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Progression through the cell cycle is one of the most important decisions during the life of a cell and several kinds of stress are able
to influence this choice. p57 is a cyclin-dependent kinase inhibitor belonging to the CIP/KIP family and is a well-known regulator of
the cell cycle during embryogenesis and tissue differentiation. p57 loss has been reported in a variety of cancers and great effort has
been spent during the past years studying the mechanisms of p57 regulation and the effects of p57 reexpression on tumor growth.
Recently, growing amount of evidence points out that p57 has a specific function in cell cycle regulation upon cellular stress that is
only partially shared by the other CIP/KIP inhibitors p21 and p27. Furthermore, it is nowadays emerging that p57 plays a role in the
induction of apoptosis and senescence after cellular stress independently of its cell cycle related functions. This review focuses on
the contribution that p57 holds in regulating cell cycle arrest, apoptosis, and senescence after cellular stress with particular attention
to the response of cancer cells.

1. Introduction

Cells can encounter different kinds of stress during their life
and in turn have evolved a wide range of responses. Stress-
activated signalling pathways such as ATM/ATR, JNK/SAPK,
and p38 pathways are activated in mammalian cells by DNA
damage, starvation, heat and osmotic shock, and oxidative
stress. Depending on the kind, severity and duration of
insult, and on the cell type, these responses can lead to
different final outcomes, spanning from cell survival to cell
death. Cell cycle delay or arrest is often the first safety step
triggered in a stressed cell, followed by injury repair and thus
restoration of cellular proliferation, or by the induction of
cellular senescence or cell death.

Cellular senescence is defined as the irreversible exit
from the cell cycle. In multicellular organisms there are three
conditions in which cells stop dividing: quiescence, terminal
differentiation, and senescence. Quiescence is reversible and

it is usually induced by growth factor’s withdrawal or contact
inhibition, while in terminal differentiation and cellular
senescence cell cycle arrest is permanent. During terminal
differentiation cells acquire a distinctive phenotype and
specialized functions in response to physiological stimuli.
On the other hand, cells become senescent after exposure to
peculiar types of stress [1]. Shortening of telomeres has been
identified as the main stress inducing senescence in cultured
cells in vitro, called for this reason replicative senescence.
Genotoxic stress and more generally prolonged activation
of the DNA damage response pathways results in the so-
called premature senescence. Interestingly, cells usually arrest
cell cycle in G1 phase during replicative senescence and
in G2 phase during premature senescence. Senescent cells
often display a flat, enlarged morphology and exhibit an
increase in the lysosomal 𝛽-galactosidase activity that can
be used as senescence biomarker (senescence-associated 𝛽-
galactosidase activity or SA-𝛽-gal activity). Many senescent
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cells also display a characteristic senescence-associated secre-
tory phenotype (SASP) (for a review on cellular senescence
see [2]). Senescence is thought to be a major barrier to
tumor formation, as it limits the replicative potential of cells
and seems to activate the immune system. Indeed, it has
been reported that senescence limits the growth of many
tumors including epithelial tumors of the colon, head and
neck, and thyroid [3–5]. On the other hand, recent studies
show that senescence is involved in tumor regrowth and
disease recurrence, as senescent tumor cells can serve as a
reservoir of secreted factors with mitogenic, antiapoptotic,
and angiogenic activities [6].

Regarding cell death, different types of programmed cell
death, including autophagy, apoptosis, and necroptosis have
been described so far. Starvation is a canonical cellular con-
dition that starts autophagy, but also damaged organelles are
recycled by autophagy [7]. DNA damage, instead, represents
a common type of cellular stress inducing apoptosis [8]. On
the other hand, cells can undergo necroptosis, or necrosis-like
caspase-independent programmed cell death, in presence of
cellular inhibitor of apoptosis proteins (cIAPs) and caspase
inhibitors [9].

Apoptosis is the most common type of programmed cell
death by which the body eliminates damaged or exceeding
cells without local inflammation. Accordingly, apoptosis
plays several physiological and pathological roles, spanning
from tissue remodelling during embryogenesis to cancer pro-
gression. Two main molecular pathways have been described
so far, the so-called extrinsic and intrinsic pathways. The
extrinsic pathway is triggered by the activation of death
receptors located on the cellular membrane and is usually
involved in processes of tissue homeostasis such as the
elimination of autoreactive lymphocytes, while the intrinsic
pathway is mainly mediated by the release of cytochrome
𝑐 from mitochondria, a well-known cellular response to
stress [10]. Both pathways lead to the activation of caspases,
aspartate-specific cysteine proteinases, which mediate the
apoptotic effects among which the cleavage of proteins
responsible for DNA repair and cell shrinkage. Notably, many
chemotherapeutic drugs kill cancer cells inducing apoptosis
upon DNA damage or sensitize cancer cells to apoptosis to
overcome drug resistance. To this regard, much effort has
been spent to study and possibly control apoptosis in malig-
nancies and so it is of fundamental importance to understand
the molecular pathways and cellular conditions that regulate
and trigger apoptosis. It is now clear, indeed, that drug/stress-
induced damage can initiate different postdamage responses,
including apoptosis and cellular senescence, depending on
the balance of pro- and antiapoptotic factors and on the levels
of regulators of the cell cycle [11, 12].

p57 (cyclin-dependent kinase inhibitor 1C or KIP2)
is considered a master regulator of the cell cycle during
embryogenesis and tissue differentiation [13, 14], but recently
a broad spectrum of evidence indicates that p57 plays a role,
sometimes distinct from cell cycle control, also in the cellular
response to different stresses, regulating the induction of
apoptosis and senescence. This review summarizes those
findings with particular attention to the role that p57 plays
in the cellular response to stress of cancer cells.

2. p57 Functions and Regulation

p57 belongs to the CIP/KIP family of cyclin-dependent
kinase (CDK) inhibitors (CKIs) along with p21 and p27. The
CIP/KIP family counteracts cell cycle progression inhibiting
all the cyclin CDK complexes throughout the cell cycle (for a
review on CKIs see [15]). In particular, p57 inhibits the com-
plexes formed with CDK2, CDK3, and CDK4 and to a lesser
extent CDK1 and CDK6 [16–18]. Induction of p57 causes cell
cycle arrest mostly in G1 phase [16], even if cell cycle arrest
in G2 phase has also been reported after p57 reinduction in
cancer cells [19]. In addition to anN-terminalCDK inhibitory
domain, homologs to the ones of p21 and p27, and a C-
terminal QT-box, significantly homologous with that of p27,
human p57 has a central domain rich in proline-alanine
repeats responsible for additional p57 interactions, suggest-
ing that p57 can exert different and/or more complex func-
tions than its siblings [13, 14]. Indeed, the p57 internal domain
has been reported to interact with the N-terminal of LIM
domain kinase 1 (LIMK-1), a kinase involved in the control
of actin dynamics, supporting the idea that the p57 internal
domainmay be responsible for p57 functions other thanCDK
inhibition [20, 21]. All the three members of the CIP/KIP
family are evolutionary conserved among vertebrates, with
p57 more closely related to p27 than p21, as indicated by the
structural homology and phylogenetic relationship [22, 23].

Due to its role in cell cycle control, p57 is involved in the
regulation of many cellular processes such as embryogenesis
and tissue differentiation. In muscle differentiation p57 par-
ticipates in the regulation of cell cycle exit of differentiating
myoblasts [24, 25]. During hematopoiesis decreased levels of
p57 are essential for the exit from quiescence and reentry
into the cell cycle of hematopoietic stem cells [26–28]. p57
is also involved in the differentiation of several other cell
phenotypes, including podocytes [29], placental cells [30],
keratinocytes [31], pancreatic cells [32], hepatocytes [33], T-
lymphocytes [34], and spermatozoa [35]. Other than differ-
entiation, p57 seems to be involved also in controlling tissue
aging. Indeed, Park and Chung analyzed the levels of p57
in muscle and lung during mouse aging showing that these
levels go toward a clear decrease [36].Themechanism of such
a decreasewas not investigated, but the authors suggested that
p57 decrease could be associated to tissue aging as p57 can
contribute to muscle differentiation and regeneration.

p57 is considered a tumor suppressor gene due to its
ability to inhibit proliferation and the importance of p57
in the suppression of cancer is highlighted by its muta-
tion/inactivation in the Beckwith-Wiedemann Syndrome, a
cancer predisposing syndrome [37]. Remarkably, p57 expres-
sion is reduced in some human malignancies including
lung cancer, hepatocellular carcinoma, and bladder cancer,
confirming its involvement during tumorigenesis [38–40].

A cytoplasmic localization for p57 has been described in
non-small-cell lung carcinoma and esophageal squamous cell
carcinoma [41, 42], suggesting that p57 can exert different
functions in different cellular compartments. Indeed, it seems
that p57 is important for cytoskeletal dynamics and cell
motility. As previously cited, it has been reported that p57
is able to bind LIMK-1, an enzyme that promotes actin



Mediators of Inflammation 3

filaments formation, and to sequester it into the nucleus [21].
Accordingly, the absence of p57 causes a delayedmigration of
neurons in the cortical plate duringmouse development [43].
In contrast to these findings, Vlachos and Joseph confirmed
in a human cervical adenocarcinoma (HeLa) cell line the
interaction between p57 and LIMK-1, but they showed that
this interaction does not result in the translocation of the
kinase into the nucleus, but instead augments LIMK-1 activ-
ity, hence increasing actin-fiber formation [20]. Interestingly,
also p21 seems to play different roles depending on cellular
localization, as it can localize to the nucleus, where it regulates
cell proliferation and differentiation, or in the cytoplasm,
where it inhibits apoptosis [22, 44].

Considering that p57 is involved in many cellular pro-
cesses, it is not surprising that it shows a complex regulation.
The expression pattern of p57 has a highly specific spatial
and temporal profile, reaching its peak and widespread
distribution during embryogenesis and development, while
in adults it is restricted to few tissues such as testis andmuscle.
The importance of p57 during embryogenesis emerges also
from the analysis of the knockout mouse phenotype, as
p57 null embryos present hyperplasia in several organs and
cannot survive [14, 17]. The precise expression pattern of p57
is achieved by complex and multiple levels of transcriptional
and posttranscriptional regulation (Figure 1). First of all, in
both mouse and human, the p57 gene, cdkn1c, is located in
the imprinted domain kcnq1/kcnq1ot1.Maternal and paternal
allele of an imprinted gene display, despite the fact that they
have identical sequences, different epigenetic modifications,
such as DNA methylation within CpG islands, histones
acetylation, and methylation. The imprinting of a cluster
of genes is regulated by specific sequences acting in cis,
known as imprinted control regions (ICR). In particular,
cdkn1c is expressed only by the maternal allele, while the
paternal allele is silent (Figures 1(a) and 1(c)) [14]. The
imprinting regulation is achieved through the ICR KvDMR1,
located 150 kbp downstream the p57 promoter.The repressive
epigenetic status on the paternal allele is regulated by the
long noncoding RNA kcnq1ot1, which is expressed only in
the paternal allele from the ICR KvDMR1. Kcnq1ot1 is able to
recruit theDNAmethyl-transferase 1 and the histonemethyl-
transferases EZH2 and G9a on the promoters of imprinted
genes, leading to the silencing of the paternal allele [45].

In addition to imprinting control, cdkn1c promoter har-
bors the binding sites for many transcription factors that
regulate its expression in a cell type dependent manner
(Figure 1(c)). For example, Sp1 and p73𝛽 are able to bind and
induce cdkn1c promoter [46, 47], while Hes1, a Notch effector,
suppresses the expression of p57 [48].

During muscle differentiation, another mechanism of
transcriptional regulation has been described that involves
p57 promoter long-range direct and functional association
with the ICR KvDMR1 (Figure 1(b)). This association leads
to the formation of a repressive intrachromosomal loop
mediated by the insulator factor CTCF; this loop is destroyed
during muscle differentiation by the binding of MyoD to the
ICR KvDMR1 [49, 50].

Moreover, a series of microRNA (miR) have been
reported to downregulate the expression of cdkn1c

(Figure 1(d)). For example, miR-221 and miR-222 have
been found overexpressed in many cancer types where they
lead to p57 downregulation [51, 52].

Finally, p57 protein stability is regulated by both phos-
phorylation and ubiquitination (Figure 1(e)). In particular,
p57 phosphorylation by different kinases leads to its ubiqui-
tination and 26S proteasome-mediated degradation. CDK2-
cyclin E complex phosphorylates p57 at Thr310 of the QT-
box domain [53]; Akt, a kinase often deregulated in cancer,
phosphorylates p57 at Thr310 or Ser282 [54]; while CHK1
(checkpoint kinase-1) phosphorylates p57 at Ser19 [55].

3. p57 at the Crossroad between Cell Cycle
Arrest, Apoptosis, and Cellular Senescence

3.1. p57 Contribution to Cell Cycle Control upon Cellular
Stress. All the three members of the CIP/KIP family play an
important role in controlling cell cycle exit. In particular, p57
is a master regulator of the cell cycle during embryogenesis
and tissue differentiation [13, 14], but nowadays it is emerging
that p57 has a specific function in cell cycle regulation
upon cellular stress that is only partially shared by the
other CIP/KIP inhibitors. Interestingly, this new role of p57
in controlling the cell cycle upon cellular stress has been
reported to be both CDK inhibition-dependent and CDK
inhibition-independent (Figure 2).

A CDK inhibition-dependent mechanism has been
described for the stress-activated protein kinase (SAPK) p38
signalling, which is activated in mammalian cells by several
insults, such as osmostress, oxidative stress, ionomycin, and
UV [56–58]. It has been shown that SAPK p38 is able to
phosphorylate p57 at Thr143 and this modification increases
p57 affinity towards CDK2 resulting in cell cycle arrest at G1
in response to stress [59].The increased activity of p57 is able
to confer great resistance to different stimuli as cells lacking
p38 or p57 display reduced viability to the previously cited
stresses. Interestingly, phosphorylation of p57 by p38 neither
affects its stability nor its localization, highlighting a novel
mechanism of action of p57 after stress different from that
observed during cellular differentiation that instead involves
p57 induction/degradation. Notably, while hematopoietic
stem cells that lack p57 present elevated levels of p27,
suggesting that maintenance of cell quiescence is a common
feature of p57 and p27, embryonic fibroblast knockout for p57
subject to stress are not able to increase p27, confirming that
response to stress is a peculiar role of p57 [59].

On the other hand, p57 participates in the c-Jun NH
2
-

terminal kinase/stress-activated protein kinase (JNK/SAPK)
pathway with a CDK inhibition-independent mechanism.
Indeed, p57 negatively regulates the JNK/SAPK signalling
cascade through direct inhibition of JNK/SAPK, indepen-
dently of its well-known inhibitory function on CDKs
[60]. Deletion mutant experiments showed that p57 inhibits
JNK and CDK2 by distinct mechanisms. In particular, p57
interacts with JNK1 through its QT-BOX domain and this
interaction is able to preclude the interaction between JNK1
and c-Jun [60], while the inhibition of CDK2 is achieved
through the CDK inhibitory domain. JNK/SAPK activation
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Figure 1: Different mechanisms of transcriptional and posttranscriptional p57 regulation. (a) Imprinting control on the paternal allele; (b)
long-range intrachromosomal interactions between p57 promoter and KvDMR1 can repress the transcriptional expression; (c) promoter
demethylation, active histonemarks, and transcriptional factors binding regulate p57 expression; (d) p57mRNA stability is regulated bymiR;
(e) p57 protein stability is regulated by phosphorylation and ubiquitination.

is implicated in the regulation of different cellular activities
ranging from cell growth to cell death [61, 62]. Previous stud-
ies using p57 knockoutmice reported an increase in apoptosis
and altered differentiation during mouse development [63,
64]. It is plausible, therefore, to conclude that JNK/SAPK
inhibition could be an important mechanism by which p57
exerts its functions not only on proliferation but also on cell
death. Notably, this antiapoptotic role of p57 mediated by
JNK/SAPK inhibition is in sharp contrast to the proapoptotic
effects of p57 overexpression in cancer cells highlighted in the
following section of this review.

3.2. p57 andApoptosis. p21 and p27, the othermembers of the
CIP/KIP family, have been reported to play a role in apoptosis

[65, 66] and it is now emerging that p57 is implicated
too (Figure 2). Samuelsson and colleagues reported that p57
expression enhances apoptosis in HeLa cells treated with
staurosporine, a protein kinase C inhibitor, and showed that
p57 itself is a target of caspase activity [67]. In contrast to
p27, which has a proapoptotic activity by itself [68], p57 was
found to have only a minor proapoptotic effect on its own,
but rather to sensitize cells to apoptosis. In agreement, a
concomitant expression of the antiapoptotic factors Bcl-x

𝐿

or Bcl-2 was found to counteract p57 proapoptotic effect.
The molecular mechanism by which p57 promotes cell
death was investigated by Vlachos and colleagues [69]. p57
overexpression is able to sensitize cancer cells to apoptotic
agents such as cisplatin, etoposide, and staurosporine via a
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Figure 2: Network of p57 pathways involved in the cellular response to stress. Schematic view of the different mechanisms by which p57 can
modulate proliferation, apoptosis, and senescence. Green arrows indicate positive regulation; black T-bar arrows indicate negative regulation;
black dotted arrows indicate translocation; red arrow indicates phosphorylation; black facing-down arrow indicates loss of mitochondrial
transmembrane potential (ΔΨm).

mechanism that is independent of p57 ability to inhibit CDK
activity in the nucleus. In particular, p57, withinminutes from
drug treatment, translocates into mitochondria promoting
Bax activation and loss of mitochondrial transmembrane
potential, thus triggering the intrinsic apoptotic pathway
through the cytochrome 𝑐 release into cytosol and consequent
caspase-9 and caspase-3 activation. Mitochondrial pathway
specificity was confirmed, as p57 expression was ineffective
in promoting death receptor-mediated apoptosis stimulated
with agonistic anti-FAS antibodies.Themechanism by which
p57 triggers the mitochondrial intrinsic pathway has been
linked to the ability of p57 to stabilize the actin cytoskeleton
by Kavanagh and colleagues [70]. They demonstrated that
p57 directly interacts with LIM domain kinase-1 (LIMK-1)
resulting in an increase in LIMK-1 kinase activity, which
is required for both p57-mediated actin cytoskeleton sta-
bilization and p57 death promoting effect. Indeed, LIMK-
1 is able to inactivate the cytoskeleton remodelling factor
cofilin that is involved in the disassembling of actin filaments
and it has already been supposed that stabilization of the
actin cytoskeleton can promote apoptotic cell death [71].
Furthermore, p57-mediated stabilization of actin leads to the

displacement of hexokinase-1, an inhibitor of the mitochon-
drial voltage-dependent anion channel, from mitochondria,
providing a possible mechanism for mitochondrial depolar-
ization and therefore for the promotion of the mitochondrial
apoptotic cell death pathway.

p57 proapoptotic effects were observed in different cell
lines, including HeLa cervical cancer cells, SH-SY5Y neurob-
lastoma cells, SKOV3 ovarian carcinoma cells, and mouse
embryonic fibroblast cells [69]. In H1299 lung cancer cells
and HCT116 colorectal carcinoma cells, silencing of p57
was shown to suppress p73𝛽-mediated apoptosis induced by
cisplatin treatment [72]. However, the death promoting effect
of p57 was not seen in HEK-293 human embryonic kidney
cells, suggesting some degree of cell type specificity, likely due
to the balance between survival and death pathways that are
active in a particular cell type.

Kuang and colleagues performed an interesting study
on different leukemia cell lines that differ for p57 promoter
methylation status [19]. They analyzed the expression of p57
after different stimuli such as transforming growth factor-
𝛽, lipopolysaccharide, tumor necrosis factor-𝛼, insulin-like
growth factor 1, and different forms of cellular stress such as
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high-density culture or serum withdrawal. They found p57
reactivation only in cell lines with unmethylated promoter
but not in methylated cells, leading to different outcome
ranging from no effect on cell growth to G2 arrest and
apoptosis, depending on cell type and type of insult. Remark-
ably, exogenous overexpression of p57 in p57 promoter-
methylated leukemic cell lines resulted in marked cell growth
arrest and induction of apoptosis, while the overexpression of
p57 in partially methylated cells only resulted in a moderate
inhibition of cell growth and had no impact on apoptosis,
suggesting that the epigenetic status of p57 promoter can
influence the cell response to stress stimuli.

It is worthy of notice that the proapoptotic effects of
p57 described so far have been mainly reported in cancer
cells after p57 overexpression or reinduction, while antiapop-
totic activity of p57 has been observed in its physiological
regulation of JNK pathway (see previous section) and dur-
ing embryogenesis, suggesting that cellular context drives
a major contribution to the final outcome. For example,
antiapoptotic activity of p57 was reported in response to
green tea polyphenols administration. Catechins are known
to induce cell death in many types of tumor cells, but normal
human epithelial cells were found to survive in the presence of
polyphenols because of their ability to induce p57 expression.
p57was able to prevent green tea polyphenols-inducedApaf-1
expression thus avoiding apoptosis [73]. Finally, p57 has been
suggested to have an antiapoptotic role in the gastrointestinal
tract and the lens of the eye during embryonic development
[63, 74].

3.3. p57 and Cellular Senescence. In two human hepatocarci-
noma cell lines (HepG2 and SNU398) p57 overexpression has
been found to affect proliferation and morphology without
affecting the apoptotic machinery. In these cells, p57 expres-
sion is regulated by neither miR-221 nor the methylation
status of the promoter but instead by the Notch target gene
Hes1. p57 infected cells or Notch1- and Notch3-silenced
cells, which upregulates p57, arrest growth with a senescent
morphology, SA-𝛽-gal staining, and p16 expression [75].

In a similar manner, Tsugu and colleagues have shown
that p57 induction in p57-negative human astrocytoma cell
lines (U343, U87, and U373) can block the proliferation and
alter the morphology, with cells becoming large and flat
with an expanded cytoplasm [76]. These flat cells resemble
the senescent phenotype even if the SA-𝛽-gal activity was
reported to be partially reversible withdrawing p57 forced
expression. Although senescent cells are thought to be resis-
tant to apoptotic cell death, in one of the astrocytoma cell
lines induced to express p57 (U373), a small subset of cells
(15% of the population) was described to undergo apoptosis.
Notably, Bax levelswere unchanged.Why this occurs andwhy
this particular cell line responds in a different manner to p57
induction is an interesting yet unanswered question.

A pivotal role of p57 in the premature senescence of
vascular smooth muscle cells has been shown by Valcheva
and colleagues in vitamin D receptor knockout mice [77].
Interestingly, they show a direct link between oxidative stress,
p57 induction, and the onset of the senescent phenotype

(Figure 2). Indeed, lack of vitamin D signalling results
in increased cathepsin D enzymatic activity, which in
turn augments angiotensin-II production. The binding of
angiotensin-II to its receptor AT1 increases NADPH oxidase
activity and free radical production. The latter induces high
levels of p57 that trigger the premature senescence of vascular
smooth muscle cells. Senescent vascular smooth muscle cells
have been found in atherosclerotic plaques [78] and recent
results suggest that vascular smooth muscle cell senescence
could even promote atherosclerosis [79], tempting to specu-
late that p57 could become a therapeutic target. More studies
are needed to deepen the interesting correlation betweenROS
production and p57 increase.

4. Concluding Remarks

Initially identified as a cyclin-dependent kinase inhibitor,
p57 has since been shown to have different cellular roles
aside from cell cycle inhibition, such as cell migration and
regulation of cell differentiation. Nowadays it is emerging
that p57 plays a key role also in coordinating the cellular
response to stress, being able to drive to both apoptosis
and cellular senescence. Different mechanisms of action,
both CDK inhibition-dependent and CDK inhibition-
independent, have been disclosed and, as highlighted in this
review, p57 is now implicated in the crosstalk between several
different pathways, among which MAPK signalling, DNA
damage response, mitochondrial apoptotic pathway, and
cytoskeleton organization. The findings that p57 can induce
cell cycle arrest, apoptosis, or cellular senescence depending
on cell types and cellular context arise several questions:

(i) Is the final outcome dependent on p57 levels?

(ii) As many data come from in vitro studies and over-
expression of any gene can lead to experimental
artefacts, which is the physiological relevance of p57
induction in vivo?

(iii) Which is the grade of overlapping between the three
members of the CIP/KIP family?

(iv) Bearing inmind that stopping abnormal proliferation
is a key goal of our scientific community, is the
reinduction of p57 a promising approach for cancer
therapy?

(v) Do cancer cells respond in a different way from
normal cells to p57 overexpression?

p57 is now emerging as a new master regulator of cell
fate and the mechanisms through which p57 participates in
the cellular response to stress have been just started to be
dissected.
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