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The spatial resolution ofmagnetic resonance imaging (MRI) is often limited due to several reasons, including a short data acquisition
time. Several advanced interpolation-based image upsampling algorithms have been developed to increase the resolution of MR
images. These methods estimate the voxel intensity in a high-resolution (HR) image by a weighted combination of voxels in the
original low-resolution (LR) MR image. As these methods fall into the zero-order point estimation framework, they only include
a local constant approximation of the image voxel and hence cannot fully represent the underlying image structure(s). To this end,
we extend the existing zero-order point estimation to higher orders of regression, allowing us to approximate a mapping function
between local LR-HR image patches by a polynomial function. Extensive experiments on open-access MR image datasets and
actual clinical MR images demonstrate that our algorithm can maintain sharp edges and preserve fine details, while the current
state-of-the-art algorithms remain prone to some visual artifacts such as blurring and staircasing artifacts.

1. Background

Magnetic resonance (MR) imaging is widely used to assess
brain diseases, spinal disorders, cardiac function, and mus-
culoskeletal injuries. Compared with computed tomography,
MR imaging requires a longer acquisition time [1]. Hence,
in order to minimize involuntary patient motion in MR
imaging, the scan time is often shortened, thereby obtaining
MR images with fewer slices and larger spacing [2]. In other
words, MR images are usually highly anisotropic (e.g., 1 ×
1 × 6mm3), with a lower resolution in the slice-selection
direction than in the in-plane direction [3]. However, in
manymedical applications, an isotropicMR image is required
[4]. In addition, a higher resolution of MR image is also
essential formore detailed understanding of human anatomy,
facilitating early detection of abnormalities, and improving
clinical assessment accuracy [4].

A possible approach to increase MR image resolution
is an interpolation-based image upsampling [2]. Traditional
interpolation methods adopted in natural image processing
field such as spline interpolation can be directly employed.
But these methods use fixed interpolation coefficients and
only select spatially nearby sampling voxels, thereby pro-
ducing images with blurred edges and staircasing artifacts.
To reduce these unwanted artifacts, some sophisticated

interpolation methods [2, 5–11] have been recently proposed
in biomedical image processing. Largely, these advanced
interpolation methods are derived from a nonlocal redun-
dancy concept [12]. That is, they specifically select sam-
pled voxels or adapt interpolation coefficients. For instance,
Manjón et al. [5] proposed determining the interpolation
coefficients through the similarity of intensities between two
3D image patches around the unknown voxel and sampled
voxels. Observing that image structures in a slice-selection
direction of a 3DMR image also exist in an in-plane direction,
while the resolution of the latter is usually higher than the
former’s, Plenge et al. [6] proposed reconstructing a high-
resolution (HR) version in a slice-selection direction by lever-
aging cross-scale self-similarity and cross-scale resolution
discrepancy frompatches in in-plane direction. Furthermore,
Qu et al. [7] extended Plenge’s work by using the sparsity of
similar image patches. Besides themethods proposed in [5–7]
which use only the input low-resolution (LR) image, several
other algorithms have also been advocated to leverage HR
images of the same subjects in other imagingmodalities, with
the aim of reconstructingmore high-frequency image details.
For example, a combined interpolation weight proposed in
[8] was calculated from both an example HR image and an
LR input image. Further, Manjón et al. [9, 10] developed a
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correlationmapwhich shows the inconsistencies betweenHR
image and LR input so as to adjust the relative importance
of these two images in the combinational weight computa-
tion. On noticing that the voxel similarity comparison via
Euclidean distance of intensity was not rotationally invariant,
Jafari-Khouzani et al. [2, 11] proposed to concatenate several
image features computed from each voxel, such as gradients
and Gaussian-blurred intensity values, into a vector and
measure the voxel similarity from this feature vector therein.

Intuitively, whether using a different imagingmodality or
not, the above-mentioned advanced interpolation algorithms
all focus on the refinement of interpolation weights. Never-
theless, using a weighted averaging scheme, these algorithms
essentially can be described as a zero-order regression prob-
lem [13]. Unfortunately, the zero-order regression prototype
risks blur the laminar shape of brain structure, and therefore
high-order image details cannot be well retrieved [2, 13]. To
the best of our knowledge, few efforts have been made in MR
image processing to promote an interpolation algorithm that
preserves higher-order details.

To address the fine-detail limitation in current interpola-
tion algorithms, we propose a regression-inspired interpola-
tionmethod using second-order polynomials. Under a kernel
regression framework, we attempted to transform an LR
image space into the expectedHR image space by establishing
a set of high-order prototypes so as to locally approximate the
ground truth image space. Moreover, to further strengthen
local consistency in the proposed method, a patch-based
image reconstruction scheme is utilized rather than voxel-
by-voxel scheme as other interpolation methods do. With
these two salient features, the proposed method successfully
enhances high-frequency details in final results.

In the rest of this paper, the proposed method will
be specified in Section 2. Extensive experimental results
and discussions are demonstrated in Section 3. Finally, a
conclusion is described in Section 4.

2. Methods

In this section, we firstly describe a MR image acquisition
model and mathematical notations therein and then present
the specific implementation of our regression-based image
upsampling algorithm.

2.1. The Acquisition Model and Notations. In the context of
MR imaging, the most accepted image acquisition model
assumes that an acquired LR image is generated from an HR
counterpart through a sequence of degradation operations,
such as motion blur, field inhomogeneity, and noise, and can
be represented as [1]

Y = DHZ + 𝜂, (1)

whereY denotes an observed LR image,D is a downsampling
operator, H is a blurring operator, Z is an HR image, and
𝜂 is acquisition noise, which is often regarded as Rician-
distributed in MR imaging. To infer Z from Y, image
upsampling is basically an inverse process of MR imaging.
Moreover, owing to the fact that the specific form of the
blurring operation is unknown, this blurring operation could

be regarded as an unspecified mapping function. In light of
this, the HR image could then be formulated as

Z = 𝑓 (D𝑇Ỹ) , (2)

where D𝑇 is a simple interpolation operator (i.e., bicubic
interpolation) which generates the initial estimation of the
upsampled image and Ỹ is the denoised version of the
LR image Y; the mapping function 𝑓 denotes the inversed
blurring operation, representing the relations from an LR
space to the target HR space.

Equation (2) translates the image upsampling problem
into a regression problem, with the particular form of regres-
sion function 𝑓(z) remaining unspecified. To estimate 𝑓(z),
we propose the development of a generic local expansion of𝑓(z) about one image patch in D𝑇Ỹ image. This particular
method will be discussed in Section 2.2.

As shown in Figure 1, the goal of the proposed method is
to construct an HR version Z from a given LR image I (which
is in fact image Ỹ in (2)). I𝑠 is a smoothed version of I (where𝑠 represents smoothing) and Z𝑠 is an upscaled version of I.
The bolded lowercase p and q denote the column vectors of
two 𝑠 × 𝑠 image patches which are extracted from I and Z,
respectively; p𝑠 and q𝑠 are the column vectors of two 𝑠 × 𝑠
image patches taken from I𝑠 and Z𝑠, respectively. Among all
patches in image I𝑠, p𝑠 is the most similar one to q𝑠; patches
p(q) andp𝑠(q𝑠)have the same coordinates for the center pixel.
In the proposed method, {p𝑠, p} constitutes LR-HR training
patch pairs and {q𝑠, q} constitutes LR-HR testing patch pairs.

2.2. Regression-Based Image Upsampling Method

2.2.1. HR Patch Representation Based on a Regression Model.
Learning the regression function (or mapping function) in
(2) is extremely difficult because of its ill-posed nature. To
constrain its solution space, proper regularization is usually
required. Multiscale image self-similarity property has been
used as effective regularization in several ill-posed problems
of image processing, such as image denoising [12] and
image superresolution [14]. More specifically, the multiscale
image self-similarity property refers to the recurrence of
image patches, and, generally, it includes two parts: nonlocal
self-similarity within one scale [12] and that across scales.
Recently, the validity of the nonlocal self-similarity in one
scale has been successfully verified for MR images, including
T1W images [2, 5] and DWI images [10]. Although self-
similarity across scales has not been as widely used inMRI as
self-similarity in one scale, its existence is apparent, since the
primary structure of interest is assumed not to be lost when
an image is downsampled, as confirmed on natural images in
[15]. In this sense, multiscale self-similarity property can also
be extended into MR images with abundant textures, such as
images of brain, liver, and heart.

In this paper, the multiscale self-similarity property is
leveraged in two ways. Firstly, since an image is likely to
have repeated patterns, the mapping function 𝑓 in (2) is
estimated patch-wisely in the proposed method rather than
being estimated from the entire image. With this regarding,𝑓 associates each LR-HR patch pair {q, q𝑠} as q = 𝑓(q𝑠).
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Figure 1: The patch relations of the proposed method.

Secondly, the fact that singular structures are scale invariant
implies that each patch q𝑠 in image Z𝑠 could find its similar
patch p𝑠 in image I𝑠. In other words, the mapping function of
patch q𝑠 to its high-resolution counterpart q can be regarded
as the same mapping function of patch p𝑠 to patch p. In light
of this, a set of {p𝑠, p} can be served as a sort of adaptive
patch regularization to infer 𝑓 and consequently the high-
resolution version of Z𝑠.

More specifically, to estimate the function 𝑓 for patch q𝑠,
a local expansion of 𝑓 on patch q𝑠 could be developed by
utilizing an 𝑁th-order Taylor series, if patches q𝑠 and p𝑠 are
similar:
q = 𝑓 (q𝑠) = 𝑓 (p𝑠 + q𝑠 − p𝑠)
= 𝑓 (p𝑠) + 𝑓 (p𝑠) ∘ (q𝑠 − p𝑠) + 12𝑓 (p𝑠) ∘ (q𝑠 − p𝑠)
∘ (q𝑠 − p𝑠) + ⋅ ⋅ ⋅

≈ p + 𝑓 (p𝑠) ∘ (q𝑠 − p𝑠) + 12𝑓 (p𝑠) ∘ (q𝑠 − p𝑠)
∘ (q𝑠 − p𝑠) ,

(3)

where ∘ denotes the element-wise product of two matrices;𝑓(⋅) and 𝑓(⋅) denote the first and second derivatives of
the mapping function 𝑓. It is easy to tell from (3) that, by
addressing the image upsampling problem as one of kernel
regression, we are able to generalize the intensity of HR patch
q to arbitrary orders, which gives us greater flexibility in
modeling the underlying image data. On the other hand,
(3) also reveals that, in order to reconstruct the HR patch
q, multiorders of the mapping function derivatives should
be estimated first. Several authors [16, 17] have argued in
their work that, for image reconstruction, a second-order
derivative estimation is able to adequately balance detail
preservation and computation time. Therefore, we propose
a second-order derivation of the mapping function in this
method.

2.2.2. Estimation of Mapping Function’s Derivative Using Local
Self-Similarity. Image self-similarity property also reveals

that, inside image I𝑠, patches with a similar layout to the patch
p𝑠 can also be explored (see yellow boxes p1,𝑠 and p2,𝑠 in
Figure 1). Therefore, the mapping function of the patch q𝑠
to its high-resolution counterpart q can also be regarded as
the same mapping function of patch p1,𝑠 to patch p1, where
p1 is high-resolution counterpart of p1,𝑠 in image I. Like
(3), the mapping function on patch p1,𝑠 could also be locally
expanded as

p1 = 𝑓 (p1,𝑠) = 𝑓 (p𝑠 + p1,𝑠 − p𝑠)
= 𝑓 (p𝑠) + 𝑓 (p𝑠) ∘ (p1,𝑠 − p𝑠) + 12𝑓 (p𝑠)∘ (p1,𝑠 − p𝑠) ∘ (p1,𝑠 − p𝑠) + ⋅ ⋅ ⋅
≈ p + 𝑓 (p𝑠) ∘ (p1,𝑠 − p𝑠) + 12𝑓 (p𝑠) ∘ (p1,𝑠 − p𝑠)
∘ (p1,𝑠 − p𝑠) .

(4)

From (3) and (4), we can see that 𝑓(⋅) and 𝑓(⋅) are
both derived from local signal representations. Thus, it is
reasonable to estimate these two parameters using all the
“neighboring” patches of p𝑠 in terms of patch content. In light
of this, by incorporating the 𝐽-most similar patches {p𝑖,𝑠}𝐽𝑖=1
and their pairedHR patches {p𝑖}𝐽𝑖=1, we can learn the function𝑓 in a weighted-least-square formulation:

min
𝑓(p
𝑠
),𝑓(p

𝑠
)

𝐽∑
𝑖=1

p𝑖 − p − 𝑓 (p𝑠) ∘ (p𝑖,𝑠 − p𝑠) − 12𝑓 (p𝑠)
∘ (p𝑖,𝑠 − p𝑠) ∘ (p𝑖,𝑠 − p𝑠)

2

2
𝑤 (p𝑖,𝑠 − p𝑠) ,

(5)

where 𝑤(p𝑖,𝑠 − p𝑠) measures the similarity between patches
p𝑖,𝑠 and p𝑠. To effectively characterize the contained brain
structures, we represent each patch by its region covariance
descriptor [2]:

Cp𝑠 = 1𝑃
𝑃∑
𝑖=1

(f𝑖 − 𝜇) (f𝑖 − 𝜇)𝑇 , (6)
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Figure 2: Example of nonlocal self-similarity property inside one single image and its nearby slices. The pink square region represents the
reference patch and the green square regions are the similar patch found in the same image and the nearby images.

where 𝑃 denotes a total number of pixels in patch p𝑠, f𝑖 is a
feature point of each voxel inside p𝑠, and 𝜇 is the mean value
of overall feature points. Regarding the feature point, simple
visual features such as intensity and spatial information are
adopted in our method, and f𝑖 is hence calculated as

f𝑖 = [Ι𝑖, 𝜕I𝑖𝜕𝑥 , 𝜕I𝑖𝜕𝑦 ]
𝑇 , (7)

where I𝑖 is the intensity value of voxel i and 𝜕/𝜕𝑥 and 𝜕/𝜕𝑦,
respectively, represent the gradients along horizontal and
vertical directions. Note that covariance matrices do not lie
in Euclidean space; thus a metric proposed in [18] is utilized
to compute the similarity between two covariance matrices:

𝑤 (p𝑖,𝑠 − p𝑠) = exp(−∑𝑁𝑗=1 ln2𝜆𝑗 (Cp𝑖,𝑠,Cp𝑠)2 ) , (8)

where {𝜆𝑗(Cp𝑖,𝑠,Cp𝑠)}, 𝑗 = 1, . . . , 𝑁, are the generalized
eigenvalues of Cp𝑖,𝑠 and Cp𝑠, respectively, and 𝑁 equals the
number of columns in patch p𝑠.

Returning to the optimization problem in (5), it is
obvious that this formula should be overdetermined to obtain
reliable and valid solutions. More specifically, the number of
equations should exceed the number of unknown derivative
coefficients which is related to the size of p𝑠. For instance,
for a 5 × 5 patch p𝑠, the total number of coefficients in 𝑓(⋅)
and 𝑓(⋅) is 50, which implies that more than 50 similar
patches of p𝑠 should be found to obtain a solid estimation.
Obviously, finding such a large number of similar patches
inside one single image is impossible. But, fortunately, due
to the nature of MR images, similar anatomical features still
occur in nearbyMR slices (see Figure 2). In this sense, similar
patches p𝑖,𝑠 in the adjacent image slice are also exploited to𝑓(⋅) and 𝑓(⋅) estimation.

By denoting

y =
[[[[[[
[

p1,𝑠 − p𝑠
p2,𝑠 − p𝑠...
p𝐽,𝑠 − p𝑠

]]]]]]
]
,

W =
[[[[[[
[

diag (𝑤 (p1,𝑠 − p𝑠) × 1)
diag (𝑤 (p2,𝑠 − p𝑠) × 1)...
diag (𝑤 (p𝐽,𝑠 − p𝑠) × 1)

]]]]]]
]
,

X

=
[[[[[[
[

diag (p1,𝑠 − p𝑠) diag ((p1,𝑠 − p𝑠) ∘ (p1,𝑠 − p𝑠))
diag (p2,𝑠 − p𝑠) diag ((p2,𝑠 − p𝑠) ∘ (p2,𝑠 − p𝑠))... ...
diag (p𝐽,𝑠 − p𝑠) diag ((p𝐽,𝑠 − p𝑠) ∘ (p𝐽,𝑠 − p𝑠))

]]]]]]
]
,

(9)

with 1 denoting a column vector with all elements equal
to one and diag(z) defining a diagonal matrix, (5) is then
expressed in the following matrix form:

min
b
y − Xb2W , (10)

where

b = [𝑓 (p𝑠) , 𝑓 (p𝑠)]𝑇 . (11)

Using weighted-square estimation, a closed-form solution of
(10) is obtained: b̂ = (X𝑇WX)−1X𝑇Wy.

Once 𝑓(⋅) and 𝑓(⋅) are estimated, they are added back
to (3) to obtain the HR patch q. In the same way, the whole
HR image is reconstructed patch-wisely, where estimators
on overlapped regions are simply averaged. Next, a mean-
correction step as advocated in [2, 5, 11] is applied to ensure
the consistency between a reconstructed HR image and the
original LR input.

An overview is presented in Algorithm 1.

3. Experiments and Discussions

The proposed framework was evaluated using some state-
of-the-art algorithms in both synthetic and clinical MRI
datasets. Nearest neighbor (NN) interpolation, nonlocal
means (NLM) based upsampling [5], and Gaussian process
regression (GPR) based upsampling [19] were employed for
comparison. The implementation of NLM and GPR was
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Input: Low-resolution image Y
Output: High-resolution image Z
Initialize: Obtain a denoised version of Y by using a denoising method, up-scale Y in the slice-

selection direction using bicubic interpolation, denote the outcome as I.
Mapping function estimation:
(1) For each image of I in the slice-selection direction, generate its smoothed version I𝑠 and

interpolated version Z𝑠, respectively.
(2) Partition I and I𝑠 into 𝑠 × 𝑠 image patches in raster-scan order, so as to construct the LR-HR

training set {p𝑠, p}; partition Z𝑠 into 𝑠 × 𝑠 image patches to construct the LR test patch set {q𝑠}.
(3) For each {p𝑠, p}, estimate the derivatives of the mapping function using Eqs. (6)–(10).
HR image estimate:
(1) For each patch q𝑠, search its most similar patch p𝑠 in the LR-HR training set.
(2) Estimate q𝑠’s corresponding HR patch q using Eq. (3).
(3) Generate the HR image Z by merging all qs.
(4) Correct Z by enforcing the consistency between Z and I.

Algorithm 1: Regression-based MR image upsampling.

made available by their authors, and the free parameters
inside these two approaches were selected based on authors’
suggestion. Note that the NLM method belongs to a zeroth-
order estimation, and an iterative process is employed to
refine interpolation weights (also zero-order-based). The pro
posed method, however, belongs to second-order estimation
and does not need iterative procedures for desirable effects.
Therefore, to make a fair comparison between the proposed
method and NLM method, the components other than
derivative order should be the same. In this way, improved
performance of our method can be solely attributed to the
advocated second-order regression scheme. Hence, the num-
bers of iterations in both NLM and our method were chosen
to be the same. Additionally, we reported and compared
the output from the first iteration of NLM in the following
experiments, with the aim of avoiding other complex factors
introduced from more iterations such as cumulative errors.

Three open-access datasets, namely, BrainWeb [20],
National Alliance for Medical Image Computing (NAMIC,
real images, http://hdl.handle.net/1926/1687), and Human
ConnectomeProject (HCP, real images, https://db.humancon-
nectome.org/), were selected for comparison. In addition,
a real clinical MRI dataset was also used for evaluating
the adaptability of the proposed framework in a realistic
scenario, where subjects gave informed consent to partic-
ipate, and recordings were used according to the study
purpose.

In this paper, LR volumes were generated in two steps:
blurring and downsampling. In MRI, blurring along the slice
direction is related to the radio frequency pulse and gradient
waveform, and it generally accepted the fact that such blur
kernel could be well approximated by a Gaussian function
in three dimensions [1]. Therefore, in this paper, the blurred
image was generated by convolving the HR image with a
3D Gaussian kernel with a standard deviation of 0.8 (in
voxel space) along dimensions. Next, the blurred images were
downsampled to lower voxel resolutions, such as 2 × 2 ×
2mm3 and 1 × 1 × 6mm3.

Three quality measures were used to evaluate the per-
formance of different upsampling methods. The first was

Peak Signal to Noise Ratio (PSNR), which is a noise level
measurement commonly used in image processing. The
second metric was Structural Similarity (SSIM) [21], which is
ameasurement assessing the quality perception of the human
visual system. The third metric is mutual information (MI),
which measures dependence between two images. A high
PSNR score indicates that a resultant image contains little
distortion and few noises; a SSIM value near 1 and a high
MI value imply that the reconstructed image is close to the
ground truth.

3.1. Parameter Settings. The proposed high-order regression-
based method has four free parameters. These are the radius(V) of the search region, the radius (𝑟) of the 2D patch used to
learn themapping function between different resolutions, the
number (𝑝) of the neighboring slices used to find the similar
2D patches p𝑠, and the number (𝐽) of the most similar 2D
patches from each slice used to learn the mapping function’s
second-order derivative. Parameters v and r were set to 11
and 2, respectively, and 5 image slices were used to find the
similar patches. For parameter 𝐽, 𝑝× 𝐽 should be higher than(2𝑟+1)×(2𝑟+1)×2 to ensure a valid second-order derivative
prediction. Hence, in this paper, 𝐽 was set to 11. In addition,
the interpolated image Z𝑠 was generated from the input LR
image by upsampling with bicubic interpolation. Regarding
the blurred image I𝑠, it was generated by downsampling
and upsampling the denoised LR image Ỹ with bilinear
interpolation.

3.2. Phantom Data Evaluation

3.2.1. BrainWeb Dataset. For this experiment, five isotropic
T1 volumes (voxel resolution 1mm3, 180 × 216 × 180 voxels),
corrupted by Rician noise at different noise levels (0%, 3%,
5%, 7%, and 9% of the maximum intensity), were initially
downloaded from BrainWeb phantom.These five T1 volumes
were used as the HR volumes in the following experiments.
Each of these five volumes was blurred and downsampled to
2 × 2 × 2mm3 or 3 × 3 × 3mm3 resolutions. To evaluate

http://hdl.handle.net/1926/1687
https://db.humanconnectome.org/
https://db.humanconnectome.org/
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(a) Original data (b) LR data

(c) NN (d) GPR

(e) NLM (f) The proposed method

Figure 3: Upsampling results (1 × 1 × 1mm3) for simulated data with 3 × 3 × 3mm3 on BrainWeb.

the effectiveness of the proposed method, simulated LR
images were upsampled to 1mm isotropic resolution using
the proposed and compared upsampling methods.

Figure 3 demonstrates the upsampling results using the
LR images generated from noise-free T1 volumes, where a

typical slice is shown at coronal, sagittal, and axial views.
Note that the sizes of these resultant images are reduced
due to space limitations. For this reason, we also provided
some close-up zones in the sagittal view for a better visual
comparison. As can be observed from Figures 3(c)–3(f),
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Figure 4: Upsampling results on simulated data (2 × 2 × 2mm3) with different noise levels. (a) PSNR results. (b) SSIM results. (c) MI results.

a simple NN interpolation method introduces ringing and
jaggy artifacts, while GPR, NLM, and the proposed method
all effectively produce visually superior performance. This
is because the latter three methods have a greater flexibility
in modeling the underlying image data. However, using a
zeroth-order estimation, GPR method and NLM method
tend to produce ghost-like edges (see Figures 3(d) and
3(e)), whereas no obvious artifacts were observed from the
proposed method.This phenomenon implies that employing
the second-order regression strategy is a promising option for
generating high-frequency details.

Further, experiments on noisy LR images were also
conducted to characterize hownoise affects the image upsam-
pling algorithms. Since the Gaussian regression in GPR can
somewhat reduce image noise, this method can be directly
performed on noisy data. Regarding the other upsampling

methods like NLM and ours, noisy data was first filtered
using APW-NLM method [22] that employs a strategy of
adaptive bandwidth and patch size. Subsequently, all SR
methods except GPR method were applied to these filtered
data. The upsampled HR images were then compared with
the original noise-free volume. Figure 4 presents PSNR,
SSIM, and MI measurements for all methods on LR images
with a slice thickness of 2mm while changing noise level
to 0%, 3%, 5%, 7%, and 9%. It can be clearly observed
from Figure 4 that, at the vast majority of noise levels, the
proposed method outperforms the other algorithms under
comparisons. In addition, we also observe that the PSNR
and SSIM performance gaps between the proposed method
and the compared algorithms increase further when noise
level is increased. Moreover, it is interesting to note that
when LR input image is noise-free, NLM method provides
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(a) Original image (b) LR image

(c) NN (d) GPR

(e) NLM (f) The proposed method

Figure 5: Upsampling results for simulated data on NAMIC. Results of LR data with 1 × 1 × 2mm3 resolution upsampled to 1 × 1 × 1mm3.

a PSNR gain of 1 dB over GPR method, which demonstrates
the effectiveness of NLM method. However, when LR input
images become noisy, for example, with a noise level at 9%,
NLM method provides an inferior quantitative performance
in terms of PSNR and SSIM. In other words, the performance
gap between NLM and GPR decreases with an increasing
noise level, which implies the potential of simultaneous
interpolation and denoising in case of noisy images.

3.2.2. NAMIC Dataset. The NAMIC dataset included 10
schizophrenic patients and 10 normal controls from various

imagingmodalities. In this experiment, we randomly selected
one example of T1W volumes from these twenty T1W sources
with 1mm isotropic resolution (matrix size: 256 × 256 ×
176) as the initial HR images. LR images were generated
by 3D Gaussian blurring and then downsampled to 1 × 1× 2mm3, 1 × 1 × 3mm3, 1 × 1 × 5mm3, and 1 × 1 ×
6mm3.The downsampled T1W images were then upsampled
using the proposed method and the compared methods.
Table 1 illustrates the corresponding PSNR, SSIM, and MI
values of these upsampling results, and Figure 5 presents an
example of the upsampling result of an axial view for 1 × 1 ×
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Figure 6: Boxplot of PSNR, SSIM, and MI results for reconstructing T1W LR images from the HCP database using different methods. ∗
denotes the outlier.

Table 1: PSNR, SSIM, and MI values for different methods on different slice thickness (PSNR/SSIM/MI).

1 × 1 × 2mm3 1 × 1 × 3mm3 1 × 1 × 5mm3 1 × 1 × 6mm3

NN 25.62/0.81/1.59 24.09/0.78/1.44 21.78/0.72/1.21 21.68/0.69/1.11
GPR 25.80/0.83/1.61 24.12/0.82/1.45 21.89/0.74/1.22 21.78/0.72/1.13
NLM 26.43/0.87/1.61 24.74/0.82/1.47 22.56/0.75/1.29 22.30/0.72/1.16
Ours 26.56/0.87/1.62 24.96/0.83/1.48 23.62/0.76/1.29 22.90/0.73/1.18

2mm3 upsampling, together with a magnified zone for better
visualization.

From Table 1, we see that the proposed method gives
superior performance on all the anisotropic low resolutions.
Regarding Figure 5, the NN method still produces jagged
edges. Although the GPR method provides sharper edges
than the NLM method and the proposed method, it tends
to cause overshoot artifacts along edges. In contrast, both
NLMmethod and the proposed method demonstrate robust
performance. Nevertheless, as clearly illustrated in the mag-
nified region, the proposed method produces more vivid
details than the NLM method; that is, the laminar struc-
tures are perceptually salient. This advantage can be mainly
attributed to the high-order regression technique employed
in the proposed method.

3.2.3. HCP Dataset. The HCP dataset contains an enormous
amount of multimodal data (such as fMRI and structural
MRI), including T1W data types that were acquired on a
Siemens 3 T scanner [TE = 2.14ms, TR = 2400ms, and
TI = 1000ms] and processed by a structural preprocessing
pipeline. In our experiment, five subjects were randomly
selected from this dataset, and each one had a T1W volume
(matrix size: 260 × 311 × 260) with 1mm isotropic voxel size.
To generate LR images, the T1W volume was blurred and
downsampled to a resolution of 2 × 2 × 2mm3.

PSNR, SSIM, and MI values for these five test groups
using different upsampling methods were shown as boxplots
in Figure 6.The bottom and top of the boxes are the 25th and
75th percentiles, the bold band near the middle of the box is
the median, and the whiskers extending from each box show
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(a) (b)

(c) (d)

Figure 7: Comparison of upsampling results on real clinical data. (a) LR image slice. (b)–(d) are image upsampling results fromGPRmethod,
NLMmethod, and the proposed method, respectively.

the whole of the rest of the data. As shown by boxplots, the
proposed method significantly outperforms all comparison
methods.

3.3. Real Data Evaluation. In addition, we further applied our
method directly to some real clinical MRI images which were
obtained by a GE MR750 scanner. In this case, an LR T1W
volume (256 × 256 × 78 voxels) with a voxel resolution of 2× 2 × 2mm3 was obtained. In our experiment, these LR T1W
data were upsampled to 1mm3 using the NLM method, the
GPR method, and the proposed method. The reconstructed
results were visually compared in Figure 7. It can be clearly
seen that the upsampled volume using the proposed method
is significantly less blurry and contains sharper edges; that is,
cerebellar white matter is more salient.

3.4. Effects of Parameters. The proposed method has four
tunable parameters: the radius (V) of the search region, the
radius (𝑟) of the 2D patch, the number (𝑝) of neighboring
slices, and the number (𝐽) of the most similar 2D patches

from each slice. Intuitively, large V helps to find more similar
patches that can be used in derivative estimation. Large 𝑟
tends to blur image details for edge regions, but too small 𝑟
may cause annoying artifacts in smooth areas. Parameters 𝑝
and 𝐽 determine the number of weighted-square equations in
(5), thereby influencing the accuracy of derivative estimation.
To investigate how these four parameters affect upsampling
performance, we take a 2 × 2 × 2mm3 LR volume (with
no noise) generated by BrainWeb as example to probe the
selection. Figure 8 shows the changing results of PSNR and
SSIM varying with different parameter settings.

Regarding patch size radius, using patch size of 7 × 7
yields the highest PSNR value. Nevertheless, this patch size
greatly increases computational load, the running time of
which is ten times more than using a 3 × 3 patch. As for
the search region size, we see from Figure 8(b) that a larger
search region leads to a higher PSNR value, which makes
sense since patches with higher similarity are more likely to
be found within a large search region. Regarding leveraged
neighboring slice and the number of patches in each slice,



Computational and Mathematical Methods in Medicine 11

PS
N

R 
(d

B)

28.4
1 2 3 4

28.45

28.5

28.55

28.6

28.65

28.7

Different patch size radius r

(a)

8 11 14 17

PS
N

R 
(d

B)

28.48

28.5

28.52

28.54

28.56

28.58

28.6

28.62

28.64

28.66

28.68

Different search region radius �

(b)

PS
N

R 
(d

B)

28.4

28.45

28.5

28.55

28.6

Different neighboring slice p and similar patch J

p = 3, J = 17p = 4, J = 13p = 5, J = 11p = 6, J = 9

(c)

Figure 8: Performance comparison with different parameter settings. (a) Patch size radius, (b) search region radius, and (c) neighboring slice
and number of similar patches in each slice. Note that, for each changing parameter, the other three parameters are fixed.

two interesting phenomena are observed. (1) Using a greater
number of neighboring slices reduces PSNR value. This is
because the image slice that is not near the targetmaynot have
the same geometric layout, and thereby the “similar” patches
found in this slicemay introduce large errors in the derivative
estimation. (2) Finding a greater number of similar patches in
one slice reduces PSNR value as well. This is because if more
patches are exploited inside one image, some of them may
not resemble the target. Therefore, to balance reconstruction
quality and time efficiency, from the above empirical study, it
is proven that 𝑟 = 2, V = 11, 𝑝 = 5, and 𝐽 = 11may be proper
for MR images in our upsampling model.

4. Conclusion

Anew high-order regression-based frameworkwas proposed
in this paper for a high quality MR image upsampling

process. Prompted by several recently popular interpolation-
based image upsampling methods in MR imaging [2, 5–
11], the proposed method first concludes that these methods
all belonged to a zeroth-order regression framework, which
would jeopardize the recovery of image’s fine details such
as the laminar shape of brain structures. Regarding this,
the proposed method extends the traditional zeroth-order
framework into the second order by applying a Taylor
expansion on each MR image. Then, in order to obtain
a robust second-order regression function estimation, not
only self-similarity property in a single MR image but also
intrasimilarity property in adjacent MR slices is employed.
Furthermore, unlike traditional interpolation-basedmethods
which estimate the HR volumes voxel-by-voxel, the proposed
method was performed in patches, which enforces region
conformity in the reconstructed results.

The proposed method has been demonstrated, using
synthetic and real data, to outperform both NLM and GPR
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methods, the state-of-the-art image upsampling methods,
visually and quantitatively. Experiments on BrainWeb images
show that, even under an ill-posed scenario (e.g., for 3x
upsampling) or a noisy image (e.g., with the noise level
at 9% of the maximum intensity), our method was able
to reconstruct vivid details without introducing obvious
artifacts. Moreover, the superior experimental results on the
NAMIC, HCP, and clinical data implied that the proposed
method can be applied to real applications.

While in this investigation we are only focused on noise-
free brain MR images, the proposed method relies on a
predenoising step to deal with noisy MR images. However,
from the experimental results for the GPR method and the
NLM method shown in Figure 4, we can see that a simulta-
neous interpolation and denoising eventually outperform an
asynchronous framework.This performance can be expected
because the extra denoising step would inevitably weaken
image’s details. To this end, we would like to investigate a
combination of interpolation and denoising in our future
work, which, we believe, would further improve the image’s
upsampling result.
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