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Abstract

Light scattering is a well-established experimental technique, which gains more and more

popularity in the biological field because it offers the means for non-invasive imaging and

detection. However, the interpretation of light-scattering signals remains challenging due to

the complexity of most biological systems. Here, we investigate static and dynamic scatter-

ing properties of red blood cells (RBCs) using two mesoscopic hydrodynamics simulation

methods—multi-particle collision dynamics and dissipative particle dynamics. Light scatter-

ing is studied for various membrane shear elasticities, bending rigidities, and RBC shapes

(e.g., biconcave and stomatocyte). Simulation results from the two simulation methods

show good agreement, and demonstrate that the static light scattering of a diffusing RBC is

not very sensitive to the changes in membrane properties and moderate alterations in cell

shapes. We also compute dynamic light scattering of a diffusing RBC, from which dynamic

properties of RBCs such as diffusion coefficients can be accessed. In contrast to static light

scattering, the dynamic measurements can be employed to differentiate between the bicon-

cave and stomatocytic RBC shapes and generally allow the differentiation based on the

membrane properties. Our simulation results can be used for better understanding of light

scattering by RBCs and the development of new non-invasive methods for blood-flow

monitoring.

Introduction

Light scattering is commonly used in the fields of condensed, soft, and biological matter to

investigate the structure and dynamics of different constituents within a material sample [1–

3]. Examples include micro- and nano-particle suspensions [4–7], suspensions of fd virus [8],

red blood cells (RBCs) [9–11], and skeletal-muscle contraction [12]. In the biomedical field,

light scattering offers promising prospects of non-invasive imaging and monitoring of certain

medical conditions without the necessity of contrast agents or radiation doses [13]. However,

the interpretation of scattering signals is often cumbersome due to a complex nature of biolog-

ical systems and standard theoretical models for light scattering used in colloidal science fail to

provide reliable information. This motivates the development of realistic simulation models to

deliver tools for an adequate interpretation of light-scattering measurements.
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An important example of biological fluids attractive for the application of light scattering is

blood. The major cell component of blood is RBCs, which constitute about 45% of blood by

volume. RBCs contain a dense hemoglobin solution, which is believed to be the primary com-

ponent for the scattering and absorption of the UV, blue, and green spectral ranges of light

[14]. Different light scattering techniques have been already used to measure various proper-

ties of single RBCs [10, 11, 15, 16]. For example, static light scattering (SLS) has been employed

to measure shape changes of RBCs in malaria [10] and sickle-cell [16] diseases. Furthermore,

dynamic light scattering (DLS) has been employed to monitor RBC membrane fluctuations

[10, 11], whose strength and dynamics can be related to cell’s mechanical properties and meta-

bolic activity [17, 18]. Most of these measurements have been performed for RBCs lying on a

coverslip such that the cell’s orientation remains fixed for the duration of experiments. How-

ever, there is a growing interest in light scattering measurements of RBCs in a suspension with

and without flow [19, 20], but their quantitative interpretation remains challenging.

Numerical simulations have the potential to fill this gap and provide reliable tools for the

quantitative interpretation of light-scattering measurements. Some examples include simula-

tions of light scattering by single [21–23] and multiple [24, 25] RBCs and by cell organelles

[26, 27]. All these studies have focused on SLS, which mainly allows the characterization of cell

and organelle shapes. In this work, we make a step further and investigate SLS and DLS of a

single diffusing RBC in order to access dynamical properties of these cells. This setup mimics

light-scattering experiments performed on a dilute solution of RBCs.

RBC modeling has gained popularity in the last decade [28, 29], and several existing RBC

models [30–32] are already able to deliver quantitative results in agreement with available

experimental measurements. We model a RBC freely diffusing in a solvent and compute its

average SLS and DLS properties. We employ the Rayleigh-Gans-Debye approximation [1] for

the calculation of scattering amplitude, which is considered to be appropriate for small ratios

of the refractive indices between a scatterer (here a RBC) and the surrounding medium. The

static scattering function, averaged over many possible orientations of a diffusing RBC, is

shown to be not very sensitive to the changes in RBC membrane properties, such as shear elas-

ticity and bending rigidity, and to moderate changes in RBC shapes (e.g., biconcave and sto-

matocyte). Thus, the orientationally-averaged SLS measurements are expected to be

impractical. However, the diffusive behavior of a RBC and its membrane properties can be

detected by DLS measurements represented by the temporal correlations of instantaneous

scattering amplitudes. We investigate DLS for RBCs with different membrane properties and

cell shapes, and for various membrane-model discretizations. We find that the changes in RBC

shape are detectable by the DLS measurements. The changes in membrane properties appear

to hardly affect the diffusive behavior of the whole cell, as long as the cell shape remains nearly

unaffected. Nevertheless, the DLS results for various membrane parameters show significant

differences at high enough frequencies. This indicates that such measurements can be used to

identify the membrane properties.

The paper is organized as follows. In Sec. Theoretical Background, we describe a theoretical

background for the calculation of scattering amplitude and SLS and DLS functions. Section

Methods and Models presents two mesoscopic hydrodynamics approaches, multi-particle col-

lision dynamics [33, 34] and dissipative particle dynamics [35, 36], which we use in simula-

tions. In the same section, we present a RBC model and simulation setup and conditions.

Section Results contains the main results including SLS and DLS by a diffusing RBC for differ-

ent membrane properties. In Sec. Discussion, we discuss the importance and limitations of

our simulation results and conclude. Finally, appendices provide all necessary technical details

for the calculation of scattering amplitudes over triangulated surfaces and for orientational

averaging.

Light scattering by red blood cells
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Theoretical background

For the calculation of light scattering by RBCs, the Rayleigh-Gans-Debye approximation [1] is

employed, which assumes elastic scattering such that the wave length is not altered by the scat-

tering process. The incident electric-field amplitude of the light source and the scattering

strength of a scatterer are set to unity considering that no light absorption occurs. The wave

lengths inside and outside the scatterer are assumed to be equal and thus, no phase shift is

present due to different path lengths through the scatterer. Phase shifts and interference can

occur only due to different positions of the scattering objects. In a further approximation, the

incident light is considered as a plane wave having a unique direction. This condition excludes

refraction on the surface of scattering objects.

The instantaneous scattering amplitude A(q, t) by a solid object enclosing a volume V(t) at

time t is then given by

Aðq; tÞ ¼
Z

VðtÞ
eiq�xd3x ; ð1Þ

where q is the vector of momentum transfer. From the amplitude, the intermediate scattering

function (ISF) I(q, t) is commonly measured in order to identify particle dynamics. It is

defined as a correlation function of scattering amplitudes with a lag time t,

Iðq; tÞ ¼ hAðq; t0ÞA�ðq; t0 þ tÞit0 ; ð2Þ

where A�() denotes a complex conjugate and hit0 is the time average. This function provides

information about the dynamics of the object at different length scales. From I(q, t) at t = 0, we

obtain the SLS function I(q, 0), which contains information about the shape of the object. Fur-

thermore, the ISF I(q, t) can be used to derive the translational diffusion coefficient DT of the

object as

DT ¼ lim
q!0

lim
t!0

1

q2

@ ln Iðq; tÞ
@t

: ð3Þ

This relation can be generalized to obtain an effective diffusion coefficient Deff(q) defined as

the q-dependent function

DeffðqÞ ¼ lim
t!0

1

q2

@ ln Iðq; tÞ
@t

: ð4Þ

The function Deff(q) characterizes diffusional properties and shape fluctuations of the object at

non-zero q values.

In experiments, the time-dependent scattering intensity Iint(q, t) = A(q, t)A�(q, t) is usually

measured, from which the intensity correlation function gIðq; tÞ ¼ hIintðq; t0ÞI�intðq; t0 þ tÞit0 is

obtained. The correspondence between gI(q, t) and I(q, t) is provided by the Siegert relation

as [1]

gIðq; tÞ ¼ Iðq; 0Þ2 þ jIðq; tÞj2: ð5Þ

Further, we will present results in terms of the ISF, from which the intensity correlation func-

tion can easily be obtained.

In simulations, it is more convenient to evaluate surface integrals instead of volume inte-

grals, since RBCs and other shapes are modeled as triangulated closed surfaces, see Fig 1 and

Sec. Methods and models for details. Thus, the instantaneous scattering amplitude in Eq (1) is

calculated through an integral over the RBC surface, as described in S1 Appendix. It is also

Light scattering by red blood cells
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Fig 1. RBC membrane model. Conformation of a RBC membrane modeled as a closed triangulated surface.

Nm = 500.

https://doi.org/10.1371/journal.pone.0176799.g001
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important to realize that the evaluation of the ISF in Eq (2) depends on the three-dimensional

wave vector q. In order to characterize rotational diffusion properties of a RBC, measurements

need to be performed over a time scale longer than the longest rotational-diffusion time of a

RBC. Also, in a typical experimental setup, measurements would be performed simultaneously

on multiple cells with different orientations (again due to the rotational diffusion). Therefore,

the orientation of the cell with respect to the direction of the momentum change q becomes

irrelevant. For this reason, we perform the orientational average of I(q, t) as

Iðq; tÞ ¼
1

4pq2

Z

jqj¼q
Iðq; tÞdO; ð6Þ

which mimics different initial orientations of RBCs. In simulations, this integral is approxi-

mated by averaging I(q, t) over a large enough number of random vector orientations. Detailed

description of this procedure is given in S2 Appendix.

Methods and models

Multi-particle collision dynamics

Multi-particle collision dynamics (MPC) [33, 34] is a mesoscopic hydrodynamics method,

where a fluid is represented by a collection of Ns point particles with mass ms. Particle motion

is advanced through two alternating steps: streaming and collision. In the streaming step, the

MPC particles move ballistically without any interactions, i.e., their positions are updated

according to

riðt þ DtÞ ¼ riðtÞ þ DtviðtÞ ; ð7Þ

where ri(t) and vi(t) are the position and velocity of a fluid particle i at time t, and Δt is the col-

lision time. In the collision step, the particles are binned into cells of a cubic lattice with a lat-

tice constant a. Inside each cell j, all particles are subject to an instantaneous collision given by

vðnewÞ
i ðtÞ ¼ vj;cm þ Rðn̂j; bÞðviðtÞ � vj;cmÞ ; ð8Þ

where vj,cm is the center-of-mass velocity of all particles in cell j and Rðn̂j; bÞ is an operator that

rotates the relative velocities by an angle β around an axis given by the unit vector n̂j. Direction

of the unit vector is chosen randomly and independently for all cells j and collision steps.

Hence, this version of MPC is often called stochastic rotation dynamics (SRD). To keep Gali-

lean invariance of a simulation system regardless of the choice for collision-cell lattice, a ran-

dom grid shift is employed for every axis before each collision step [37].

A MPC solvent models a Newtonian fluid with a dynamic viscosity, which has two contri-

butions: kinetic ηkin and collisional ηcol [38, 39]. These two contributions can be computed as

Zkin ¼
nkBTDt

a3

n=Bb

n � 1þ e� n
�

1

2

� �

;

Zcol ¼
Abmsðn � 1þ e� nÞ

12aDt
;

ð9Þ

where kB T is the thermal energy with temperature T, n is the average number of solvent parti-

cles per collision cell, Ab ¼
2

3
ð1 � cos ðbÞÞ, and Bβ = 1 − cos (2β). The cell-level canonical sam-

pling thermostat [40] has been employed in simulations, even though it is not necessary for

equilibrium simulations.

Light scattering by red blood cells
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Dissipative particle dynamics

Another mesoscale hydrodynamics approach is the dissipative particle dynamics (DPD)

method [35, 36], which is also a particle-based simulation technique. The main difference

between DPD and MPC is the nature of particle interactions. In contrast to collisions in MPC,

DPD particles interact through pairwise conservative, dissipative, and random forces given by

FC
ij ¼ acwcðrÞeij;

FD
ij ¼ � gw2ðrÞðeij � vijÞeij;

FR
ij ¼ swðrÞxðDtÞ

�

1

2eij;

ð10Þ

where ac, γ, and σ are the conservative, dissipative, and random force coefficients, respectively.

wc(r) and w(r) are distance-dependent weight functions defined as wc(r) = (1 − r/rc) and

wðrÞ ¼ wk
cðrÞ, where r = |r|, k is a selected exponent, and rc is the cutoff radius beyond which

all interactions vanish. Furthermore, eij = rij/rij, ξ is a Gaussian random number with zero

mean and unit variance, and Δt is the time step.

The dissipative and random forces form a thermostat, which satisfies the fluctuation-dissi-

pation theorem under the condition [36]

s2 ¼ 2gkBT: ð11Þ

Time evolution of a DPD system follows the Newton’s second law which is integrated using

the velocity-Verlet algorithm [41].

Red blood cell model

The RBC membrane is modeled as a triangulated surface [30, 31, 42] with Nm membrane parti-

cles of mass mm. The number of bonds or edges Ns corresponds to 3Nm − 6, while the number

of triangles or faces is equal to 2Nm − 4. Shear elasticity of the RBC membrane arises from the

bonds connecting membrane particles with a harmonic spring potential

Uspring ¼
X

ij2E

ks
2
ðrij � rij;0Þ

2
; ð12Þ

where E is the set of all springs in the triangulation, rij is the distance between membrane parti-

cles i and j, rij,0 is the rest length of the spring ij, and ks is the spring constant, which is directly

related to the shear modulus μ of the membrane as m ¼
ffiffiffi
3
p

ks=4.

The curvature elasticity of a membrane is described by the bending energy

Ubend ¼
k

2

Z

A0

ðH1 þ H2 � 2C0Þ
2 dA; ð13Þ

where κ is the bending rigidity, A0 is the membrane surface area, H1 and H2 are the local prin-

cipal curvatures, and C0 is the spontaneous curvature. The bending energy in Eq (13) with C0

= 0 can be discretized as [43, 44]

Ubend ¼
k

2

X

i

1

si

X

j2NðiÞ

sijrij
rij

( )2

; ð14Þ

where N(i) is the set of neighbors j of a membrane particle i in the triangulation, rij is the bond

vector between vertices i and j, rij = |rij|, σij = rij[cot(θ1) + cot (θ2)]/2 is the length of the bond

Light scattering by red blood cells
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between i and j in the dual lattice, θ1 and θ2 are the two angles opposite to the bond between i
and j in the two triangles adjacent to that bond, and σi = ∑j2N(i) σij rij/4 is the area correspond-

ing to membrane particle i in the dual lattice. The discretization in Eq (14) has been employed

in MPC simulations, while in DPD simulations the simpler discretization was employed

Ubend ¼
X

i21:::Ns

kb½1 � cos ðyi � y0Þ�; ð15Þ

where kb is the bending coefficient, θi is the instantaneous angle between two adjacent triangles

having the common edge i, and θ0 is the spontaneous angle which can represent a non-zero

spontaneous curvature of a membrane. The bending coefficient kb can be expressed in terms

of κ as kb ¼ 2k=
ffiffiffi
3
p

. Generally, the discretization in Eq (14) is more accurate than that in

Eq (15) [44]; however, it is more expensive computationally.

The area and volume of a RBC are constrained by the potentials

Uarea ¼
X

i2F

1

2
kAðAi � Ai;0Þ

2
;

Uvol ¼
1

2
kVðV � V0Þ

2
;

ð16Þ

where F is the set of all triangles, Ai is the area of triangle i, Ai,0 is the rest area of triangle i
given by the initial triangulation, V is the volume of the cell, V0 is the preferred volume, and

the coefficients kA and kV control the strength of these constraints. Note that the area con-

straint acts locally on each triangle, while the volume constraint is applied to the RBC as a

whole.

A typical RBC shape is biconcave (see Fig 1), which can be imposed by a combination of

the cell area A0 and volume V0, and described by a reduced volume as V0=ð4pR3
0
=3Þ ¼ 0:64,

with R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0=ð4pÞ

p
being the effective RBC radius. The average area of a RBC is equal to

about 133 μm [45], corresponding to R0 = 3.25 μm. Another important property of a RBC

membrane is its stress-free state (or shape), which is referred to the membrane shape with a

minimum shear-elasticity energy (zero in our case) and characterized by the choice of the rest

lengths rij,0 of springs. For example, a RBC model in Ref. [31] assumes the rest lengths to be set

to the edge lengths of initial triangulation of the membrane biconcave shape, resulting in a

biconcave stress-free state. However, recent simulation studies [46, 47] indicate that the stress-

free state of a RBC is likely to be a spheroid close to a sphere rather than the biconcave shape

and the choice of stress-free state may affect RBC shape and its behavior in flow. In our study,

we consider three models (M1, M2, and M3) with two different stress-free states and spontane-

ous curvatures of a RBC membrane, see Table 1. Stress-free state is characterized by

Table 1. Different RBC models.

model stress-free state (ν) spontaneous curvature (C0 R0)

M1 0.64 0.0

M2 0.96 0.0

M3 0.96 3.0

Three RBC models with different stress-free states (ν) and spontaneous curvatures (C0 R0) of a RBC

membrane. The model notations (M1, M2 and M3) are used further in text.

https://doi.org/10.1371/journal.pone.0176799.t001
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n ¼ Vs=ð4pR3
0
=3Þ, where Vs is the membrane volume at the stress-free state, while membrane’s

spontaneous curvature is dimensionalized as C0 R0.

Simulation setup

In simulations, we employ a cubic system with dimensions Lx = Ly = Lz = 14R0. Periodic

boundary conditions (BCs) are assumed in all directions. Note that periodic BCs will affect

translational diffusion of a RBC due to finite-size effects, such that the translational diffusion

in simulations is slower than that in an infinite system. However, our simulation domain is

large enough to have no significant effect on the rotational diffusion of a RBC.

The local area and volume constraint parameters of the cells are set to kAR4
0
=ðkBTÞ ¼

4:2� 106 and kVR6
0
=ðkBTÞ ¼ 3:4� 104, respectively. The remaining membrane parameters,

bending rigidity κ and Young’s modulus Y, are expressed through dimensionless numbers as

k� ¼
k

kBT
; Y� ¼

YR2
0

kBT
: ð17Þ

Different values for κ� and Y� can be selected. However, κ� � 70 (κ� 3 × 10−19 J) and Y� �
43680 (Y� 18 × 10−6 N/m) correspond to average properties of a healthy RBC at a physiologi-

cal temperature of T = 37o C [31]. The Young’s modulus can also be related to the membrane

shear modulus μ. For example, Y� 4μ for a nearly incompressible membrane [31].

Fig 2 presents several RBC shapes for the different models and values of κ� and Y�. The

shapes are characterized by asphericity α, which describes the deviation from a spherical

shape, and range from a stomatocyte (or a cup-like shape) to a biconcave (or discocyte) shape.

These combinations of RBC models and membrane properties will be employed further in

order to identify potential differences in their SLS and DLS functions. Note that the shape of

M1 model always remains biconcave independently of the choice of κ� and Y�, because it coin-

cides with its stress-free state.

For the MPC fluid, we use the average number density of n = 20/a3 solvent particles per col-

lision box, the rotation angle β = 130˚, and the MPC time step Dt ¼ 0:0125
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
msa2=kBT

p
(ms =

1, a = 1, and kBT = 1 are the basic units here). This combination of n, β, and Δt provides a large

enough viscosity of Z ¼ 138:8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mskBT

p
=a2 in order to have a low Reynolds number. In MPC

simulations, the effective RBC radius is equal to R0 = 5.85a and the mass of the membrane par-

ticles is mm = 20ms. The RBC membrane and MPC fluid are coupled dynamically by including

the membrane particles into the collision with solvent particles [30, 34, 48], leading to transla-

tional and rotational diffusion of the RBC. Solvent particles can cross the membrane; however,

no-slip BCs are still accounted for on average due to the membrane-solvent coupling [48].

Also, fluids inside and outside the cell assume the same viscosity.

For the DPD fluid, a number density of n = 3/a3 is employed. The mass of the membrane

particles is mm = 2ms. Other parameters include the conservative force coefficient ac = 40kBT/

a, the dissipative coefficient g ¼ 10:0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mskBT

p
=a, cutoff radius rc = 1.5a = 0.46R0, and the

exponent k = 0.15 for the weight function. These settings yield a fluid viscosity of

Z ¼ 32:85
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mskBT

p
=a2. A time step of 0.005 is employed, and the simulations are run for at

least 6 × 107 time steps to obtain long enough diffusive trajectories. Interactions between the

RBC membrane and solvent are mediated by the dissipative force in DPD [31]. In DPD, sol-

vent particles are also able to cross the membrane.
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Results

Static scattering function

The static scattering function for a RBC can be readily computed using a triangulated discocyte

shape [49], as shown in Fig 1. The numerical evaluation of the scattering amplitude A(q, t) for

a triangulated surface is described in S1 Appendix, while the correctness of our implementa-

tion is verified for a cylindrical shape in S3 Appendix. Fig 3 presents the scattering intensity I =

AA� for the biconcave RBC shape (i.e., rigid cell) and fixed directions of the wave vector q rela-

tive to the cell’s symmetry axis. The RBC intensity is compared to the analytical solutions for a

Fig 2. Different RBC shapes. RBC shapes and their asphericities αwhich characterize the deviation from a

spherical shape. The asphericity is defined as a ¼ ½ðl1 � l2Þ
2
þ ðl2 � l3Þ

2
þ ðl3 � l1Þ

2
�=ð2R4

gÞ, where λ1� λ2�

λ3 are the eigenvalues of the gyration tensor of a RBC and R2
g ¼ l1 þ l2 þ l3. The corresponding RBC

parameters in the order of ascending asphericity (from a stomatocytic shape to a biconcave shape) are (1)

M3, κ* = 20, Y* = 43680; (2) M3, κ* = 40, Y* = 43680; (3) M2, κ* = 70, Y* = 43680; (4) M3, κ* = 70, Y* =

43680; (5) M2, κ* = 20, Y* = 8000; (6) M2, κ* = 70, Y* = 8000. The asphericity values are time-averaged over

the whole simulation and the standard deviations are shown as error bars.

https://doi.org/10.1371/journal.pone.0176799.g002

Fig 3. Static scattering by a RBC with fixed orientation. The scattering intensity I = AA* of a rigid discocyte for wave vectors q (a) parallel and (b)

perpendicular to the RBC axis of rotational symmetry. h0 = 2a. Analytical solutions for a cylinder (see S3 Appendix) with different radii R and heights h are also

plotted for comparison.

https://doi.org/10.1371/journal.pone.0176799.g003
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cylinder (see S3 Appendix) with radii R and heights h, chosen such that the first minima

approximately coincide. Clearly, there are some similarities as the discocyte shape of a RBC

geometrically resembles a short cylinder. Pronounced differences between the scattering inten-

sities of a RBC and a cylinder appear at higher q values, which are more sensitive to small fea-

tures of the biconcave RBC shape. However, the first and second minima for RBC-shape

intensity can be matched with the theory to produce estimates of the height h and radius R of

the discocyte. These values match the dimensions of the discocyte very closely.

Fig 3 corresponds to scattering from a rigid RBC with a fixed orientation in space (e.g.,

adhered to a surface). However, our main interest is in the scattering properties of soft RBCs

in dilute solution, where arbitrary orientations of the cells are equally probable due to rota-

tional diffusion and RBCs are subject to membrane fluctuations; this setting also corresponds

to typical experimental situations. In simulations, different cell orientations correspond to a

number of randomly-selected initial conditions for the RBC orientation, which we realize not

by making multiple simulations for the different initial conditions, but by performing the ori-

entational average over a number of random q-vector orientations Navg, as given in Eq (6) and

S2 Appendix. Furthermore, to take into account RBC membrane fluctuations, we perform

equilibrium simulations of a deformable RBC diffusing in a solvent; these simulations are used

for the evaluation of both SLS and DLS functions.

The computed static scattering intensity for a soft RBC is shown in Fig 4(a) for two different

discretizations characterized by the number of vertices Nm. The orientationally-averaged scat-

tering intensity is obviously different from the case of a fixed orientation; however, a careful

look at these curves still allows the recognition of characteristic features. First, a shoulder in

the scattering intensity at qR0� 3.83 is clearly visible in all cases, which corresponds to the

RBC radius. Second, the scattering curves have a local minimum at qh0 = 2π related to the

thickness of RBCs. Thus, the two main geometrical characteristics of RBCs are still visible in

the orientationally averaged scattering intensities. Furthermore, the level of discretization can

also have an effect mainly at high q values. Different surface discretizations may lead to slightly

different RBC shapes and to very small differences in cell volume. However, the scattering

curves for discretizations with a number of points larger than Nm = 1000 become nearly inde-

pendent of Nm. Therefore, we generally employ Nm = 1000 further in simulations.

Fig 4(b) presents several static-scattering curves for different membrane bending rigidities

and Young’s moduli. The scattering intensities for the large Young’s modulus, Y� = 43680, and

various κ� values do not show significant differences, indicating that the overall RBC shape

determines static measurements and thermal undulations of the membrane have a very weak

effect. The comparison of scattering intensities for different Young’s moduli shows stronger

differences than for various bending rigidities. Note that for the larger Y� value, RBCs do not

remain biconcave, but attain a weak stomatocytic (or a cup-like) shape, while simulations with

the smaller Y� lead to a biconcave cell shape, see Fig 2. As the result, the differences in scatter-

ing intensities for different Young’s moduli in Fig 4(b) are mainly due to a change in shape.

However, differences in the static scattering function for biconcave and stomatocytic RBC

shapes are not very pronounced, and therefore the orientationally-averaged SLS function is

expected to be not very sensitive to the changes in membrane properties and moderate alter-

ations in cell shapes.

Intermediate scattering function

In order to access dynamical properties of diffusing RBCs, we evaluate the intermediate scat-

tering function (Eq (2)) from simulations of RBC diffusion, followed by an orientational aver-

aging, as described in Sec. Theoretical Background and S2 Appendix. The intermediate
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scattering function I(q, t) obtained from MPC simulations is plotted in Fig 5 for two different

wave numbers q. For the both values of q, an initial exponential decay is observed, which read-

ily yields Deff(q). At larger times t, there is typically a crossover to a slower decay, which we do

not take into consideration. All other values of q (not shown here) display a similar behavior.

Fig 5 also compares the intermediate scattering functions for deformable and rigid cells.

The curves for deformable RBCs have been computed directly from simulations of a diffusing

RBC. In the case of rigid cells, we have used the trajectory of positions and orientations for

deformable cells, but substituted at all instances in time the actual cell shape by a fixed rigid

biconcave shape with matching center of mass and orientation. For qR0 = 2.05 in Fig 5, the

curves for deformable and rigid cells completely overlap within numerical accuracy. For qR0 =

5.1, some differences at long correlation times between deformable and rigid cells are visible;

however, the initial exponential decay remains same independently of the cell’s stiffness. The

good agreement between the intermediate scattering functions for deformable and rigid cells

at low q indicates that the DLS function is insensitive to thermal fluctuations of a membrane in

this q-range.

From I(q, t), we can determine the exponential decays at short times, and therefore the

effective diffusion coefficient given by Eq (4). Fig 6 presents the dimensionless effective diffu-

sion coefficient

D�effðqÞ �
DeffðqÞ � Deffð0Þ

DT
; ð18Þ

where DT is the translational diffusion coefficient of a RBC. This dimensionless presentation of

the effective diffusion coefficient facilitates an easy comparison of results obtained from differ-

ent methods and for various (outside) fluid viscosities.

The effective diffusion coefficient Deff(q) in the limit of q! 0 should yield the translational

diffusion coefficient of a RBC. Extrapolation of Deff(q) to Deff(0) provides a value which agrees

within a few percent with DT obtained directly from the mean-squared displacement of a RBC.

The dependence of Deff(q)� on q in Fig 6 clearly shows that the non-translational contributions

Fig 4. Orientationally-averaged static scattering by a RBC. Orientationally-averaged static scattering functions of RBCs for different parameters using the

DPD method with RBC model M3. (a) Effect of surface discretization (Nm = 500 and Nm = 1000) on static scattering intensity. Model M3 with κ* = 20 and Y* =

8000. (b) Effect of bending rigidity and shear modulus on the static scattering intensity. Cells with Y* = 8000 remain biconcave, whereas those with the large

value of Y* = 43680 attain a stomatocytic shape in simulations.

https://doi.org/10.1371/journal.pone.0176799.g004
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Fig 6. Effective diffusion of a RBC from MPC simulations. The dimensionless effective diffusion

coefficientD�
eff
ðqÞ of a RBC as a function of q, obtained from different methods. MPC simulation results

correspond to a deformable cell represented by model M1 with Nm = 500, κ* = 20, and Y* = 8000 (black line)

and to a superimposed rigid cell using the simulated trajectory of the deformable RBC (red line). The curve

from HYDRO++ is for a rigid cell (blue line). The data are averaged over Navg = 2000 random q-vector

orientations, see S2 Appendix.

https://doi.org/10.1371/journal.pone.0176799.g006

Fig 5. Intermediate scattering measurements. Intermediate scattering functions for two selected q values

calculated through the orientational averaging. The curves for deformable RBCs were obtained directly from

MPC simulations of a diffusing RBC (model M1 with Nm = 500, κ* = 20, and Y* = 8000). The curve for a rigid

cell was obtained by the substitution of all cell snapshots in time within the trajectory for a deformable RBC

with a rigid biconcave shape through matching instantaneous cell’s center of mass and orientation. Time is

normalized by a characteristic relaxation time τ = ηR0/Y of a RBC. For typical values of RBC elasticity

(Y = 18.9 × 10−6 N/m [31]) and plasma viscosity (η = 1.2 × 10−3 Pa�s [45]), τ� 2.1 × 10−4 s.

https://doi.org/10.1371/journal.pone.0176799.g005
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to Deff(q)� already appear at qR0� 2, while the first maximum is observed at approximately

qR0� 4. These features have their origin either in the rotational dynamics of a RBC or mem-

brane undulations due to the softness of a membrane. To distinguish these two potential con-

tributions, we employ again the full simulated trajectory for a deformable RBC and replace all

snapshots of the soft cell in time with the rigid biconcave shape of the cell following its center-

of-mass position and orientation. Thus, we construct a trajectory of the solid RBC with the

same translational and rotational diffusion characteristics as the original trajectory for the

deformable cell. Deff(q)� for the superimposed rigid RBC in Fig 6 indicates that most features

of the Deff(q)� curves for soft and solid RBCs are the same, which implies that rotational diffu-

sion provides the dominant contribution, especially at low q values. The effect of membrane

undulations mainly appears at high q values. The most prominent difference between the

Deff(q)� curves for soft and solid RBCs is found at a local minimum at approximately qR0� 10.

In order to confirm the results obtained from the MPC simulations, we have also employed

another method, where the effective diffusion coefficient is computed directly from the diffu-

sion matrix of the discocyte in the program HYDRO++ [50, 51] (for details of the calculation,

see S4 Appendix). This approach uses a different description of the cell shape such that a RBC

is modeled by a collection of beads which fill the cell volume. The results from HYDRO++ are

also shown in Fig 6 and match those for the solid erythrocyte very well for qR0 ≲ 12. We attri-

bute the deviations for qR0 ≳ 12 to the different representation of the cell shape in triangulated

membranes and bead packings.

Fig 7 presents the dimensionless effective diffusion coefficient for a soft RBC simulated

with the DPD method. The DPD results have been obtained with either Navg = 20 or Navg =

400 random orientations of q vector for averaging. This means that for every selected direction

of q vector time correlations of the scattering amplitude are calculated and then averaged over

all orientations. We have verified that about Navg = 400 orientations is sufficient to represent

an isotropically-averaged converged function for the scattering amplitudes. The comparison of

DPD results with MPC in Fig 7 is rather good, even though some deviations, especially at high

q values, are clearly visible. At high q values, small features such as membrane fluctuations

become important. Note that the RBC membrane in DPD simulations has a Young’s modulus

of Y� = 43680, which is larger than Y� = 8000 used in the MPC simulations. We attribute dis-

crepancies between the MPC and DPD results at high q values to this difference in mechanical

properties of the membrane. Interestingly, the curve obtained by HYDRO++ fits the DPD

results better than MPC results, see Fig 7.

Fig 8 shows the dimensionless effective diffusion coefficient for cells with different mem-

brane properties. The cells differ in bending rigidity κ�, Young’s modulus Y�, and spontaneous

curvature. The data for model M1 with κ� = 20 and Y� = 8000 is the same as ‘DPD, Navg = 400’

in Fig 7. It is important to note that two cells (M1 with κ� = 20 and Y� = 8000; M3 with κ� = 70

and Y� = 43680) remain biconcave, while the other two attain a cup shape, see Fig 2. This

change in shape from discocyte to cup-like is nicely reflected in Deff(q)� by the appearance of a

third peak at qR0� 10. Thus, Fig 8 clearly illustrates the effect of the cell shape on dynamic

light scattering signals.

Discussion

Static light scattering is a well-established tool for assessing structural properties of suspended

particles. However, our results for diffusing RBCs indicate that orientationally-averaged SLS

measurements are insensitive to moderate differences in cell shapes (e.g., biconcave and cup-

like). SLS experiments performed on malaria-infected RBCs [10] and on RBCs in sickle-cell

anemia [16] have demonstrated that differences in RBC shapes induced by these diseases can
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Fig 7. Comparison of DPD and MPC results. The dimensionless effective diffusion coefficient Deff(q)* of a

soft RBC represented by model M1 with a bending rigidity κ* = 20. Two different curves for DPD simulations

correspond to different numbers Navg of random orientations of q vector used for averaging. For comparison,

MPC results are also shown. In DPD, the Young’s modulus of the RBC membrane is set to Y* = 43680,

whereas in MPC Y* = 8000.

https://doi.org/10.1371/journal.pone.0176799.g007

Fig 8. Effective diffusion of a RBC for various membrane properties. The dimensionless effective

diffusion coefficient Deff(q)* of RBCs with different membrane properties. The cells differ in bending rigidity κ*,

Young’s modulus Y*, and spontaneous curvature. Two cells remain biconcave, whereas the other two attain a

cup shape, which is reflected in the third peak at qR0� 10.

https://doi.org/10.1371/journal.pone.0176799.g008
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be detected. The main difference between these experiments and our study is that in the exper-

iments, RBCs were lying on a coverslip such that scattering measurements for a fixed orienta-

tion have been performed, while in our simulations we compute static scattering from a

diffusing RBC, so that it is averaged over all possible cell orientations. A disadvantage of fixing

cell orientation in comparison to monitoring a freely diffusing cell is that a method for fixing

cell’s position (e.g., cell adhesion) may alter cell’s natural shape as well as trigger some unde-

sired dynamic response. However, as our SLS results have shown, SLS measurements for the

differentiation of moderate changes in RBC shapes are expected to be useful primarily in the

case of a fixed cell orientation. Furthermore, SLS measurements on a diffusing RBC are insen-

sitive to thermal undulations of the membrane, and thus cannot be employed for the quantifi-

cation of membrane properties.

Dynamic light scattering provides information about the cell dynamics and membrane

properties. Clearly, one of the straightforward measurements is the translational diffusion of

RBCs, which can be obtained from the effective diffusion coefficient Deff(q) in the limit of

q! 0. DLS experiments with RBCs lying on a coverslip (i.e., with a fixed cell orientation)

[10, 11] demonstrate the possibility to measure thermal undulations of a RBC membrane.

Following these measurements, it should be possible to deduce cell’s membrane properties,

since RBC membrane fluctuations are directly correlated with membrane mechanical charac-

teristics and potential cell activity [18, 52]. Another example of the quantification of DLS

measurements is the determination of rod length in a suspension [7], since for rods a reliable

theory exists. Here, we provide a step toward the theoretical background for a quantitative

interpretation of DLS measurements for soft particles such as RBCs.

The dimensionless effective diffusion presented in Figs 6–8 shows no significant sensitivity

to membrane properties at low q values, indicating that this range of wave vectors describes an

overall diffusive behavior of a RBC including its translational and rotational contributions.

Furthermore, the scattering functions obtained from different simulation methods are found

to be nearly independent of the method employed. An interesting observation in Fig 8 is the

appearance of an additional peak at qR0� 10 for cells with a stomatocytic shape, which allows

the differentiation between stomatocytic and biconcave RBC shapes. Furthermore, at large

enough q values, significant differences for various conditions were detected. These differences

in Deff(q)� at large q are attributed to differences in membrane properties and can potentially

be employed to infer cell’s characteristics from DLS experimental measurements. Thus, our

simulation results show that quantitative interpretation of DLS measurements is possible, and

DLS experiments are needed to ascertain the accuracy and applicability of the simulation

measurements.

Although the presented simulation results are promising, it is worthwhile to discuss some

limitations of the current simulations. We have employed the Rayleigh-Gans-Debye approxi-

mation [1] for the calculation of scattering, which is based on the assumption of elastic scatter-

ing preserving the wave length. It is not clear whether this approximation is appropriate and

good enough, a question which can be clarified by corresponding experimental measurements.

There also exist other methods for the calculation of scattering such as, for instance, discrete

dipole [53] and Born [54] approximations. The discrete dipole approximation permits the set-

ting of the refraction index individually for different parts of the scattering object. Other sim-

plification we have made is the assumption of no light absorption and no refraction on a cell

membrane. Finally, we have neglected any multiple scattering effects, which is a reasonable

assumption for a dilute solution of RBCs. Some of these simplifications may not be critical for

scattering results, while other mentioned limitations can be elevated by improvements of the

modeling approach.

Light scattering by red blood cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0176799 May 4, 2017 15 / 19

https://doi.org/10.1371/journal.pone.0176799


In conclusion, realistic modeling of scattering intensities has a great potential for the under-

standing and quantification of scattering signals obtained experimentally. In particular, for

blood a light scattering analysis offers prospects of non-invasive in vitro and in vivo means to

detect and identify pathological states of blood cells and/or the presence of disease-related

objects (e.g., bacteria, virus) in blood. Here, an interesting direction is to investigate DLS of

dense suspension of RBCs under flow, which is already possible from the modeling standpoint

[55, 56]. Clearly, this direction requires the development, testing, and validation of new and

existing simulation and experimental models and approaches. We hope that our results will

motivate further simulation studies of light scattering, since simple analytical models are likely

to suffer from serious shortcomings when used for the quantitative interpretation of scattering

by complex biological systems.
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