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Abstract: The structure of a free nickel (II) octamethylporphyrin (NiOMP) molecule was determined
for the first time through a combined gas-phase electron diffraction (GED) and mass spectrometry
(MS) experiment, as well as through quantum chemical (QC) calculations. Density functional
theory (DFT) calculations do not provide an unambiguous answer about the planarity or non-
planar distortion of the NiOMP skeleton. The GED refinement in such cases is non-trivial. Several
approaches to the inverse problem solution were used. The obtained results allow us to argue that the
ruffling effect is manifested in the NiOMP molecule. The minimal critical distance between the central
atom of the metal and nitrogen atoms of the coordination cavity that provokes ruffling distortion in
metal porphyrins is about 1.96 Å.

Keywords: molecular structure; ruffling distortion; porphyrin; quantum chemistry; nickel; elec-
tron diffraction

1. Introduction

Porphyrin metal complexes are the active core of many biochemical systems, e.g.,
hemoglobin, chlorophyll and vitamin B12 [1,2]. An important source of porphyrins is oil,
a ton of which can contain up to several kilograms of porphyrins, especially vanadyl-ion
(VO2+) and nickel ion (Ni2+) complexes [2].

Porphyrin metal complexes are the active catalysts in chemical, electrochemical and
photochemical processes, including the electroreduction of molecular oxygen, the anodic
oxidation of sulfur dioxide, the cathodic reduction of nitrous oxide, the isomerization of
unsaturated compounds, etc. [3]. Some etioporphyrin metal complexes are now considered
to be potential radioprotective agents and stimulants of post-radiation rehabilitation [3].
Moreover, porphyrin metal complexes are promising agents for photodynamic therapy and
in the production of basic film materials for photovoltaic devices [4,5], microelectronics [6,7]
and electrochemical Gratzel cells (DSSC) [8]. A number of physico-chemical properties
of porphyrin compounds that determine the features of their absorption and luminescent
spectra should be taken into account in the screening of effective sensibilizators [9]. Theo-
retical calculations of electronic transitions and the HOMO-LUMO energy gap are currently
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being performed in order to discover substances that are potentially effective in solar
batteries [10,11]. Due to their stability at high temperatures, porphyrin metal complexes
can be used as dyes under extreme conditions [2].

Porphyrin metal complexes are important for environmental protection as they can
serve as sensible chemical materials in the new generation of resistive gas sensors be-
cause they possess improved metrological characteristics [12]. The influence of a central
metal atom on the gas-sensitive properties of porphyrin-based materials was studied by
examining the etioporphyrin (EP) complexes of cobalt, nickel, copper, zinc, palladium and
platinum [12–15]. A sensor performance depends not only on the individual character-
istics of the molecules, but on the structure of sprayed layers obtained through thermal
sublimation as well [12].

The structural investigations of metal porphyrins are dominated by density func-
tional theory (DFT) calculations. As many transition metal species are of a multireference
character, the applicability of a single determinant DFT approach is questioned for por-
phyrin metal complexes. Nevertheless, our recent study [16] concludes that the ground
state of nickel(II) complex with tetrakis(1,2,5-thiadiazolo)porphyrazine is clearly single-
reference. This suggests that the DFT approach is most likely valid for other nickel(II)
macroheterocycles.

The solid-state structures of porphyrin metal complexes are commonly obtained from
X-ray diffraction experiments. According to a thorough study of the structure of porphyrin
metal complexes [17,18], the distance from the center of the macrocycle cavity to the nitro-
gen atom of 2.01 Å corresponds to the minimal steric strain of the porphyrin core. Strong
deviations from these values occurring in the case of complexes that possess a metal ionic
radius that does not correspond to the cavity size results in different types of macrohetero-
cycle distortions. Another factor is responsible for the deformations that are originated in
various substituents located on the periphery of the molecule [19,20]. Under distortions,
the spatial crowding of bulky substituents decreases, leading to the minimization of the
peripheral steric strain. Figure 1 demonstrates the main typical distortions of the porphyrin
cycle generally described in terms of normal coordinates. The study of ruffling, saddling
and doming distortions is especially important in connection with their manifestation in
biological molecules [21]. An explicit correlation between macrocycle nonplanarity and
physico-chemical properties has been noted in ref. [22].
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Some factors affecting the manifestation of the ruffling distortion were analyzed [23] 
for porphyrin complexes with relatively small central ions, such as Si(IV), P(V), Ge(IV) 
and As (V). The threshold between the flat and distorted structures was concluded to cor-
respond to the distance between the central atom and the nitrogen atoms of 2.00–2.02 Å. 

Figure 1. Possible types of porphyrin skeleton distortions: (a)—ruffling, (b)—dome shaped,
(c)—saddle shaped, (d)—wave shaped, (e)—propeller shaped. A top view perpendicular to the
macrocycle plane shows the positions of atoms relative to the plane of the porphyrin core: the light
circle denotes an atom located above the plane, the dark circle denotes an atom located below the
plane and the absence of a circle denotes the location of the atom in the plane of the porphyrin core.

Some factors affecting the manifestation of the ruffling distortion were analyzed [23]
for porphyrin complexes with relatively small central ions, such as Si(IV), P(V), Ge(IV)
and As (V). The threshold between the flat and distorted structures was concluded to
correspond to the distance between the central atom and the nitrogen atoms of 2.00–2.02 Å.
The main structural parameter characterizing the degree of ruffling distortion is the dihedral
angle χ(Cα-N···N-Cα). In this case, a distortion of 20–30◦ is often accompanied by small
energy changes (less than 4 kJ·mol−1) indicating the extreme softness of this type of
deformation. The authors of [23] also noted other structural parameters that change with



Int. J. Mol. Sci. 2022, 23, 320 3 of 17

the manifestation of the ruffling distortion of the macrocycle. For example, with increasing
macrocyclic distortion, the bond angle Cα-Cm-Cα tends to decrease, while the Cβ-Cβ

distance and the Cα-N-Cα angle tend to increase.
The DFT study of changes in the internal cavity within the series of the simplest

porphyrin complexes MP (M = Cr, Mn, Fe, Co, Ni, Cu, Zn) was carried out in ref. [24].
Short M-N distances (typical for nickel complexes) lead to ruffling distortion. The authors
of [24] also consider the dependence of the size of the coordination cavity on the number of
electrons of the metal atom, which can be explained in terms of the population of d-orbitals.
The largest cavity size is observed in the case of the MnP that possesses a high spin d5 state.
The addition or removal of an electron (Fe an Cr complexes) results in a decrease in the
cavity size due to the absence of an electron on the dx2-y2 orbital. The shortest M-N bonds
were found for the nickel porphyrin (NiP) singlet state, where eight electrons occupy four
d-orbitals, except for dx2-y2. In this case, the addition or removal of one electron (Cu, Co)
leads to the enlargement of the MN4 fragment. The diamagnetic nature of nickel and zinc
porphyrins are also experimentally well established [25–27].

According to the literature, nickel porphyrins exist in either flat [28–31] or ruffling-
distorted [32–34] forms. In the triclinic crystal lattice, a molecule of nickel octaethyl-
porphyrin (NiOEP) possesses a planar structure with Ni-N distances in the range of
1.946–1.958 Å [28,29], while in the tetragonal lattice a distorted structure with r(Ni-N) = 1.929 Å
was found [34]. According to X-ray diffraction (XRD) and Raman spectroscopy investi-
gation [31], the NiP molecule possesses a planar structure both in the crystal and in the
solution, but the flat and distorted structures coexist in solutions of NiOEP and meso-
tetraphenylporphyrin (NiTPP) [31,35]. The work [31] concludes that the replacement of
peripheral hydrogen atoms by another substituent shifts the conformational equilibrium to-
wards a non-planar structure. The macrocycle distortions are manifested in a bathochromic
shift in the Q band of the absorption spectra [36], but this effect is insignificantly small. In
ref. [37] it was shown that with an increase in the level of macrocycle distortion, a decrease
in the energy gap of LUMO-HOMO occurs. Several NiTPP derivatives exhibit the effect of
the degree of distortion on the redox potentials of the compounds.

According to the quantum chemical (QC) study [38], the conformers of NiOEP, with
different arrangements of ethyl groups, exhibit some degree of ruffling distortion. The
Ni-N distance is in the range of 1.96–1.97 Å. The flat structure maximizes the π-overlap
in the system and corresponds to large-sized coordination cavity. At the same time, the
size of Ni2+ is too small to form strong Ni-N bonds without the distortion of the planar
macrocycle structure. Therefore, the equilibrium structures of porphyrin complexes with
nickel are forced to achieve a balance between energy gains due to the shortening of the
Ni-N bond and losses due to ruffling distortion because of a decrease in the degree of
delocalization. According to the calculations carried out in [38], the ruffling distortion of a
macroheterocycle reduces the total energy by ca. 0.8 kJ·mol−1.

In the literature, there is a clear lack of data on the structure of free molecules of
porphyrin metal complexes, while a number of studies focused on the structural determina-
tions of phthalocyanine complexes using the gas electron diffraction (GED) method [39–42].
As for the porphyrins, the data on the gas-phase structures of the following compounds
are available: copper (II) octamethylporphyrin (CuOMP) [43], copper(II) etioporphyrin-
II (CuEP-II) [44], tin(II) octamethylporphyrin (SnOMP) [45], zinc(II) etioporphyrin-II
(ZnEP-II) [46] and cobalt(II) etioporphyrin-II (CoEP-II) [47]. Based on the experimen-
tal and theoretical results, it was concluded that the above-mentioned porphyrin complexes
with zinc, copper and cobalt have a flat structure, despite the fact that r(M-N) in the series
decreases by almost 0.07 Å from 2.042 (5) Å in ZnEP-II [46] to 1.976 (5) Å in CoEP-II [47],
which is below the threshold value of 2.01 Å [18]. Therefore, experimental studies of the
gas-phase structures of nickel porphyrins with even shorter M-N distances are important
for checking for a ruffling effect manifestation in porphyrins in a gas phase [47].

In the present contribution we report the results of the experimental GED and theoret-
ical QC studies on nickel(II) 2,3,7,8,12,13,17,18-octamethylporphyrin (NiOMP, Figure 2).
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Figure 2. Molecular structure of NiOMP with atom numbering. The red dashed line shows an angle
χruf = χ(Cα-N···N-Cα) quantifying the degree of ruffling distortion.

2. Results

The optimized structures from the QC calculations are given in the Supplementary
Materials. Experimental and theoretical molecular scattering intensities sM(s) for the two
nozzle-to-film distances are shown in Figure 3, along with the corresponding difference
curves. The radial distribution curves and the difference curve are shown in Figure 4. We
highlight the non-trivial structural analysis detailed in Sections 3.3 and 4.4.
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3. Discussion
3.1. Ambiguity in NiOMP Molecular Structure

The performed QC calculations do not provide an unambiguous answer on the equilib-
rium spatial structure of the NiOMP molecule. The choice of the calculation level affects the
prediction of the presence/absence of ruffling distortion in the macrocycle. Thus, according
to the B3LYP calculations with the 6–31G * basis set, the NiOMP molecule possesses a non-
planar geometric structure with a D2d symmetry and a dihedral angle χ(Cα-N N-Cα) ≈ 24◦,
while the planar structure of the D4h symmetry corresponds to the first-order saddle point
on the potential energy surface (PES) and is 1.34 kJ·mol−1 higher in energy compared to
the non-planar model. The distance between the nickel and nitrogen atoms in the D4h
structure is larger than in the D2d structure by 0.016 Å. The structural parameters of the
macroheterocyclic skeleton only slightly change with the extension of the basis set, while
the Ni-N distance increases by 0.02–0.03 Å, and the flat D4h structure already corresponds
to the minimum. The main structural parameters derived from the B3LYP calculations
using various basis sets are listed in Table 1. It is important to note that the use of the
relativistic core potential for the description of the inner electron shells (1s22s22p6) of the
nickel atom does not lead to significant structural changes (Table 1).

Since the calculations with the B3LYP functional did not provide an unambiguous
answer on the presence/absence of a ruffling distortion in the NiOMP molecule, we
expanded the range of DFT-functionals used (B97D, PBE0 and M06 in combination with
the cc-pVTZ basis sets). According to the results of the calculations, the NiOMP molecule
does not undergo a ruffling distortion. Considering the data given in Table 2, we note
that in the series M06 → PBE0 → B3LYP → B97D → PBE, an increase in the related
internuclear distances is observed, except for the Ni-N distance, which is smaller in the
case of the PBE functional as compared to the B3LYP and B97D ones. It turned out that the
set of theoretical methods listed above provides neither unique geometric nor electronic
structures, predicting a different arrangement of frontier MOs (Figure 5).



Int. J. Mol. Sci. 2022, 23, 320 6 of 17

Table 1. Geometry parameters of NiOMP according to B3LYP calculations.

Basis Set 6–31G *,a pVTZ b cc-pVTZ c cc-pVTZ
ECP10MDF d

Equilibrium
Structure D4h D2d D4h D4h D4h

ωruf
e, cm−1 21(i) 30 8 15 12

∆E f, kJ·mol−1 1.38 0.00
χ(Cα-N···N-Cα),◦ 0.0 24.1 0.0 0.0 0.0

re(Ni-N), Å 1.958 1.942 1.977 1.974 1.972
re(N N), Å 2.769 2.746 2.796 2.792 2.789

re(N-Cα), Å 1.379 1.378 1.374 1.371 1.371
re(Cα-Cβ), Å 1.447 1.448 1.448 1.446 1.445
re(Cα-Cm), Å 1.379 1.381 1.379 1.377 1.376
re(Cβ-Cβ), Å 1.365 1.367 1.363 1.361 1.361

ϕe(Cα-Cm-Cα),◦ 123.9 123.4 124.6 124.6 124.5
a 6–31G *—for all atoms; b H, C, N—pVTZ, Ni—cc-pVTZ; c H, C, N, Ni—cc-pVTZ; d H, C, N—cc-pVTZ, Ni–
ECP10MDF and (8s7p6d2f1g)/[6s5p3d2f1g][48,49]; e frequency related with ruffling distortion of macroheterocy-
cle; f relative energy.

Table 2. Structural parameters of NiOMP according to DFT calculations, exploiting different func-
tionals a.

DFT-Functionals B3LYP PBE0 M06 B97D PBE

D4h D4h D4h D4h D4h D2d

ωruf
b, cm−1 15 7 13 11 14(i) 21

∆E, kJ·mol−1 c 0.30 0.00
χ(Cα-N···N-Cα),◦ 0.0 0.0 0.0 0.0 0.0 17.8

re(Ni-N), Å 1.974 1.959 1.956 1.976 1.967 1.957
re(N···N), Å 2.792 2.770 2.767 2.794 2.781 2.768
re(N-Cα), Å 1.371 1.366 1.366 1.379 1.381 1.380

re(Cα-Cβ), Å 1.446 1.440 1.437 1.446 1.448 1.448
re(Cα-Cm), Å 1.377 1.373 1.371 1.380 1.380 1.381
re(Cβ-Cβ), Å 1.361 1.358 1.355 1.367 1.370 1.370

ϕe(Cα-Cm-Cα),◦ 124.6 124.0 124.0 124.3 124.0 123.7
a cc-pVTZ (H, C, N, Ni) basis set [50,51]; b frequency related to ruffling distortion of macroheterocycle; c rela-
tive energy.
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Figure 5. Molecular orbital diagrams for NiOMP according to different DFT methods. The energy of
HOMO is chosen as zero level.
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According to the results of the B3LYP, PBE0 and M06 calculations, HOMO and
HOMO-1 are the MOs of the macrocycle of a1u and a2u symmetry (Figure 5). The doubly
degenerate orbitals of eg symmetry with a significant contribution (~30%) from the orbitals
of the nickel atom (dxz, yz) are lower in energy by ~0.03 au. At the same time, according
to PBE and B97D calculations, the lowest electronic state is characterized by the random
degeneracy of the orbital of the 2a1u, MO 6eg macrocycle with a contribution from the
nickel atom of ~60% and 18a1g MO, which is the dz2 AO of nickel. Despite the similar
arrangement of the MOs according to the results of PBE and B97D calculations, in the first
case, the ruffling-distorted structure with χruf = 17.8◦ corresponds to the minimum, and in
the second case, the structure of the molecule is flat. Schemes of some of the top occupied
MOs are shown in Figure 6.
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In order to evaluate the nonrigidity of the NiOMP along the ruffling vibrational mode
molecule in comparison with similar complexes of copper and zinc, the PES profiles of
ruffling distortion U(C1α-N1-N3-C6α) were evaluated (Figure 7) by scanning the torsion
angle χ(C1α-N1-N3-C6α) while optimizing all other geometric parameters at the PBE/cc-
pVTZ and B3LYP/cc-pVTZ theory levels. The potential along the ruffling–vibrational
coordinate in the case of NiOMP is rather soft, which creates a fundamental difficulty in
the determination of the optimal geometry. According to the DFT calculations, NiOMP can
be considered to be a quasi-planar molecule.
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Figure 7. PES scans along χruf = χ(Cα-N···N-Cα) angle for NiOMP (squares), CuOMP (circles),
ZnOMP (triangles) according to PBE/cc-pVTZ and B3LYP/cc-pVTZ.

It should be noted that this uncertainty in the structure is also a feature of the parent
NiP compound: the B3LYP/(pVTZ, cc-pVTZ) calculations predict a flat D4h structure; in
contrast, PBE calculations give the D2d structure, but the D4h structure (saddle point) has an
energy that is only slightly higher than the energy of the D2d structure (less than 1 kJ·mol−1)
(Table S2). According to the RI MP2 calculations, the NiP is characterized by a ruffling
distortion with χ(Cα-N···N-Cα) = 33.7◦, and the planar structure is higher in energy by
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4.6 kJ·mol−1. To gain a deeper insight into the problem, we made a single-point DLPNO-
CCSD(T) calculation on the PBE/pVTZ (H, C, N), cc-pVTZ (Ni) geometries of NiOMP.
According to the DLPNO-CCSD(T) calculations, the D2d structure of NiOMP turned out to
be more stable than the D4h one by 0.6 kJ·mol−1.

3.2. The Nature of Ruffling Distortion

To simplify a description of the nature of the ruffling distortion in the porphyrin
macrocycles, we considered the simplest nickel porphyrin, NiP. The QC calculations (B3LYP
and PBE functionals, and basis sets of pVTZ—for H, C, N, cc-pVTZ—for Ni) of the NiP
molecule were carried out for both for the planar (D4h) structures and for ruffling-distorted
(D2d) structures at fixed values of the Ni-N bond lengths ranging from 1.90 Å to 2.04 Å,
with an optimization of all other geometric parameters. Based on the obtained results, the
dependence of the structural parameters of the macrocycle on the length of the Ni-N bond
was depicted in Figure 8.
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It is obvious that complexation is accompanied by a rearrangement of the porphyrin
core. Thus, the equilibrium state is achieved as a compromise between the change in the
macrocyclic cavity, which is necessary for optimal bond strength forming, and the forced
macrocycle’s rearrangement. In the case of the B3LYP calculations, for re(Ni-N) ≤ 1.96 Å,
the studied planar structures correspond to saddle points on the PES. With an increase in
the internuclear distance of Ni-N in the planar complex, the lengths of the Cα-Cβ, Cα-Cm
and Cβ-Cβ bonds increase along with the shortening of the N-Cα bond. An increase in
the Ni-N distance to 1.976 Å leads to a decrease in the energy of the molecule; i.e., it is
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accompanied by the stabilization of the entire complex. With a further increase in the Ni-N
distance, an increase in the amount of energy occurs. The most energetically favorable
structure is characterized by the following values of the bond lengths: re(Cα-Cβ) = 1.438 Å,
re(Cβ-Cβ) = 1.356 Å, re(Cα-Cm) = 1.379 Å, re(N-Cα) = 1.375 Å.

Figure 6 shows that the ruffling distortion makes it possible to almost achieve ener-
getically favorable values of internuclear distances in a macrocycle with a shorter bond
length between the Ni and N atoms. In this case, the energetically favorable values of
internuclear distances N-Cα, Cα-Cm, Cα-Cβ, Cβ-Cβ are achieved due to an increase in
the ruffling angle Cα-N···N-Cα and correspond to the Ni-N distance being in the range
of 1.90–1.96 Å. It should be recalled that these B3LYP calculations predict a flat structure
(D4h) of the macrocycle. Similar dependences were obtained from the analysis of the
results of the PBE calculations (Figure S1) with the only differences being that: (a) the
ruffling-distorted structure of NiP (D2d) with an internuclear distance re(Ni-N) = 1.956 Å
corresponds to the minimum on the PES and (b) a planar structure with an internuclear
distance re(Ni-N) = 1.969Å has the lowest energy among the considered flat models and
lies above the ruffling-distorted structure.

3.3. The Determination of NiOMP Structure Using the GED Method

The non-rigidity of the molecule along the ruffling coordinate is expressed by the
shape of the PES along the dihedral angle χ(C1α-N1-N3-C6α) and leads to a low frequency
of the corresponding vibration (Tables 3 and 4). The same was found for a saddle-shaped
distortion in normal mode. Therefore, according to the B3LYP/pVTZ (H, C, N), cc-pVTZ
(Ni) calculations, ωruf = 8 cm−1, ωsad = 20 cm−1. Within the framework of the SHRINK
program formalism, such low frequencies lead to overestimated values of some of the
vibrational corrections used in structural analysis. Thus, the vibrational corrections for the
Ni–N distance and the distances between the nonbonded atoms of the same pyrrole ring,
calculated on the basis of the results of the B3LYP calculations, are 0.03–0.07 Å. This leads
to a strong disagreement between the theoretical and experimental molecular scattering
functions sM(s) within the least squares (LS) procedure (Table 3, variants no. 5 and no. 6).
In these cases, the structure of the porphyrin cycle is strongly distorted, and the difference
between the rh1 and re parameters for the internuclear distances between the bound atoms
reaches an unrealistic value of 0.02–0.10 Å.

Table 3. The degree of ruffling distortion according to the different schemes of structural refinement.

Variants of
LS Analysis VS a Starting

Parameters b
ωruf,
cm−1

ωsad,
cm−1 Rf, % χruf, deg. rh1

(Ni-N), Å

1 I D2d–PBE 28 c 19 c 4.98 21.7 1.953(4)
2 II D2d–PBE 28 c 19 c 4.32 14.6(46) 1.952(4)
3 I D2d–PBE 70 d 19 d 4.27 21.7 1.948(4)
4 II D2d–PBE 70 d 19 d 4.24 22.0(36) 1.948(4)

5 I D4h–B3LYP 8 c 20 c 16.93 0.0 2.056(11)
6 II D4h–B3LYP 8 c 20 c 16.63 7.0(290) 2.073(12)
7 I D4h–B3LYP 28 d 20 d 4.45 0.0 1.954(4)
8 II D4h–B3LYP 28 d 20 d 4.40 10.4(64) 1.954(4)

a Scheme of independent variation of molecular parameters: I—χruf was not refined, and was fixed at the
calculated value, II—χruf was refined; b the method for calculation of vibrational amplitudes and corrections;
c calculated values; d refined values.

Since the disagreement factor Rf obtained in the LS analysis using quantum chemical
frequencies did not decrease below ~16%, we searched for the values of the wave numbers
ωruf,ωsad corresponding to the minimum value of Rf. For this purpose, an LS analysis was
carried out repeatedly using the vibrational characteristics calculated using the vibration
frequenciesωruf,ωsad, which varied within the range of 8–100 cm−1. Table 3 summarizes
the main results obtained using two variation schemes (fixing the ruffling angle obtained
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in the quantum chemical calculations and varying it) for different vibration frequencies
ωruf,ωsad.

Table 4. Structural parameters of nickel porphyrins according to QC, GED and XRD.

Parameters NiP NiOMP. NiEP-
I NiTMP NiOEP

XRD a RI MP2 b B3LYP c PBE c PBE c GED d, rh1 XRD e XRD f XRD e XRD e XRD e

[31] D2d D4h D4h D2d Rf = 4.24% [52] [30] [34] [28] [29]

χ(Cα-N···N-Cα),◦ 1.6 32.6 0.0 0.0 21.7 22.0(36) 0.0 0.9 31.8 0.8 1.3
r(Ni-N), Å 1.951 1.897 1.977 1.970 1.956 1.948(4) 1.957 1.953 1.930 1.952 1.958
r(N···N), Å 2.759 2.683 2.796 2.786 2.766 2.755(6) 2.770 2.763 2.729 2.760 2.769
r(N-Cα), Å 1.379 1.375 1.374 1.383 1.382 1.380(4) 1.396 1.384 1.386 1.385 1.376

r(Cα-Cβ), Å 1.435 1.438 1.448 1.450 1.451 1.451(3) 1.427 1.439 1.448 1.444 1.444
r(Cα-Cm), Å 1.371 1.377 1.379 1.382 1.384 1.384(3) 1.406 1.378 1.372 1.364 1.371
r(Cβ-Cβ), Å 1.347 1.365 1.363 1.372 1.373 1.373(3) 1.335 1.334 1.363 1.332 1.346
r(Cβ-CMe), Å - 1.490 1.497 1.496 1.496 1.508(4) 1.553 - - - -
r(Cβ-CEt), Å - - - - - - 1.553 - 1.501 1.504 1.495
r(C1-C2), Å - - - - - - - 1.507 1.526 1.506
ϕ(Ni-N-Cα),◦ 127.8 128.1 127.6 127.8 127.7 127.8(2) 127.6 127.6 127.5 128.0 128.0
ϕ(Cα-N-Cα),◦ 104.3 103.9 104.9 104.3 104.7 104.4(4) 104.8 104.8 105.1 104.1 103.9
ϕ(Cα-Cm-Cα),◦ 123.5 122.3 124.5 124.0 123.6 123.3(5) 118.4 121.9 124.1 125.2 125.2
ϕ(Cα-Cβ-Cβ),◦ 106.8 106.1 106.3 106.3 106.3 106.1(4) 107.9 107.4 106.8 107.2 106.5

a Average values, T = 127 K; b basis set L2; c basis set pVTZ (H, C, N), cc-pVTZ (Ni); d uncertainties for the bond
lengths were estimated as [(2.5σLS)2 + (0.002r)2]1/2 and for the bond angles as 3σLS; e average values, T = 295 K;
f average values, T = 140 K.

According to the LS analysis performed with the use of scheme II (Table 3) (ωruf = 28 cm−1,
ωsad = 19 cm−1, PBE/pVTZ (H, C, N) cc-pVTZ (Ni)), the distance between the nickel and
nitrogen atoms is rh1 (Ni-N) = 1.952 Å, the angle χ (Cα-N···N-Cα) characterizing the degree
of distortion is 14.6◦ and the disagreement factor is Rf = 4.32%. Freezing the quantum
chemical value χ(Cα-N···N-Cα) = 21.7◦ increases Rf to 4.98%, with the distances between
the bonded atoms of the porphyrin core change not exceeding 0.002 Å. The optimal values of
the vibration frequencies ωruf = 70 cm−1, ωsad = 19 cm−1, found during their optimization,
can reduce the disagreement down to Rf = 4.24%.

At the final stage of the structural refinement of NiOMP, the results of six variants of
the LS analysis (1–4, 7, 8), shown in Table 3, were compared. The distances between the
bonded atoms obtained during these variations are in good agreement with each other.
Some difference in the value of the internuclear distance obtained with different variants of
the LS analysis is observed for Cβ-Cβ. This is due to the difference between the quantum
chemical differences [r(Cα-Cβ)–r(Cβ-Cβ)] obtained in the PBE and B3LYP calculations and
fixed during the LS analysis. The minimum disagreement factor is achieved in variant 4
(Table 3).

Based on the Hamilton statistical approach [53], it was checked whether the flat
and ruffling-distorted structures of the NiOMP molecule are distinguishable. For this
purpose, additional LS calculations were performed according to variants 2 and 4 (Table 3),
in each of which the value of the dihedral angle χ(X1-Ni-N1-C1α) was fixed. Figure 7
shows the relationship between the ratio Rf/Rf,min of the disagreement factors and the
ruffling angle χ (C6α-N3-N1-C1α), where Rf min is disagreement factor obtained in the
LS analyses 2 and 4 (Table 3). In the first case (Figure 9a), the disagreement between
experiment and theory decreases with a change in χ(C6α-N3-N1-C1α) from 0◦ to 15◦ and
rapidly increases with a further increase in this parameter. Since the LS analysis was
carried out using 377 experimental points (s = 1.2 − 15.3 Å−1, 2.8 − 26.2 Å−1 with a step
of ∆s = 0.1 Å−1) and 22 independent parameters, the value of the Hamilton statistical
criterion at a significance level of 0.05 is RHam = Rf/Rf, min = 1.047. In the case of a planar
molecule, that is, at χ(C6α-N3-N1-C1α) = 0◦, the ratio Rf/Rf, min = 1.051 is almost equal to
the Hamilton criterion RHam (Figure 9a). In the case of using variant 4 of the LS analysis
(Table 3), the ratio Rf/Rf, min = 1.24 at χ(C6α-N3-N1-C1α) = 0◦ significantly exceeds the
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Hamilton criterion (Figure 7), which formally indicates a substantial preference of the
ruffling-distorted structure for the NiOMP molecule over a flat one.

Additionally, an alternative approach to the GED inverse problem solution with the
GedModule program [54] was used. This one involves the variation of the force constants
scale factors used for the amplitudes and vibration corrections calculations instead of the
variation of the vibrational amplitudes in the classic version of GED LS analysis. The
details of the approach are described in ref. [54]. In the LS structural analysis, the geometric
parameters and the force field obtained in the calculations PBE/pVTZ (structure of D2d
symmetry) and B3LYP/pVTZ (planar structure of D4h symmetry) were taken as starting
values. It should be noted that the use of the force field obtained for the planar structure in
the B3LYP/pVTZ calculations leads to slightly distorted structures (Table S3), whereas the
structural analysis using a force field from PBE/pVTZ calculations gives a more distorted
structure (Table S3).

Proving either the presence or absence of ruffling distortion using the GED method is
a nontrivial task. Although, the fundamental difference in the shape of the dependences of
Rf/Rfmin on χ(Cα-N···N-Cα) for the CoEP-II molecule [47] and for the NiOMP molecule
makes it possible to state that the structure of NiOMP determined in the GED experiment
is ruffling distorted.

In Table 4, the calculated structural parameters of NiOMP are compared with the
experimental parameters of different nickel porphyrins obtained via XRD [28–31,34,52]
and GED. The Ni-N internuclear distance of the free NiOMP molecule turned out to be
almost equal to similar parameters according to an XRD analysis for ruffling-undistorted
complexes. Despite this fact, it is necessary to bear in mind that the structural parameters
obtained via the GED and XRD methods have different physical meanings [45]. The Ni–N
bond length in the distorted NiOEP complex [34] is shorter by 0.02–0.03 Å than in the planar
nickel porphyrins in the crystalline phase and NiOMP in the gas phase. The shortening of
the Ni-N distances favors the strengthening of the bonding between the Ni and N atoms,
and in turn explains the observed ruffling distortion.
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values. It should be noted that the use of the force field obtained for the planar structure 
in the B3LYP/pVTZ calculations leads to slightly distorted structures (Table S3), whereas 
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is ruffling distorted. 

In Table 4, the calculated structural parameters of NiOMP are compared with the 
experimental parameters of different nickel porphyrins obtained via XRD [28–31,34,52] 
and GED. The Ni-N internuclear distance of the free NiOMP molecule turned out to be 
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Figure 9. The ratio of disagreement factors Rf/Rf min as a function of the torsion angle Cα-
N···N-Cα, responsible for ruffling distortion: (a)—using ωruf = 28 cm−1 and ωsad = 19 cm−1,
(b)—ωruf = 70 cm−1 and ωsad = 19 cm−1. Rf–factor of disagreement between experimental and
theoretical molecular scattering intensities sM(s); Rf min–minimal value of disagreement factor ob-
tained in the LS analysis; RHam–uncertainty according to Hamilton’s statistical criterion [53] at
significance level 0.05.

4. Materials and Methods
4.1. Synthesis

For this process, 50 mg (0.118 mmol) of 2,3,7,8,12,13,17,18-octamethylporphine was
washed into a boiling solution of 0.5 g (1.94 mmol) of acetylacetonate nickel (II) in 30 mL
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of tetrachloroethane. After the complete washout, the solution was boiled for another 1 h
and cooled. Water and 5 mL of acetic acid were added to the mixture and the solvent was
distilled off with steam, the precipitate was filtered, washed with distilled water and dried
in air at 70 ◦C. The yield was 20 mg (35.4%). UV-vis λmax, nm (lg ε): 553 (4.46); 517 (4.93);
391 (5.28) (tetrachloroethane).

4.2. Combined Gas-Pase Electron Diffraction/Mass-Spectrometric Experiment

The combined gas-phase electron diffraction and mass spectrometric experiment
was performed using the GED/MS apparatus [55,56]. An accurate wavelength of the
electrons was determined from the diffraction patterns of polycrystalline ZnO. A sample of
NiOMP was evaporated at 666(10) K, as measured by a W–Re 5/20 thermocouple, from a
molybdenum effusion cell. The diffraction patterns were recorded on the Kodak Electron
Image films SO-163 of 9 × 12 cm2 size at two nozzle-to-plate distances (598 and 338 mm).
The conditions of GED/MS experiments are listed in Table 5. The optical densities of
exposed films were recorded on a computer-controlled MD-100 (Carl Zeiss, Jena, GDR)
setup [57]. For each film, a rectangular area of 10 × 130 mm2 was scanned in a diagonal
direction (33 equidistant lines with a step of 0.1 mm along each line).

Table 5. Parameters a of the GED/MS experiment in synchronous mode for NiOMP.

L, mm 598 338
I, µA 0.96 1.37

Uacc, kV 71 73
T, K; 663(10) 668(10)

p, Torr 2.9·10−6 2.0·10−6

t, s 45 98
N 6 6

smin-smax
b, Å−1 1.2–15.3 2.8–26.2

a L–nozzle-to-film distance, I–primary electron beam current, Uacc–accelerating voltage (approximate), T–effusion
cell temperature, p–residual pressure in diffraction chamber, t–exposure time, N–number of recorded films; b step
∆s = 0.1 Å−1.

Simultaneously with registrations of the electron diffraction patterns, the mass spectra
of the NiOMP vapors were recorded. The mass spectrum (Table S1) is typical for por-
phyrin complexes and is characterized by two groups of peaks corresponded to singly
and doubly charged ions. Each group consisted of the parent ion and ions formed by
consecutive removal of -CH3 groups. The recorded mass spectra contain no ions with a
mass exceeding the mass of a single-charged molecular ion, which indicates the absence
of dimeric forms and heavy volatile impurities. The mass spectra recorded during two
independent experiments (with nozzle-to-plate distances of 338 and 598 mm) demonstrate
a good reproducibility of the ion current relative abundances.

4.3. Quantum Chemical Calculations

Within the current investigation, QC calculations of the molecular geometries and
Hessian of the NiOMP were performed using the Gaussian 09 program package [58]
within the framework of the DFT method with the following functionals: B3LYP, PBE,
PBE0, M06 and B97D. In this work, a large number of calculations were carried out using
various basis sets: (a) 6–31G * [59–62]; (b) pVTZ [61,63–65] for C, N, H, cc-pVTZ [51]
for Ni; (c) cc-pVTZ [51,64] for all atoms; (d) cc-pVTZ–for C, N, H, for describing the Ni
atom, the effective core potential ECP10MDF [49] was used in combination with the basis
(8s7p6d2f1g)/[6s5p3d2f1g] [48,49], taken from the site of the Stuttgart–Cologne group [66].
The QC calculations of the optimization geometric structure of the nickel porphyrins were
performed using the program Priroda 9 [67] within the framework of the RI MP2 method
and with the basis set L2.

The sophisticated DLPNO-CCSD(T) method [68–70], as implemented in the ORCA
4.0 code [71] for single-point calculations, was applied. The “TightPNO” DLPNO settings
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(TCutPairs = 10−5, TCutPNO = 10−7 and TCutMKN = 10−3) were used, as recommended,
for applications where the most accurate values are targeted [72]. The sub-valence electrons
on the nickel atom were correlated following the new ORCA 4 defaults [73,74]. The scalar
relativistic effects were accounted for in the second-order scalar relativistic Douglas–Kroll–
Hess (DKH2) Hamiltonian [75]. The following all-electron, relativistically recontracted [76],
triple-ζ correlation-consistent basis sets were utilized in the present work. Dunning’s cc-
pVnZ-DK basis sets were applied to describe the hydrogen, carbon and nitrogen atoms [50].
The nickel atom was described with the correlation-consistent, polarized, weighted core-
valence cc-pwcVTZ-DK basis sets of Balabanov and Peterson [51]. The correlation fitting
basis sets def2-qzvpp/C developed by Hättig [77,78], required for the resolution of the
identity (RI) approximation as a part of DLPNO scheme, were used.

4.4. Structural Analysis

The analysis of the electron diffraction intensities was performed using a modified
KCED-35 program, which is similar to the program described in the paper [79]. The model
of NiOMP (Figure 2) was described through 26 independent parameters (X1 is a dummy
atom defining the z axis direction and X1 is perpendicular to the molecule):

Ten internuclear distances: Ni-N1, N1-C1α, C1α-C1β, C1β-C2β, C2α-C1m, C1m-H1m,
CMe1-C1β, H1

Me1-CMe1, H2
Me1-CMe1, H3

Me1-CMe1;
Seven bond angles: Ni-N1-C1α, N1-C1α-C1β, H4m-C4m-C1α, CMe1-C1β-C1α, H1

Me1-
CMe1-C1β, H2

Me1-CMe1-C1β, H3
Me1-CMe1-C1β;

Nine torsion angles: X1-Ni-N1-C1α, C1β-C1α-N1-Ni, C1β-C1α-C2β-N1, C4m-C8α-C1α-
Ni, H4m-C4m-C8α-C1α, CMe1-C1β- C1α-N1, H1

Me1-CMe1-C1β-C1α, H2
Me1-CMe1-C1β-H1

Me1,
H3

Me1-CMe1-C1β-H1
Me1.

The angles N1-Ni-X1, N4-Ni-X1-N1 are fixed at 90◦ and the dihedral angles N3-Ni-X1-
N1 are fixed at 180◦.

In least-squares (LS) analysis, two schemes for the refinement of the structural pa-
rameters were carried out (see Table 6). In the first scheme, the coordinates determining
the ruffling distortion of the macrocycle were not refined. The second scheme implies
the refinement of coordinates describing the ruffling distortion. These independent geo-
metric parameters were refined simultaneously with 13 groups of vibrational amplitudes
corresponding to the different peaks on the radial distribution curve. The starting values
of the vibration amplitudes and the vibrational corrections to the internuclear distances
were calculated using the SHRINK program [80–82], as well as the starting values of the
geometric parameters were taken from the results of the B3LYP and PBE calculations using
the following basis sets: for H, C, N–Dunning basis sets [63,64] supplemented by polarized
functions pVTZ [61,65] (the set is referred to as the «GAMESS pVTZ» in the EMSL basis
set exchange [83,84]), for Ni-cc-pVTZ [51]. Our earlier studies [44,46] revealed that QC
calculations using this combination of basis sets give good agreement with the experimental
results at a comparatively low cost of computational resources.

Table 6. Two schemes of the independent variation of molecular parameters in the LS refinement
of NiOMP.

Molecular Parameters
Schemes of Independent Variation of Molecular Parameters

I II

Bond lengths Ni-N, N-C, C-C a Ni-N, N-C, C-C a

Bond angles Ni-N1-C1α, N-C1α-C1β Ni-N1-C1α, N1-C1α-C1β
Torsion angles - X1-Ni-N1-C1α, C4m-C8α-C1α-Ni

a the differences between Cα-Cβ, Cβ-Cβ, Cα-Cm bond lengths were fixed at the calculated values.

5. Conclusions

Ruffling distortion can manifest itself in porphyrin molecules when the central atom
reduces the coordination cavity. This type of distortion reduces the changes in the internu-
clear distances in the porphyrin core that occur during complexation. The Ni-N distance is
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short enough and, therefore, the manifestation of ruffling distortion is possible in porphyrin
complexes with Ni(II).

Theoretical calculations do not provide an unambiguous answer concerning the pres-
ence of ruffling distortion in the NiOMP molecule. The complexity of these studies is
associated with the non-rigidity of the molecule along the “ruffling” coordinate.

Taking into account the shallow potential function of NiOMP along the ruffling coor-
dinate, proving the presence or absence of ruffling distortion using the GED method is a
challenging problem. Within this work, a large number of approaches to structural analysis
were used. They differ from each other according to (a) the starting geometric parameters
obtained by the different QC calculations, (b) the vibrational corrections and the starting vi-
brational amplitudes, (c) the scheme of independent variations of the molecular parameters
and (d) the variants of the force field variations during structural analysis. Nevertheless,
a comprehensive comparison of the GED results obtained for NiOMP, CuOMP [43] and
CoEP-II [47], specifically the fundamental difference in the shape of the dependences of
Rf/Rfmin on distortion coordinate, allows us to state that the ruffling distortion takes place
in the NiOMP free molecule.

Eventually, the ruffling distortion should be expected for the porphyrin metal com-
plexes with M-N distance shorter than 1.96 Å.
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