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Background: Kidney renal clear cell carcinoma (KIRC) is considered an immunogenic tumor. Cuproptosis is 
a newly identified copper-induced regulated cell death that relies on mitochondria respiration. Long noncoding 
RNAs (lncRNAs) have emerged as significant players in tumorigenesis and metastasis. However, there is a huge 
knowledge gap on the prognostic role of cuproptosis-related lncRNAs in KIRC. And, the clinical value of them 
is still unknown. Here, we aimed to develop a cuproptosis-related lncRNA prognostic signature in KIRC.
Methods: The messenger RNA (mRNA)/lncRNA expression profiles and the clinical information 
including age, gender, tumor stage, grade, and overall survival (OS) were acquired from The Cancer 
Genome Atlas (TCGA) database. The included KIRC samples were further randomly assigned into training 
(n=258) or testing (n=257) data sets. We performed Pearson correlation analysis to identify the cuproptosis-
related lncRNAs and then constructed the prognostic signature using Cox regression analysis and LASSO 
algorithm. Subsequently, Kaplan-Meier survival analysis, a nomogram, and receiver operating characteristic 
(ROC) curve were performed to assess the predictive performance of the signature. Moreover, the immune 
characteristics and drug sensitivity related to the signature were also explored.
Results: The signature comprised 7 cuproptosis-related lncRNAs. The patients with a low-risk score had 
superior OS compared with those with a high-risk score. The survival rates of the high- and low-risk groups 
were 44.96% and 83.72% (P<0.001). The area under the curve (AUC) value for 1-, 3-, 5-year survival rate 
reached 0.814, 0.762 and 0.825, respectively. In addition, a nomogram was also generated; the AUC was 0.785 
for risk score, higher than that for age (0.593), gender (0.489), grade (0.679), and stage (0.721). The high-
risk group had more enriched immune- and tumor-related genes. Patients with low-risk scores were more 
sensitive to immunotherapy and the small molecular drugs GSK1904529A, tipifarnib, BX-912, FR-180204, 
and GSK1070916. Meanwhile, the high-risk group tended to be more sensitive to pyrimethamine, MS-275, 
and CGP-60474. 
Conclusions: Collectively, we constructed a cuproptosis-related lncRNA prognostic signature with a 
higher predictive accuracy compared to multiple clinicopathological parameters, which may provide vital 
guidance for therapeutic strategies in KIRC. Combination of more prognostic biomarkers may further 
improve the accuracy.
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Introduction

Renal cell carcinoma (RCC) is a common deadly disease 
which comprises a number of subtypes characterized 
by different genetic drivers (1). Kidney renal clear cell 
carcinoma (KIRC) remains the most prevalent histological 
type of RCC and accounts for more than 70% of cases (2,3). 

Over the past decade, insights in the determinants of 
KIRC ontogeny and heterogeneity as well as lethality have 
led to the development of robust mechanistic pathways 
that recapitulate tumor ontogeny and progression, and 
are creating subcategories of KIRC patients that may 
benefit from subtype-specific therapeutic interventions (4).  
The lack of sensitivity to chemotherapy and radiation 
therapy prompted research efforts into novel treatment 
options. Although KIRC is characterized by the genetic 
mutations-induced hypoxia signaling pathway, which results 
in heightened angiogenesis, metabolic dysregulation, 
deleterious tumor microenvironmental (TME) crosstalk, 
and intra-tumoral heterogeneity, the specific genetic 

variances identified have contributed to therapeutic 
innovation and improved the prognosis of KIRC patients (5).  
The treatment of KIRC has transitioned from a non-
specific immune approach, to targeted therapy, and now 
to novel therapeutic agents, especially immune-checkpoint 
inhibitors (ICIs), based on significant activity in patients 
with advanced KIRC (6). Despite these advances, the 
potential biomarkers for treatment efficacy, candidate 
patients, and the sequencing and optimal combination 
of agents remain unavailable (7). Therefore, new early 
diagnostic biomarkers and treatment targets are still needed 
to improve the prognosis of cancer patients.

Traditionally, the prognostic prediction in KIRC patients 
based on the pathologic and clinical factors, including 
tumor-node-metastasis (TNM) stage, grade, Eastern 
Cooperative Oncology Group (ECOG) performance status, 
and absence or presence of necrosis (1). Due to tumor 
heterogeneity, however, the survival status of patients 
will be various even in the same stage. The bioinformatic 
analysis of RNA-sequencing and clinical data have provided 
novel insights for the mechanistic studies in tumorigenesis 
and development. Although many prognostic signatures 
have been developed based on different hallmarks of 
cancer in KIRC, the limitations involved in them hinder 
the further application in clinical practice. To explore the 
more favorable signature for use in clinical practice, novel 
signatures associated with the new hallmark of cancers 
required further study. 

Previous studies have shown that unbalanced copper 
(Cu) homeostasis contributed to tumor growth, resulting 
in irreversible damage (8,9). Cu can cause multiple 
types of cell death, including autophagy and apoptosis 
based on different mechanisms, including proteasome 
inhibition, reactive oxygen species accumulation, and anti-
angiogenesis. Hence, Cu ionophores have shown promising 
potential in the field of tumor treatment and have attracted 
tremendous attention. Long noncoding RNAs (lncRNAs) 
have been characterized by their multiple regulatory roles 
throughout tumorigenesis and metastasis over the past 
decade. Targeted therapy against lncRNAs is an attractive 
strategy for the treatment of many diseases, including 
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Highlight box

Key findings 
• We constructed a cuproptosis-related long noncoding RNAs 

(lncRNAs) prognostic signature with a higher predictive accuracy 
compared to multiple clinicopathological parameters, which may 
provide vital guidance for therapeutic strategies in kidney renal 
clear cell carcinoma (KIRC).

What is known and what is new? 
• Cuproptosis is a newly identified copper-induced regulated cell 

death that relies on mitochondria respiration. LncRNAs have 
emerged as significant players in tumorigenesis and metastasis. 
However, the clinical value of cuproptosis-related lncRNAs in 
KIRC is still unknown. Here, we developed a novel cuproptosis-
related lncRNA prognostic signature in KIRC.

What is the implication, and what should change now?
• We identified the important role of cuproptosis-related lncRNAs in 

KIRC and constructed a prognostic signature, which might serve 
as a promising biomarker for predicting the prognosis of KIRC 
patients. While, these findings were mainly based on the integrated 
bioinformatical analysis, further experimental verification is needed.
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cancers (10). Substantial efforts have been made towards 
the clinical application of RNA-target therapeutics, mainly 
including antisense oligonucleotides and small interfering 
RNAs, some of which have been approved by the US Food 
and Drug Administration (FDA). However, there is a huge 
knowledge gap on the prognostic role of cuproptosis-
related lncRNAs in KIRC. And, the clinical value of them is 
still unknown.

In the study, we comprehensively analyzed cuproptosis-
related lncRNAs in the prognostic and immune landscape of 
KIRC and conducted a risk prognostic signature, which has a 
higher predictive accuracy than traditional clinical variables, 
and provide a view to promote the understanding of KIRC 
biology and develop promising emerging therapeutic 

approaches. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
atm.amegroups.com/article/view/10.21037/atm-22-5204/rc).

Methods 

Clinical specimens and study design

The flowchart of this study design is shown in Figure 1. 
The RNA sequencing profiles, as well as the relevant 
clinical features, including age, American Joint Committee 
on Cancer (AJCC) stage, TNM stage, grade, gender, and 
survival status, of 537 KIRC patients and 72 normal controls 
were retrieved from The Cancer Genome Atlas (TCGA) 

Immune function

Immune cell infiltration

Immune checkpoints

TIDE score

Immunotherapy responsePotential drug sensitivity

19 cuproptosis-related genes

16,876 lncRNAs were extracted19,938 genes were extracted

GO function annotation

KEGG Pathway analysis

Stratification analysis of the risk signature

19 cuproptosis-related genes

Independence analysis of risk signature

Differentially expressed genes between  
high- and low- risk groups

Seven cuproptosis-related lncRNAs were 
identified to build the risk signature

1,036 cuproptosis-related lncRNAs

KIRC RNA-seq data were retrieved from TCGA

Figure 1 The flowchart of this study. KIRC, kidney renal clear cell carcinoma; TCGA, The Cancer Genome Atlas; GO, Gene Ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; TIDE, tumor immune dysfunction and exclusion.

https://atm.amegroups.com/article/view/10.21037/atm-22-5204/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-5204/rc
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database on 2 June 2022. In total, 515 patients with RNA 
sequencing profiles and overall survival (OS) were included 
in this study. Subsequently, the RNA-sequencing data were 
measured and preprocessed using the method previously 
described (11). A total of 16,876 lncRNAs were identified. 
The mRNA expression profiles of 19 cuproptosis-related 
genes (SLC31A1, PDHA1, PDHB, NLRP3, NFE2L2, MTF1, 
LIPT2, LIPT1, LIAS, GLS, GCSH, FDX1, DLST, DLD, 
DLAT, DBT, CDKN2A, ATP7B, and ATP7A) were obtained 
from the previous study. The correlation between these 
lncRNAs and 19 cuproptosis-related genes was evaluated 
through Pearson correlation analysis, and 1,036 cuproptosis-
related lncRNAs were subsequently identified. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Construction and validation of the cuproptosis-related 
lncRNA prognostic signature

Firstly, 515 patients were randomly assigned to a training 
dataset (n=258) and a testing dataset (n=257). The baseline 
characteristics of these patients are summarized in Table 1. 

The training cohort was employed to construct the risk 
prognostic signature, which was validated with the testing 
cohort. Univariate analysis was performed to identify 
the cuproptosis-related lncRNAs notably associated 
with survival outcome in the training cohort using the R 
package “survival” (P<0.01). Subsequently, least absolute 
shrinkage and selection operator (LASSO) regression 
analysis with the 10-fold cross-check was used to remove 
the prognosis-related lncRNAs obviously related to each 
other to avoid overfitting using the R package “glmnet”. 
Finally, 7 cuproptosis-related lncRNAs significantly 
related to prognosis were identified to establish a risk 
signature based on the RNA expression and coefficient. 
The risk score of each sample was calculated by the 
following format: 

n

1i
RiskScore Expi iβ

=
= ×∑  [1]

In which n, Expi, and βi respectively refer to the number 
of lncRNAs in the signature, lncRNA expression level, and 
regression coefficient of each lncRNA.

Then, the samples were assigned to a low-risk group 
and a high-risk group with the cut-off value being median 
risk score. Kaplan–Meier curves were drawn to evaluate the 
survival outcomes of the 2 risk groups using the R package 
“survival”. Additionally, a receiver operating characteristic 
(ROC) curve was drawn to estimate the 1-, 3-, and 5-year 

OS of KIRC patients using the R package “ROC”.

Construction of a prognostic nomogram

Univariate analysis was conducted to evaluate the predictive 
ability of age, gender, grade, and AJCC stage for risk score 
and other clinicopathological features. Multivariate analysis 
was used to identify the independent prognostic role of 
them. Then, a nomogram was constructed with risk score 
and traditional clinical features related to prognosis via the 
stepwise regression model to estimate the 1-, 3-, and 5-year 
OS of KIRC patients. Afterward, calibration curves and the 
concordance index were performed to estimate the accuracy 
and reliability of the nomogram. Additionally, ROC 
curves were drawn and the areas under the curve (AUCs) 
were applied to assess the accuracy of the risk signature 
compared to other clinicopathological features, AUC >0.7 
was considered to be effective.

Functional enrichment analysis

To further explore the underlying biological processes and 
cellular pathways of this prognosis relevance, Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses were used in the R package “clusterProfiler” 
based on the differentially expressed genes (DEGs) between 
the 2 risk groups with |log2FC| ≥1, FDR <0.05. 

Evaluation of tumor immune dysfunction and exclusion 
(TIDE) between the two risk groups

The tumor immune dysfunction and exclusion (TIDE) 
algorithm was performed to evaluate the response to ICIs 
response in KIRC. TIDE is the computational approach 
to model 2 major mechanisms in tumor immune evasion, 
including the induction of T cell dysfunction with high 
cytotoxic T lymphocyte (CTL) infiltration and the 
prevention of T cell infiltration with low CTL levels (12).

Potential new target drug candidates for KIRC

We explored the response to small molecule inhibitors for 
KIRC patients of the 2 risk groups based on the Genomics 
of Drug Sensitivity in Cancer (GDSC) database. We utilized 
the half maximal inhibitory concentration (IC50) calculated 
by R package “pRRophetic” to assess the response to small 
molecule inhibitors, and obtained the potential new target 
candidates for KIRC patients. 
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Table 1 Clinical characteristics of KIRC patients in training and testing datasets

Covariates Type Total, n (%)
Group, n (%)

P value
Testing Training

Age (years) 0.8041

≤65 341 (66.21) 172 (66.93) 169 (65.5)

>65 174 (33.79) 85 (33.07) 89 (34.5)  

Gender 0.8279

Female 177 (34.37) 90 (35.02) 87 (33.72)

Male 338 (65.63) 167 (64.98) 171 (66.28)  

Grade 0.5697

G1 12 (2.33) 8 (3.11) 4 (1.55)

G2 220 (42.72) 112 (43.58) 108 (41.86)  

G3 201 (39.03) 95 (36.96) 106 (41.09)  

G4 74 (14.37) 36 (14.01) 38 (14.73)  

Unknown 8 (1.55) 6 (2.33) 2 (0.78)  

Tumor stage 0.5534

I 256 (49.71) 134 (52.14) 122 (47.29)

II 56 (10.87) 27 (10.51) 29 (11.24)  

III 117 (22.72) 58 (22.57) 59 (22.87)  

IV 83 (16.12) 36 (14.01) 47 (18.22)  

Unknown 3 (0.58) 2 (0.78) 1 (0.39)  

Stage

T 0.6907

T1 262 (50.87) 136 (52.92) 126 (48.84)

T2 68 (13.2) 33 (12.84) 35 (13.57)  

T3 174 (33.79) 84 (32.68) 90 (34.88)  

T4 11 (2.14) 4 (1.56) 7 (2.71)  

M 0.5236

M0 408 (79.22) 205 (79.77) 203 (78.68)

M1 79 (15.34) 36 (14.01) 43 (16.67)  

Unknown 28 (5.44) 16 (6.23) 12 (4.65)  

N 0.2465

N0 230 (44.66) 114 (44.36) 116 (44.96)

N1 16 (3.11) 5 (1.95) 11 (4.26)  

Unknown 269 (52.23) 138 (53.7) 131 (50.78)  
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Statistical analysis

We performed all the statistical analysis in R software 
(version 4.0.2; The R Foundation for Statistical Computing, 
Vienna, Austria). Kaplan-Meier analysis was used to evaluate 
the survival status. Univariate, LASSO, and multivariate 
analyses were performed to assess the prognostic value. 
The AUC was applied to assess the accuracy of the risk 
signature. A two-sided P value <0.05 indicated statistical 
significance.

Results

Construction of a cuproptosis-related lncRNA prognostic 
signature

Univariate Cox regression analysis was used to identify the 
cuproptosis-related lncRNAs significantly associated with 
the outcome of the patients with KIRC in the training 

cohort (Figure 2A). Subsequently, LASSO Cox regression 
analysis was used to eliminate the candidate lncRNAs, and 
the included lncRNAs were further evaluated through 
multivariate analysis (Figure 2B). Finally, 7 cuproptosis-
related lncRNAs with predictive value were identified to 
construct the prognostic risk signature with the normalized 
expression level of the genes and their regression 
coefficients. Among them, OVCH1-AS1, SBF2-AS1, and 
AC002451.1 were protective factors with hazard ratio 
(HR) <1, whereas CDK6-AS1, LINC02154, AC103706.1, 
and AC034236.3 were pernicious factors with HR >1  
(Figure 2C,2D). Moreover, Kaplan-Meier analysis was 
performed to assess the prognostic role of these 7 
lncRNAs, and revealed that lower expression of OVCH1-
AS1, SBF2-AS1, and AC002451.1 and higher expression 
levels of CDK6-AS1, LINC02154, AC103706.1, and 
AC034236.3 were related to a less favorable survival 
outcome (Figure S1).

OVCH1-AS1

CDK6-AS1

LINC02154

SBF2-AS1

AC103706.1

ACO02451.1

ACO34236.3

ATP7A
ATP7B
CDKN2A
DBT
DLAT
DLD
DLST
FDX1
GCSH
GLS
LIAS
LIPT1
LIPT2
MTF1
NFE2L2
NLRP3
PDHA1
PDHB
SLC31A1

Cuproptosis

IncRNA

Cuproptosis

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

P value Hazard ratio (95% CI)

Hazard ratio
Log (λ)

Log (λ)

C
oe

ffi
ci

en
ts

14

13

12

1.0

0.5

0.0

−0.5

−1.0

P
ar

tia
l l

ik
el

ih
oo

d 
de

vi
an

ce 0.237 (0.114-0.491)

1.736 (1.343-2.242)

1.544 (1.253-1.902)

0.449 (0.310-0.649)

2.284 (1.735-3.005)

0.257 (0.138-0.478)

2.553 (1.671-3.901)

0 1 2 3 4
−4.0 −3.5 −3.0 −2.5 −2.0

−4.0 −3.5 −3.0 −2.5 −2.0

75 47 30 18 8

88 65 54 49 38 35 30 26 22 17 16 8 6 4 2

A B

C D

Figure 2 Construction of the cuproptosis-related lncRNAs signature. (A) Correlation analysis between 19 cuproptosis-related genes and 
16,876 lncRNAs. (B) LASSO regression analysis. (C) Selection of the optimal penalty parameter for LASSO regression. (D) Univariate Cox 
regression analysis. LASSO, least absolute shrinkage and selection operator; lncRNA, long non-coding RNA.

https://cdn.amegroups.cn/static/public/ATM-22-5204-Supplementary.pdf
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Validation of the cuproptosis-related lncRNA prognostic 
signature

To evaluate the reliability and sensitivity of the prognostic 
risk-related signature, the risk scores were calculated by 
the formula in the method and the patients were assigned 
to either the low-risk group or the high-risk group based 
on the median risk score in the training cohort. The scatter 
plot indicated that the high-risk cohort was more closely 
related to a high mortality rate than the low-risk cohort, 
the survival rates were 44.96% and 83.72%, respectively 
(P<0.001) (Figure 3A,3B). In addition, the heatmap showed 
that the detrimental factors CDK6-AS1, LINC02154, 
AC103706.1, and AC034236.3 were all highly expressed in 
the high-risk cohort (Figure 3C). The Kaplan-Meier survival 
curves revealed that the KIRC patients in the high-risk 
cohort had less favorable survival outcomes than those in 
the low-risk cohort (Figure 3D). In addition, the AUC value 
for 1, 3, 5-year survival rate reached 0.814, 0.762 and 0.825, 

respectively (Figure 3E), which suggested that the signature 
had a high predictive capacity in the training dataset.

To further verify the predictive ability of the risk 
signature, we applied the same algorithm to compute the 
risk score in the testing and overall datasets (Figure 4). 
The results were similar to those in the training dataset. 
For the testing dataset, the survival rates of high- and low-
risk cohorts were 54.70% and 81.43% (P<0.001). And, 
the AUC value for 1-, 3-, 5-year survival rate was 0.724, 
0.746, and 0.743, respectively. Similarly, for the entire 
dataset, the survival rates of high- and low-risk cohorts 
were 49.59% and 82.53% (P<0.001). And, the AUC value 
for 1-, 3-, 5-year survival rate was 0.772, 0.753, and 0.785, 
respectively. The above results suggested that the high-risk 
score indicates an unfavorable prognosis, accurately.

Construction and evaluation of a predictive nomogram

To evaluate the prognostic value of the cuproptosis-
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Figure 4 Validation of the cuproptosis-related lncRNA prognostic signature in the testing and entire group. (A) Risk score rank. (B) Survival 
status map. (C) Expression heatmap of 7 signature lncRNAs. (D) Survival curve. (E) ROC curve. lncRNA, long non-coding RNA; ROC, 
receiver operating characteristic.
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related signature, univariate and multivariate analyses were 
performed. The results demonstrated that grade, stage, and 
risk score were prognostic indicators in KIRC (Figure 5A). 
After adjusting for other prognostic factors (age, grade, and 
stage), the signature remained a significant independent 
prognostic factor (Figure 5B). Moreover, we used a 
quantitative method with the risk score and traditional 
clinical variables to construct a nomogram (Figure 5C). The 

calibration plot for 1-, 3-, and 5-year survival probability 
indicated an optimal consistency between predictive and 
observation curves (Figure 5D). In addition, multivariate 
ROC curves of the risk score and clinical variables showed 
that the AUC value for risk score was 0.785 higher than 
that for age (0.593), gender (0.489), grade (0.679), and stage 
(0.721) (Figure 5E). Taken together, the results indicated 
that the signature has promising clinical applicability. 
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Functional enrichment analyses based on the risk signature

Principal component analysis (PCA) was used to explore 
the heterogeneity between the 2 risk cohorts to validate the 
stratification ability of the signature based on signature-
related lncRNAs, all genes, cuproptosis-related lncRNAs, and 

cuproptosis-related mRNAs. As shown in Figure 6A-6D, the 
2 risk cohorts showed diverse distribution directions based on 
our signature, which validated the efficacy of our prognostic 
signature distinguishing low- and high-risk populations.

Next, GO enrichment and KEGG pathway analyses 
were used according to the DEGs between the 2 risk groups 
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to further explore the potential biological mechanisms and 
pathways that are related to the signature. The results of 
GO analysis showed that phagocytosis, humoral immune 
response, complement activation, and B cell receptor 
signaling pathway were mainly enriched (Figure 6E). 
Likewise, KEGG analyses found that genes were mainly 
enriched in the cytokine-cytokine receptor interaction, 
transforming growth factor-beta (TGF-β), interleukin-17 
(IL-17) signaling pathway, and nuclear factor (NF)-kappa 
B (Figure 6F). These results indicated that the DEGs were 
significantly enriched in the immune-related signaling 
pathway. 

Immune status differential analysis between the two risk 
groups

To further understand the immune function of these 7 
cuproptosis-related lncRNAs, the single sample gene set 
enrichment analysis (ssGSEA) analyzed the differences in 
13 types of immune signal pathways between the 2 risk 
groups. The high-risk group exhibited activation in the 
immune pathways, including the APC co-inhibition and 
co-stimulation, immune checkpoints, cytolytic activity, 
and T cell co-inhibition and co-stimulation (Figure 7A). 
Considering the clinical application and benefits of ICIs, 
we next analyzed 22 kinds of the immune cell infiltrations 
and 38 immune checkpoints. The results revealed that the 
high-risk group had increased infiltrations of the activated 
B cell, activated dendritic cell, activated T cell, macrophage, 
MDSC cell, monocyte, and NK T cell, and decreased 
infiltrations of the immature dendritic cell and neutrophil 
compared to the low-risk group (Figure 7B). Besides, 
most immune checkpoints, such as BTLA, CD27, CD28, 
CD40LG, CD44, CD48, CD70, CD80, CD86, CD244, 
CD2000R1, CTLA4, IDO2, ICOS, LAIR1, LAG3, LGALS9, 
PDCD1(PD-1),  TMIGD2, TNFRSF9,  TNFRSF25, 
TNFRSF8, TIGIT, TNFSF14, TNFRSF18, were positively 
associated with the risk scores (Figure 7C). We were 
curious about which factors mediated by the signature 
lncRNAs play a dominant role in the immune function of 
KIRC: immunosuppressive or immune activating factors. 
Therefore, we further scored the TIDE, and the results 
showed that the high-risk group indicated a higher TIDE 
score (Figure 7D), which means that the high-risk group 
had a stronger immune escape ability. Overall, the patients 
in low-risk group tended to benefit from immunotherapy. 

Drug sensitivity differential analysis between the two risk 
groups 

In addition to immunotherapy, we also explored the 
correlation of the risk signature with the efficacy of small 
molecule inhibitors for KIRC. These results showed that 
the IC50 of pyrimethamine, MS-275, and CGP-60474 in 
the high-risk group was lower, and that of GSK1904529A, 
tipifarnib, BX-912, FR-180204, and GSK1070916 was 
higher in the high-risk group (Figure 8), which contributed 
to explore the individualized agents suitable for subgroup of 
KIRC patients.

Discussion

As the primary subtype of RCC, KIRC is characterized 
by high metastatic potential, heterogeneity, and immune-
responsive tumors (13). Although the incidence of KIRC 
is increasing, the survival of advanced RCC patients has 
been significantly improved with molecularly targeted drug 
combinations and ICIs (14,15). However, the complexity 
of the TME in RCC leads to drug resistance, insufficient 
therapeutic response, and relapse during treatment (16,17). 
Therefore, it is of vital importance to construct more 
accurate prognostic models to estimate the prognosis and 
therapeutic response of novel treatment targets in KIRC. 

Cuproptosis is an unconventional mechanism of RCD 
and may provide novel insights in exploiting Cu toxicity to 
treat cancers (18). In addition, there are some new findings 
on the pathology of the urinary tract. Cu has been found 
to contribute to reducing the bacterial colonization in 
the urethra, which may provide directions for potential 
treatments.

This study is the first to explore the clinical value of 
cuproptosis-related lncRNAs in KIRC. In our study, we 
carried out a comprehensive analysis of cuproptosis-related 
lncRNAs in KIRC and identified 7 prognosis-related 
lncRNAs (OVCH1-AS1, SBF2-AS1, AC002451.1, CDK6-
AS1, LINC02154, AC103706.1, and AC034236.3) to 
construct a risk signature which could accurately estimate 
the prognosis of KIRC patients (Figures 1-4). 

Of the 7 signature lncRNAs, CDK6-AS1, LINC02154, 
AC103706.1, and AC034236.3 were upregulated and 
were correlated with poor survival. In contrast, OVCH1-
AS1, SBF2-AS1, and AC002451.1 were downregulated 
and acted as protective factors (Figures S1,S2). Among 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606409/figure/F8/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606409/figure/F8/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606409/figure/F8/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606409/figure/F8/?report=objectonly
https://cdn.amegroups.cn/static/public/ATM-22-5204-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-5204-Supplementary.pdf
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them, OVCH1 (ovochymase) encodes oocyte extracellular 
polyproteins (19), which has been reported in familial 
Meniere's disease (20) and early-onset myasthenia gravis (21), 
but its function in other cells has not yet been described. 
OVCH1-AS1 is transcribed from the antisense strand of 
the OVCH1 gene, which may act the opposite effect. We 
observed an increased expression of OVCH1-AS1 in the 
high-risk group of KIRC patients. SET binding factor 

2-antisense strand 1 (SBF2-AS1) encodes myotubularin-
related protein 13 (MTMR13) (22). SBF2-AS1 is a newly 
discovered lncRNA, which has been confirmed to be highly 
expressed in various cancers and involved in promoting 
tumorigenesis, progression, and metastasis. Furthermore, 
SBF2-AS1 upregulation was significantly associated with 
unfavorable clinicopathological features, suggesting a 
poor prognosis (23). CDK6-AS1 is a lncRNA cyclin-
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dependent kinase 6 and regulates cell migration and invasion 
in a synergic manner with CDK6 (24), which may act 
as a potential prognostic candidate biomarker in gastric  
cancer (25).  AC002451 is  one of the ferroptosis-
related lncRNAs related to poor prognosis of gastric 
adenocarcinoma (26). Some studies have shown that 
linc02154 may serve as a valuable biomarker to predict 
the prognosis and indicate the immune status in laryngeal 
squamous cell carcinoma and as a potential therapeutic 
target (27-29). Another study indicated that LINC02154 
facilitates hepatocellular carcinoma proliferation and 
metastasis by enhancing SPC24 promoter activity and 
activating the PI3K-AKT signaling pathway (30). However, 
the other 2 genes, AC103706.1 and AC034236.3, have not 
been previously reported. This study first found that they 
could serve as the potential prognostic biomarkers of KIRC.

In view of the immune-related signaling pathways 
were significantly enriched in GO and KEGG analyses 
(Figure 6), we subsequently evaluated the immune-
related functions based on the score comparisons. We 
found that the high-risk group had higher scores in many 
immune signal pathways (the APC co-inhibition and co-
stimulation, immune checkpoints, cytolytic activity, and T 
cell co-inhibition and co-stimulation, Figure 7A), immune 
cell infiltration (activated T cell, activated dendritic cell, 
activated B cell, macrophage, MDSC cell, monocyte, 
and NK T cell, Figure 7B), and immune checkpoints 
(BTLA, CD27, CD28, CD44, CD48, CD70, CD80, 
CD86, CD244, CTLA4, IDO2, ICOS, LAIR1, LAG3, 
and PD-1, etc., Figure 7C), which may critically affect the 
immunotherapeutic efficacy and resistance. 

Studies have revealed that various factors, such as 
programmed death ligand-1 (PD-L1) level (31), the degree 
of cytotoxic T cell infiltration (32), antigen presentation 
defects (33), mutation (34), and interferon signaling (35), 
can affect the effectiveness of ICIs (36). However, none 
of them these factors are sufficient to achieve accurate 
prognostic prediction (37). A recent study showed 
2 distinct tumor immune evasion mechanisms. The 
cytotoxic T cells with high infiltration level tend to be in a 
dysfunctional state in some tumors. And in other tumors, 
the immunosuppressive factors may prevent the T cells 
from infiltrating tumors (38). Thus, Jiang et al. developed 
TIDE to identify the factors underlying these 2 immune 
escape mechanisms (12). Compared with the widely used 
response biomarkers of ICIs, PD-L1 level and tumor 
mutation burden (TMB) (37,39), the TIDE achieved the 

same favorable and robust prediction capacity for both anti-
CTLA4 and anti-PD1 therapies. Several recent studies 
have reported its utility in predicting or evaluating the 
therapeutic efficacy of ICIs (12,40). Therefore, we used 
TIDE to predict the response of ICIs. The analysis results 
revealed that the risk signature had promising potential to 
indicate the response to immunotherapy in KIRC patients, 
and that the patients with low-risk scores tended to benefit 
from the immunotherapy (Figure 7D).

Drug resistance is still a challenge for clinical management 
of tumor patients. Many patients may face the dilemma 
of no drug availability after multi-line anti-tumor therapy. 
The development of new drugs is a tortuous, expensive, and 
highly uncertain process. Computational drug repurposing 
or repositioning is an efficient and promising tool to discover 
new applications from the existing drugs (41). We evaluated 
the sensitivities of multiple antitumor drugs, and the results 
indicated that the patients with low-risk scores were more 
sensitive to the small molecular drugs GSK1904529A (an 
insulin-like growth factor-1 receptor and insulin receptor 
inhibitor), tipifarnib (a farnesyltransferase inhibitor), BX-
912 (a PDK1 inhibitor), FR-180204 (an ERK inhibitor), 
and GSK1070916 (an aurora B and aurora C inhibitor). 
Meanwhile, the high-risk group tended to be more sensitive 
to pyrimethamine, MS-275 (a HDAC class I inhibitor), 
and CGP-60474 (a CDK inhibitor) (Figure 8). These 
results provided candidate drugs for preclinical and clinical 
treatment for KIRC patients in different subgroups.

Conclusions 

In summary,  we identi f ied the important  role  of 
cuproptosis-related lncRNAs in KIRC and constructed a 
novel cuproptosis-related lncRNA signature, which might 
serve as a promising biomarker for predicting the prognosis 
of KIRC patients. However, there were several limitations 
to our study. First, our findings were mainly based on the 
integrated bioinformatical analysis and lacked experimental 
verification at the cellular level, including function 
verification and regulation mechanism research, which is 
still needed. Second, all of the datasets in our study were 
extracted from a public database, which may have led to a 
potential bias in clinical and genetic data. However, cross-
validation was performed among independent datasets as 
much as possible to reduce potential bias. Third, our study 
needs further clinical verification to validate its application 
in clinic.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606409/figure/F8/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606409/figure/F8/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606409/figure/F8/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606409/figure/F8/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606409/figure/F8/?report=objectonly
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