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ABSTRACT
The D genome progenitor of bread wheat, Aegilops tauschii Cosson (DD, 2n = 2x =
14), which is naturally distributed in Central Eurasia, ranging from northern Syria
and Turkey to western China, is considered a potential genetic resource for improving
bread wheat. In this study, the chloroplast (cp) genomes of 17 Ae. tauschii accessions
were reconstructed. The cp genome sizes ranged from 135,551 bp to 136,009 bp and
contained a typical quadripartite structure of angiosperms. Within these genomes,
we identified a total of 124 functional genes, including 82 protein-coding genes, 34
transfer RNA genes and eight ribosomal RNA genes, with 17 duplicated genes in the
IRs. Although the comparative analysis revealed that the genomic structure (gene
order, gene number and IR/SC boundary regions) is conserved, a few variant loci
were detected, predominantly in the non-coding regions (intergenic spacer regions).
The phylogenetic relationships determined based on the complete genome sequences
were consistent with the hypothesis that Ae. tauschii populations in the Yellow River
region of China originated in South Asia not Xinjiang province or Iran, which could
contribute to more effective utilization of wild germplasm resources. Furthermore,
we confirmed that Ae. tauschii was derived from monophyletic speciation rather than
hybrid speciation at the cp genome level. We also identified four variable genomic
regions, rpl32-trnL-UAG, ccsA-ndhD, rbcL-psaI and rps18-rpl20, showing high levels of
nucleotide polymorphisms, which may accordingly prove useful as cpDNA markers in
studying the intraspecific genetic structure and diversity of Ae. tauschii.

Subjects Agricultural Science, Genetics, Genomics, Plant Science
Keywords Chloroplast genome, Aegilops tauschii, Common wheat D progenitor, Genome char-
acteristic, Genome comparative, Phylogenetic analysis, cpDNA markers, Genetic differentiation,
Next-generation sequencing, The spreading route

INTRODUCTION
Aegilops tauschii Cosson (DD, 2n = 2x = 14), which is the D genome progenitor of
common bread wheat, is characterized by abundant genetic variation and is noted for
its strong tillering ability and high plant tolerance (resistance to disease, drought and
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abiotic stresses) (Singh et al., 2012). Ae. tauschii is widely distributed in Central Eurasia,
ranging from northern Syria and Turkey to western China (the Yili Area of Xinjiang).
In addition, as a farmland weed that co-occurs with common wheat, Ae. tauschii is also
found in the middle reaches of the Yellow River (including Henan and Shannxi provinces,
China) (Wei et al., 2008). On the basis of the findings of genetic studies, Ae. tauschii has
been divided into two sublineages based on nuclear genome sequences, namely L1 and L2,
which are broadly affiliated with Ae. tauschii ssp. strangulata and Ae. tauschii ssp. tauschii,
respectively (Mizuno et al., 2010; Dvorak et al., 1998). Previous studies have proved that L2
lineage is involved in the origin of common wheat and is limited to a narrow area within
the whole species’ overall distribution range (Wang et al., 2013; Dvorak et al., 2012), as well
as L1 lineage is adapted to more diverse environments (Dudnikov, 2012). Given the large
genetic distance between L1 and L2, it has been proposed that Ae. tauschii (especially L1
lineage) showes more genetic differentiation than does the D genome of the common
wheat (Lubbers et al., 1991; Wang et al., 2013; Dvorak et al., 2012). Thus, in common with
wild crop progenitors, Ae. tauschii, especially L1 lineage, is considered to represent a
potentially valuable germplasm resource that could be exploited for genetic improvement
of common wheat (Kilian et al., 2011; Zhang et al., 2017; Zhang et al., 2018). Moreover,
owing to widely geographical distribution of the L1 lineage, studying of its genetic and
evolutionary relationships contribute to more effective utilization of wild germplasm
resources.

Iran is widely regarded as the center of the origin and genetic diversity of Ae. tauschii
(Dvorak et al., 1998). However, as a consequence long periods of dispersal and adaptation,
this species now shows distinct differencewithin its distribution range. At present, L2 lineage
is mainly restricted to an area extending from Transcaucasia (Armenia and Azerbaijan) to
eastern Caspian Iran, whereas L1 lineage is more widely distributed across the entire species
range, which includes the middle reaches of the Yellow River and the Yili area of Xinjiang
Province in China (Kihara, Yamashita & Tanaka, 1965; Jaaska, 1980; Matsuoka, Takumi
& Kawahara, 2015; Wei et al., 2008). As a clade of L1 lineage, there is still some debate
regarding the specific spreading route from Xinjiang to the middle reaches of the Yellow
River in China, given the large geographical isolation of these two areas. Some researchers
believe that the long-distance spread occurred concomitantly with the expansion of original
wheat varieties and Ae. tauschii accessions collected from the Yellow River are introduced
from Xinjiang Province (Wang et al., 2010; Yen, Cui & Dong, 1984). However, on the basis
of the established genetic similarities among 31 Ae. tauschii accessions from China and Iran
determined using SSR markers,Wei et al. (2008) proposed that Ae. tauschii populations in
the Yellow River region are likely to have been directly introduced from Iran along the silk
road, which indicates a longer genetic relationship with Xinjiang landraces. In addition,
Mizuno et al. (2010) used AFLP molecular markers to classify genetic types among Ae.
tauschii accessions and found that the accessions collected in the Yellow River basin, which
were significantly different from the L1E accessions in Afghanistan and Xinjiang, closely
clustered to the L1W accessions in the Middle East.

With regard to the introduction of Ae. tauschii in China, it is believed that the routes by
which barley and wheat spread from western Eurasian to East Asia may offer some relevant
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clues. One hypothesis postulated that common wheat arrived from the west (probably
from Afghanistan or the Central Asia oases), moving eastwards into northern Xinjiang
(Betts, Jia & Dodson, 2014; Wu et al., 2019), whereas an alternative opinion envisaged that
common wheat may have reached East Asia along a north-west passage from Eurasia,
via southern Siberia and Mongolia. In both scenarios, common wheat was assumed to
have initially spread into Central Gansu and thereafter migrated eastwards into the Yellow
River region or was later introduced to the margins of the Qinghai–Tibetan Plateau in
highland China (Dodson et al., 2013; Betts, Jia & Dodson, 2014; Long et al., 2018; Wu et al.,
2019). A subsequent dispersal route from the margins of the Qinghai–Tibetan Plateau to
the Yangtze Valley has also been proposed (Wu et al., 2019). It is generally considered that
barley had arrived to the northeastern and southeastern Tibetan Plateau at a date prior
to 4,000 calendar years ago (Wu et al., 2019). However, in contrast to the aforementioned
traditional views regarding the dispersal routes of common wheat and barley (Dodson et
al., 2013; Betts, Jia & Dodson, 2014; Long et al., 2018), Zeng et al. (2018) have suggested that
qingke barley is derived from eastern domesticated barley and was introduced from South
Tibet, most likely from northern Pakistan, India, and Nepal eastwards into the Tibetan
Plateau, which is supported by recent archaeological evidence of the occurrence of barley
in north-east India. Thus, the specific route whereby Ae. tauschii extended its range is still
ambiguous, and remains considerable interest for intensive exploration.

Owing to the notable prominent advantages of the cp genome, including amoderate rate
of nucleotide replacement, significant variations in the rate of molecular evolution between
non-coding and coding regions, moderate genome size, and desirable collinear properties
among different species (Liu et al., 2018), an analysis of cp genome sequences is considered
an effective strategy for investigating intra- and interspecific evolutionary relationships,
as well as being of considerable utility in comparative genomic studies (Matsuoka, Mori
& Kawahara, 2005; Yamane & Kawahara, 2005; Tabidze et al., 2014; George et al., 2015; Liu
et al., 2017; Shang et al., 2019). In angiosperms, the size of cp genomes and their gene
arrangements are generally highly conserved with a circular chromosome ranging in size
from 120 to 160 kb, and comprising a small single-copy (SSC) region, a large single-copy
(LSC) region and a pair of inverted repeats (IRs) region (Palmer, 1991; Yang et al., 2010).
Given that cp are primarily non-recombining and uniparentally inherited, phylogenetic
analysis based on cp sequences can also facilitate specific identification of maternal lineages
(Sang, 2002).

Using complete cp genomes, a number of previous studies have examined genetic
variations in common wheat and its relatives and performed related phylogenetic analyses
(Middleton et al., 2014; Gornicki et al., 2014; Gogniashvili et al., 2016). In the present study,
with a view toward sheding light on the genetic variation of Ae. tauschii and the source
of Chinese landraces, we performed sequence analysis of the complete cp genomes of 17
Ae. tauschii accessions derived from regions spanning the known distribution range from
western Turkey to eastern China. The results not only provided a series of new insights
to clarify the spreading route of Ae. tauschii, but also enabled us to identify promising
germplasm resources for the genetic improvement of bread wheat.
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Table 1 Origin and collection regions of 17 Aegilops tauschii accessions.

Accessionsa Inventoryb Source Regions

SC1 Shannxi, China N (34.158997), E (108.90699), Elevation: 428 m
AY81 PI 542277 Izmir, Turkey Elevation: 30 m
AY34 PI 662116 Khujand, Tajikistan N (39.771944), E (68.809444), Elevation: 433 m
AY22 PI 511365 Baluchistan, Pakistan N (30.925), E (66.44638889), Elevation: 675 m
AY320 PI 554324 Kars, Turkey N (40.13333333), E (43.06666667), Elevation: 1,275 m
AY21 PI 662091 Khujand, Tajikistan N (40.67388889), E (70.54694444), Elevation: 462 m
XJ04 Xinjiang, China N (44.321239), E (80.77766), Elevation: 892 m
XJ0109 Xinjiang, China N (43.386026), E (83.5977), Elevation: 1,269 m
T093 Henan, China N (35.728123), E (115.242698), Elevation: 52 m
XJ098 Xinjiang, China N (43.386026), E (83.5977), Elevation: 1,269 m
AY78 PI 210987 Kondoz, Afghanistan N (36.68333333), E (68.05), Elevation: 362 m
AS060 PI 511369 Iran N(36.85), E(55.170593), Elevation: 527 m
AY48 PI 603225 Turkmenistan, Balkan N(38.48333333), E(56.3), Elevation: 730 m
AY076 PI 276975 Turkistan N (45), E (70), Elevation: 210 m
AY20 PI 574469 India N(20), E(77), Elevation: 509 m
AY72 PI 428563 Georgia N (43),E (47) , Elevation: 90 m
AY46 PI 511368 Tehran, Iran N(35.8), E(50.96666667), Elevation: 1,296 m

Notes.
aAccession numbers from Key Laboratory of Plant Stress Biology of Henan University.
bInventory provided by the US National Plant Germplasm Center and Institute of Genetics and Developmental Biology.

MATERIAL AND METHODS
Plant materials
Information related to the 17 Ae. tauschii accessions examined in this study, including
origin and collection region, are listed in Table 1. The accessions marked as ‘XJ’, ‘T’, and ‘S’
are those from Xinjiang, Henan, and Shannxi Provinces, respectively. These materials were
collected in the field by Key Laboratory of Plant Stress Biology of Henan University. The
seedswith the accessions designated as ‘AY’ and ‘AS’ were provided by theUSNational Plant
Germplasm Center and Institute of Genetics and Developmental Biology. The sources of
these accessions are distributed across a wide geographical range that extends from Turkey,
Georgia, Iran, Turkmenistan, Kazakhstan, Tajikistan, Afghanistan, Pakistan, and India
to Xinjiang, Shannxi and Henan Provinces in China (Fig. 1), and comprises 15 lineage
L1 accessions and two lineage L2 accessions, as determined based on single-nucleotide
polymorphisms (SNPs) (Wang et al., 2013).

Next-generation sequencing, annotation and comparsion of
chloroplast genomes
For each of the 17Ae. tauschii accessions, total genomicDNAwas extracted from fresh leaves
of 1-week-old seedlings germinated by the aboved seeds ofAe. tauschii by themethod ofHan
et al. (2015). Approximately 5 to 10µg of extractedDNAwas sheared to generate fragments,
and the quality of DNA sequences was determined using an Agilent Bioanalyzer 2100
(Agilent Technologies). Thereafter, we generated a paired-end sequencing library, which
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Figure 1 Geographical distribution of 17 Aegilops tauschii accessions fromwestern Turkey to eastern
China.

Full-size DOI: 10.7717/peerj.8678/fig-1

was constructed from∼400 bp fragments obtained using a Genomic DNA Sample Prep Kit
(Illumina) in accordance with the manufacturer’s protocol. Subsequent genome sequencing
was carried out by Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China) using the
HiSeq X ten sequencing platform (Illumina Inc., San Diego, CA) with 150 bp read length.
Low quality reads with a phred score <30 and 0.001 probability error were removed using
Trimmomatic v0.36 (http://www.usadellab.org/cms/index.php?page=trimmomatic), and
the remaining high quality fragment s were assembled into contigs using the SOAPdenovo
v2.21 (http://soap.genomics.org.cn/soapdenovo.html). The assembled contigs were further
aligned to the AL8/78 reference genome (GenBank No. KJ 614412) using BLASTN
(http://www.ncbi.nlm.nih.gov). Finally, gaps in the genome sequence were filled using
GapCloser v1.12 (http://soap.genomics.org.cn/soapdenovo.html).

The complete cp genome of Ae. tauschii was annotated using the Dual Organellar
GenoMe Annotator program (DOGMA,Wyman, Jansen & Boore, 2004), and then verified
artificially. The annotation of the tRNA genes was verifed using tRNAscan-SE. The circular
cp genome of Ae. tauschii was constructed using OGDRAW online software (Lohse et al.,
2013). The Gene Ontology (GO) functional categories were execute d using Blast2GO V3.2
software.

In order to determine intraspecific variations, variations in the LSC, SSC region, and
IR regions, we used Geneious 9.0.5 software (Biomatters, Auckland, New Zealand). Using
AL8/78 as the reference genome, the cp genomes of T093 and AY81 were performed to
visualize the sequence variations by mVISTA.

Phylogenetic analysis
The phylogenetic relationships among Ae. tauschii accessions were examined using the
complete cp genome sequences of the 17 accessions. In addition, in order to establish the
origin of Ae. tauschii within the family Triticeae, we performed phylogenetic analysis using
the genome sequences of the following 99 accessions: the 17 accessions newly sequenced in
the present study, 56 accessions in the genus Aegilops, 24 accessions in the genus Triticum,
and two accessions of Hordeum vulgare as the outgroups.
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The sequences of these cp genomes were aligned using Geneious 9.0.5 software
(Biomatters, Auckland, New Zealand). Gaps were adjusted manually or removed. The
alignment lengths with all gap positions removed were determined to be 135,984 bp
(17 accessions) and 131,116 bp (99 accessions). We constructed two corresponding
phylogenetic trees based on the maximum-likelihood (ML) method utilizing MEGA7.0
software (Kumar, Stecher & Tamura, 2016). The bootstrap values were evaluated with 1000
replications. The best-fit nucleotide substitution model (GTR+I+G) was selected using
jModelTest 2.1.4 software (Posada, 2008) operating with default parameters.

Analysis of sequences divergence and molecular markers
An analysis of cp genome divergence among the 17Ae. tauschii accessions was performed by
employing MAFFT alignment based on homologous genomic regions (Katoh et al., 2002).
Nucleotide diversity (Pi) of polymorphic sequences among the 17 Ae. tauschii individuals
were calculated utilizing DnaSP v5.0 software (Librado & Rozas, 2009).

RESULTS
Characteristics and comparison of Ae. tauschii cp genomes
The cp genomes of the 17 Ae. tauschii accessions sequences in the present study were found
to be similar with respect to size and gene content. They are generally 135,551∼136,009
bp in length and contained four quadripartite structure: two IR regions separated by a SSC
region (12,773∼12,826 bp) and a LSC region (79,723∼80,140 bp) (Fig. 2 and Table 2). The
intergenic regions of these sequences rangedwithin 75,635∼77,699 bp in length, accounting
for 53.2% to 57.2% of the total genomes. The remaining sequence gene regions comprise
coding regions, intron regions, tRNA genes, and rRNA genes. Notably the GC contents of
the 17 cp genomes are relatively stable ranging from 38.31% to 38.35% (Table 2).

We also found that the compositions of 17 genomes were highly conserved, with each
of the accessions containing a total of 124 functional genes (82 protein-coding genes, 8
rRNAs, and 34 tRNAs), of which 17 were duplicated genes (Table 2). Among the 107
unique genes, 57 are related to self-replication and 46 are associated with photosynthesis.
The functions of the remaining four annotated genes are as follows: a maturase (matK ),
an envelope membrane protein (cemA), a C-type cytochrome synthase (ccsA) as well as
a protease (clpP) (Table S1). As shown in Table S1, the 124 functional genes were were
classified into three groups and assigned according annotations clearly. Then, the Gene
Ontology (GO) functional categories among these genes were investigated using Blast2go
(Conesa et al., 2005) which were mainly enriched for cellular process, metabolic process,
cell, cell part, and organelle (Fig. S1 and Table S2).

The sequences of representative genomes of three Ae. tauschii accessions were relatively
conserved, and any translocations or inversions among these genomes were not identified.
The IR regions showed lower sequence variation than either LSC or SSC regions (Fig. S2).
Furthermore, the precise IR/SSC and IR/LSC boundary locations and the corresponding
neighboring genes were found to be identical in length (21,548 bp) and border structure
(Fig. S3).
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Table 2 Comparative analysis of the chloroplast genomes among 17 Aegilops tauschii accessions.

Accessions AY21 AY22 AY320 AY34 AY81 SC1 T093 XJ04 XJ098 XJ0109 AY78 AS060 AY20 AY72 AY48 AY076 AY46

Total size (bp) 135,858 136,009 135,978 135,777 135,890 135,608 135,850 135,610 135,611 135,613 135,656 135,634 135,617 135,813 135,836 135,854 135,551

GC% 38.32 38.31 38.33 38.32 38.31 38.33 38.32 38.33 38.33 38.33 38.32 38.32 38.33 38.33 38.31 38.33 38.35

Gene total length (bp) 59,706 59,703 59,559 59,703 59,628 59,703 63,575 58,583 59,703 57,914 59,703 59,703 59,703 59,934 59,916 59,916 59,916

Gene average length (bp) 719 719 717 719 718 719 722 709 719 699 719 719 719 722 721 721 721

Gene density (genes per kb) 0.61 0.61 0.61 0.611 0.61 0.612 0.647 0.61 0.612 0.611 0.611 0.611 0.612 0.611 0.611 0.61 0.612

GC content in gene region (%) 38.9 38.9 38.9 38.9 38.9 38.9 38.8 38.8 38.9 39.1 38.9 38.9 38.9 38.9 38.9 38.9 38.9

Gene/Geonme (%) 43.9 43.9 43.8 44 43.9 44 46.8 43.3 44 42.8 44 44 44 44.1 44.1 44.1 44.2

Intergenic region length (bp) 76,152 76,306 76,419 76,074 76,262 75,905 72,275 77,027 75,908 77,699 75,953 75,931 75,914 758,79 75,920 75,938 75,635

GC content in intergenic region (%) 37.8 37.8 37.8 37.8 37.8 37.8 37.8 37.9 37.8 37.7 37.8 37.8 37.8 37.8 37.8 37.8 37.8

Intergenic length/Genome (%) 56.1 56.1 56.2 56 56.1 56 53.2 56.7 56 57.2 56 56 56 55.9 55.9 55.9 55.8

LSC (bp) 79,991 80,142 80,111 79,910 80,020 79,741 79,983 79,744 79,743 79,746 79,789 79,766 79,749 79,946 79,969 79,987 79,723

SSC (bp) 12,771 12,771 12,771 12,771 12,774 12,771 12,771 12,771 12,772 12,771 12,771 12,772 12,772 12,771 12,771 12,771 12,732

IR (bp) 21,548 21,548 21,548 21,548 21,548 21,548 21,548 21,548 21,548 21,548 21,548 21,548 21,548 21,548 21,548 21,548 21,548

Total number of genes 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124 124

Number of protein-coding genes 82(6) 82(6) 82(6) 82(6) 82(6) 82(6) 82(6) 82(6) 82(6) 82(6) 82(6) 82(6) 82(6) 82(6) 82(6) 82(6) 82(6)

Number of rRNA genes 8(4) 8(4) 8(4) 8(4) 8(4) 8(4) 8(4) 8(4) 8(4) 8(4) 8(4) 8(4) 8(4) 8(4) 8(4) 8(4) 8(4)

Number of tRNA genes 34(7) 34(7) 34(7) 34(7) 34(7) 34(7) 34(7) 34(7) 34(7) 34(7) 34(7) 34(7) 34(7) 34(7) 34(7) 34(7) 34(7)

Duplicated genes in IR 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
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Phylogenetic tree
The two cp genome datasets (the 17 complete cp genome sequences assembled in this study
and the 99 selected cp genome sequences) were used to reconstruct the corresponding
phylogenetic trees. As shown in Fig. 3, the 17 newly sequenced Ae. tauschii accessions were
clustered into three groups, with group I being a sister to group II and group III, which
formed a single clade. Group I comprised two accessions from Iran and Turkey, which
derived from the L2 lineage, whereas the accessions in groups II and III all originated
from the L1 lineage. Further, group II included two accessions from Tajikistan, three
accessions from Afghanistan, Turkey and Georgia. Group III encompassed two accessions
from the Yellow River region (SC1 and T093), three accessions from Xinxiang (XJ0109,
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XJ04 and XJ098), and a further five accessions from India, Iran, Turkmenistan, Turkistan
and Pakistan, respectively.

The phylogenetic tree of Poaceae faminly, inferred based on the cp genome sequences
of 99 selected accessions, was characterized by the two genetic clusters, namely Triticum
and Aegilops clusters (Fig. 4). However, we found that Ae. speltoides was clustered in
a polytomy together with almost all the Triticum species, whereas Triticum urartu and
Triticum monococcum were grouped with the remaining Aegilops species in the Aegilops
cluster. Furthermore, all D-genome species, including Ae. tauschii, Ae. ventricosa and Ae.
cylindrica, were found to cluster in a single clade.

Sequence divergences of Ae. tauschii cp genomes and molecular
marker development
In order to elucidate variant characteristics among the 17 Ae. tauschii cp genomes, we
further analyzed divergences in the sequences of coding genes, intron regions and intergenic
regions. We accordingly detected 56 variation loci among which 38 loci were located in
non-coding regions (34 intergenic regions and four intron regions) and the remaining 18
loci were found in coding regions. A relatively high value of nucleotide variability (P i) was
thus determined for non-coding regions, ranging from 0.00008 to 0.00635 with an average
of 0.00133, which was approximately three times greater than that in the coding regions
(average: 0.000432) (Table S3). Among these variable loci, rpl32-trnL-UAG (0.00478),
ccsA-ndhD (0.00483), rbcL-psaI (0.00492), and rps18-rpl20 (0.00635), which are located in
intergenic regions (the former two in the SSC region and the latter two in the LSC region),
displayed the highest nucleotide polymorphisms (Fig. 5). Moreover, the primers sequences
of four regions can be effectively amplified after verification (Table S4), which will help for
studying the intraspecific genetic structure and diversity of Ae. tauschii.
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DISCUSSION
In this study, we sequenced the cp genomes of 17 geographically dispersed Ae. tauschii
accessions, all of which display the typical angiosperms structure and harbor an identical
component of 107 unigenes arrayed in the same order (Fig. 2). These genomes were found
to be relatively conserved, with the IR regions showing greater conservation than either
the LSC or SSC region (Fig. S1). Differences in genome size could mainly be attributed
to intraspecific differences among the cp genomes rather than expansion and contraction
of IR regions. We found that the size of the 17 assembled genomes tended to be similar,
ranging from 135,551 bp to 136,009 bp (Table 2), with accessions AY22 and AY46 having
the largest and the smallest genomes, respectively. The IRs regions of all 17 genomes were
identical in length (21,548 bp) and differences in genome sequence length can largely be
attributed to the variation in the non-coding regions, particularly with respect to the size
of the intergenic regions size (Table 2). Comparative analysis with the reference genome
indicated that there has been no loss of genes in any of the 17 analyzed genomes. In contrast
to findings at the interspecific level (Terakami et al., 2012), we detected identical LSC/IR
and SSC/IR border regions in the 17 Ae. tauschii genomes, thereby indicating that these
genomic features would be of little use as evolutionary tools for analyses at the intraspecific
level. In conclusion, we found that the general structure of the 17 Ae. tauschii cp genomes
including gene order and number, has been well conserved. The few variations that we
detected are located in the non-coding regions (intergenic spacer regions).
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Given the lower nucleotide substitution rates in cp genomes compared with nuclear
genomes, it is generally assumed that a substantial sequence length is required for a robust
phylogenetic analysis based on cp genome sequences (Wolfe, Li & Sharp, 1987; Khakhlova
& Bock, 2006). Accordingly, in order to acquire more comprehensive information, the
complete chloroplast genome sequence are beneficial for investigating the phylogenetic
relationship of angiosperms (Kim et al., 2015). With respect to the origin of Ae. tauschii in
China, the Yili Area of Xinjiang is undisputedly considered to represent the easternmost
boundary of the natural distribution of wild Ae. tauschii population (Matsuoka, Takumi
& Kawahara, 2015; Gogniashvili et al., 2016; Wang et al., 2013), whereas the origin of
landraces in the Yellow River region remains a source of debate. In the study, group I
was found derived from the L2 lineage, whereas the accessions in groups II and III all
originated from the L1 lineage, which was consistent with the findings of analyses based
on 7185 SNP markers (Wang et al., 2013), and thereby indicated that complete cp genome
sequences are as equally effective as nuclear sequences for the assessment of the phylogenetic
relationships among Ae. tauschii accessions. We also found that the Yellow River accessions
(SC1 and T093) clustered closely in a small branch with AY22 from Pakistan (South
Asia), wheras Xinjiang appeared to clustered together with Central Asian (Fig. 3). Thus,
the aforementioned results imply that Ae. tauschii accessions collected from the Yellow
River region (Henan and Shaanxi) could have originated from South Asian populations
rather than from those in Xinjiang Province in China (Wang et al., 2010; Yen, Cui & Dong,
1984) or Iran (Wei et al., 2008), which could contribute to more effective utilization of wild
germplasm resources.

Iran is believed to be the origin of Ae. tauschii in the Yellow River region according to
the results of Wei et al. (2008). It is conjectured that the spreading route of qingke barley
from Western Eurasia though South Asia and into Northern Tibet (Zeng et al., 2018) and
the dispersal route of common wheat from the margins of the Qinghai–Tibetan Plateau
to the Yangtze Valley (Wu et al., 2019) may offer valuable clues as to the introduction
of Ae. tauschii in China (Betts, Jia & Dodson, 2014). In addition, some Southwest Asian
domesticated accessions, including those of pea and rye, appear at Changguogou in the
Yarlung Tsangpo River basin of Southern Tibet (Fu, Xu & Feng, 2000), and flax is found
at Ashaonao on the southeastern Tibetan plateau (Guedes et al., 2014; Guedes et al., 2015),
thereby indicating that the introduction of Ae. tauschii from South Asia is also possible.
Thus, we proposed that the Yellow River accessions may have been introduced directly
from South Asia.

Given the aforementioned considerations, we can tentatively propose the possible
introduction route whereby Ae. tauschii dispersing eastward to China. Specifically, we
believe that Ae. tauschii accessions distributed in Iran spread eastwards in two routes.
One is assumed to have followed a route to Central Asia and the Yili Area of Xiinjiang
through either human activities or natural extension, whereas the other one migrated
eastwards, spreading to South Asia through Northern Tibet, most likely concomitant with
the introduction of qingke barley into the Yellow River region, and gradually evolved
into Ae. tauschii accessions found in this region today. Nevertheless, in order to verify this
conjecture, it would be necessary to examine a larger number of Ae. tauschii accessions
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originating from sub-divided areas to facilitate a more comprehensive population analysis,
and thereby enable us to trace the exact route of Ae. tauschii dispersal into China. In the
present study, we investigated genetic variation of Ae. tauschii and the source of Chinese
landraces, which not only provided a series of new insights to clarify the spreading route
of Ae. tauschii, but also could be contribute to more effective utilization of wild germplasm
resources for the genetic improvement of bread wheat.

In order to gain further insights into the origin of the D genome origin of common
wheat, we we performed phylogenetic analysis based on the cp genomes of 99 accession
in the Poaceae family (Fig. 4), and found that the tree we constructed is similar in
topological structure to that presented by Bernhardt et al. (2017). Most researchers consider
that Ae. tauschii, the donator of the D genome of common wheat, could be derived
from monophyletic speciation (Dvorak et al., 1998; Dvorak et al., 2012; Wang et al., 2013;
Matsuoka, Takumi & Kawahara, 2015). However, the findings of a study in which the
evolutionary relationship of the A, B and D genome lineages were assessed, based on the
genome sequences (2,269 genes) of hexaploid bread wheat subgenomes and five diploid
relatives, indicated that the D genome is derived from homoploid hybrid speciation of
the A and B genomes (Marcussen et al., 2014). On the basis of a phylogenetic analysis
of chloroplast DNAs, Li et al. (2018) also conjectured that the maternal origin of the D
genome lineage might be the A genome or some other relatively close lineage through
ancient hybridization. In the present study, with regard to T. urartu (A genome) and Ae.
speltoides (B genome), we found that Ae. tauschii firstly clustered together with the other
Aegilops specie. If the D genome is derived from an ancient hybridization between the
A and B genomes, Ae. tauschii should be closely clustered with T. urartu (the A genome
acts a maternal parent) or Ae. speltoides (the A genome acts a maternal parent). Thus, we
proposed that Ae. tauschii is derived from monophyletic speciation rather than ancient
hybridization. In brief, these phylogeny results will serve as a reference framework for
future studies on Triticeae or Ae. tauschii.

To identify the genetic divergence in the assembled genomes, we determined the
nucleotide variability (Pi) of coding genes, intron regions and intergenic regions using
DnaSP. The results revealed that the sequence divergence of the IR regions appeared
to be lower than that of the LSC and SSC regions, which has also been noted in other
angiosperms and may possibly be attributed to copy correction of the IR regions via gene
conversion (Khakhlova & Bock, 2006). The IR sequences of 17 accessions were identical
in this study. Intra-species variabilities were detected predominantly in the non-coding
regions (intergenic spacer regions) of LSC and SSC (Fig. S2 and Fig. 5). We also found
that four variable loci (rpl32-trnL-UAG, ccsA-ndhD, rbcL-psaI and rps18-rpl20) located
in the non-coding regions showed notably high levels of nucleotide polymorphisms,
two of which (rpl32-trnL-UAG, ccsA-ndhD) are located in the SSC region and the other
two loci (rbcL-psaI , rps18-rpl20) are found in the LSC region (Fig. 5). Previous studies
have identified Ae. tauschii accessions using the cp non-coding sequences trnF-ndhJ,
trnC-rpoB, atpI -atpH, and ndhF-rpl32 (Yamane & Kawahara, 2005; Dudnikov, 2012).
Here, we developed a further four marker regions (rpl32-trnL-UAG, ccsA-ndhD, rbcL-psaI
and rps18-rpl20) with relatively high levels of intraspecific variation, which can be used for
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population genetic analyses or serve as specific DNA barcodes of Ae. tauschii (Zhang, Ma
& Li, 2011; Maier et al., 1995).

CONCLUSIONS
In this study, with respect to gene order, gene number, and IR/SC boundary regions, we
demonstrate that genomic structure is well conserved among the cp genomes of the 17
Ae. tauschii accessions we assembled using Illumina next-generation DNA sequencing
technology. Intraspecific differences among the cp genomes were detected primarily in
non-coding regions (intergenic spacer regions) which are the main features contributing
to the observed differences in genome size. An analysis of the phylogenetic relationships
among the accessions based on the complete genome sequences indicated that Ae. tauschii
accessions from the Yellow River region in China might have originated directly from
South Asia. We also confirmed that Ae. tauschii is derived from monophyletic speciation
rather than hybrid speciation. Furthermore, we identified four cpDNA marker sequences
(rpl32-trnL-UAG, ccsA-ndhD, rbcL-psaI, and rps18-rpl20) that can be used to study inter-
and intraspecific genetic structure and diversity of Ae. tauschii.
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