-Arafs and two Galfs was successfully achieved by
utilizing Au/Ag-catalysed furanosylations in 0.09% overall yield.
The key features associated with this effort are: (1) the
stereoselective installation of 1,2-trans Araf- and Galf- residues
using propargyl 1,2-orthoesters as glycosyl donors, (2) all
glycosylation reactions were catalytic, high yielding and thus
easy to purify, (3) the convergent fragment coupling between
linear/branched oligosaccharides using propargyl 1,2-O-orthoe-
ster donor chemistry. Essentially, the expedient synthesis of
HAG built on only three repetitive reactions namely glycosidation
in the presence of catalytic amount of AuCl3 and AgOTf; cleavage
of O-silyl ether using Py �HF; and transformation of n-pentenyl
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glycosides into 1,2-orthoesters. The whole synthesis is modular
and thus amenable for the synthesis of various saccharide
mutants for eliciting the biological response.

Methods
General methods. Unless otherwise noted, materials were obtained from
commercial suppliers and were used without further purification. Unless
otherwise reported, all reactions were performed under Argon atmosphere.
Removal of solvent in vacuo refers to distillation using a rotary evaporator
attached to an efficient vacuum pump. Products obtained as solids or syrups
were dried under a high vacuum. Gold and silver salts were purchased from
Sigma-Aldrich India Limited. Amberlite was purchased from Sigma-Aldrich
and Bio-gel P-4 gel was purchased from Bio-Rad Laboratories, USA.
Analytical thin-layer chromatography was performed on pre-coated silica
plates (F254, 0.25 mm thickness) from Merck; compounds were visualized by
ultraviolet light or by staining with anisaldehyde spray. Optical rotations
were measured on a JASCO 2000 P digital polarimeter. Infrared spectra
were recorded on a Bruker Fourier transform infrared spectrometer.
NMR spectra were recorded either on a Bruker Avance 400 or a 500 or

600 MHz with CDCl3 or D2O as the solvent and tetramethylsilane as the
internal standard. High-resolution mass spectroscopy was performed using
ABI MALDI–TOF or Waters Synapt G2 ESI mass analyser. Low-resolution
mass spectroscopy was performed on Waters ultra performance liquid chroma-
tography (UPLC)-MS, and thin-layer chromatography MS was checked on
SWADESI-TLC MS interface. A small quantity (5–10%) of propargyl glycosides
was observed in most of the gold-catalysed glycosidations with propargyl orthoe-
sters as reported earlier35. For NMR analysis and high-resolution mass
spectrometry of the compounds in this article, see Supplementary
Figs 1–74.

Gold(III)-catalysed 1,2-trans glycosidation. To a CH2Cl2 solution (5 ml)
containing glycosyl donor (0.1–1 mmol) and aglycon (0.1–1 mmol)) with 4 Å
molecular sieves powder (0.1–1.0 g) was added a catalytic amount of AuCl3
(7 mol%; AgOTf (7 mol%) as an additive wherever mentioned) and stirred
at 25 �C (ref. 37). After 2 h (for oligosaccharides up to 24 h), the reaction mixture
was neutralized by the addition of Et3N and filtered through a pad of celite and
concentrated in vacuo. The resulting residue was purified by silica gel column
chromatography using ethyl acetate-petroleum ether to obtain 1,2-trans glycosides
as a fluffy solids.
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Glycosidation by n-pentenyl glycosides. To a CH2Cl2 solution (5 ml) containing
glycosyl donor (0.1–1 mmol) and aglycon (0.1–1 mmol)) with 4 Å molecular sieves
powder (0.1–1.0 g) was added 3 molar eq. of N-iodosuccinimide (NIS) at 0 �C in ice
bath and stirred for 10 min21. After 10 min, catalytic amount of TfOH (0.3 eq.) was
added to the reaction mixture at 0 �C and stirred at 25 �C. After complete
disappearance of the donor (adjudged by TLC), the reaction mixture was
neutralized by the addition of Et3N and filtered through a pad of celite. The filtrate
was washed with sat. aqueous solutions of sodium bicarbonate and sodium
thiosulphate. Combined organic layers were dried over sodium sulphate and
concentrated in vacuo. The resulting residue was purified by flash silica gel column
chromatography using ethyl acetate-petroleum ether to obtain 1,2-trans glycosides.

Pent-4-enyl glycosides to propargyl orthoesters. Pent-4-enyl furanoside
(1–50 mmol) was dissolved in anhydrous CH2Cl2 (10–500 ml) and cooled

to 0 �C (ref. 38). Br2 (1.1 molar eq.) in CH2Cl2 was added dropwise to the reaction
mixture with constant stirring at 0 �C. In addition, the reaction mixture was stirred
for 10 min at 0 �C and concentrated under reduced pressure to give furanosyl
bromide as white foam, which was immediately used in the next step without
further purification.

The crude furanosyl bromide was redissolved (10–500 ml) in anhydrous
CH2Cl2, propargyl alcohol (1.5–2 molar eq.) and 2,6-lutidine (2–3 molar eq).
Catalytic amount of tetra n-butyl ammonium iodide was added to the reaction and
stirred for 4 h to overnight at room temperature. The reaction mixture was diluted
with CH2Cl2 (100–500 ml) and water (100–500 ml), and the aqueous layer was
extracted with CH2Cl2 (2x), the organic extract was washed with saturated oxalic
acid solution and saturated sodium bicarbonate solution. The organic phase was
collected, dried over sodium sulphate and concentrated in vacuo. Crude residue of
the orthoester was purified by silica gel column chromatography (EtOAc:petroleum
ether) to obtain propargyl 1,2-O-orthoester as a white foam/solid.
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Cleavage of O-silyl ethers. To a solution of O-TBDPS protected saccharide
(0.1–10 mmol) in THF:py (10:2–100:20 ml) was added Py �HF (2 molar eq. per
O-TBDPS) and the reaction mixture was stirred at 25 �C for 4–12 h (ref. 38). The
reaction was arrested by adding saturated aqueous solution of NaHCO3 and
extracted with EtOAc. The EtOAc layer was dried over anhydrous sodium sulphate
and concentrated in vacuo. The crude residue was purified by flash column
chromatography (EtOAc:petroleum ether) using silica gel.

Deprotection of benzoates. A 0.5 M NaOMe in MeOH (2 ml) was added to
a solution of compound 32 (110 mg, 15.4 mmol) in 1:1 MeOH-CH2Cl2 (4 ml) and
stirred at 25 �C. After 4 h, the reaction mixture was quenched by the addition of
Amberlite-IR120 (Hþ ) resin, filtered and the filtrate was concentrated in vacuo
to obtain a residue that was washed sequentially with chloroform and ethyl acetate
to remove majority of the methyl benzoate. The remaining residue was purified
by column chromatography using Bio-gel-P4 gel (90–180 mm, exclusion limit
4,000 Da). The compound was collected using Millipore water, concentrated
in vacuo and further lyophilized for 24 h to obtain the HAG 1 (34 mg, 74%)
as a white solid.

Data availability. The authors declare that some of the data supporting the
findings of this study are available in its Supplementary Information files.
All data are available from the authors upon reasonable request.
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