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Introduction

Occurring in 40% of individuals younger than 30 and in more
than 90% of those older than 50 years of age,1,2 intervertebral
disk (IVD) degeneration is a commonly diagnosed disorder

that can lead to nerve compression and chronic back pain.
Though pharmacologic and physiotherapeutic treatments
relieve early symptoms, surgical intervention is eventually
required in nearly 4 million patients worldwide.3 Spinal
fusion surgery, most commonly performed in degenerative
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Abstract Study Design Literature review.
Objective Degenerative disk disease (DDD) has a negative impact on quality of life and
is a major cause of morbidity worldwide. There has been a growing interest in the
biological repair of DDD by both researchers and clinicians alike. To generate an
overview of the recent progress in reparative strategies for the treatment of DDD
highlighting their promises and limitations, a comprehensive review of the current
literature was performed elucidating data from in vivo animal and clinical studies.
Methods Articles and abstracts available in electronic databases of PubMed, Web of
Science, and Google Scholar as of December 2014 were reviewed. Additionally, data
from unpublished, ongoing clinical trials was retrieved from clinicaltrials.gov and
available abstracts from research forums. Data was extracted from the most recent
in vivo animal or clinical studies involving any of the following: (1) treatment with
biomolecules, cells, or tissue-engineered constructs and (2) annulus fibrosus repair.
Results Seventy-five articles met the inclusion criteria for review. Among these, 17
studies involved humans; 37, small quadrupeds; and 21, large quadrupeds. Findings
from all treatments employed demonstrated improvement either in regenerative
capacity or in pain attenuation, with the exception of one clinical study.
Conclusion Published clinical studies on cell therapy have reported encouraging
results in the treatment of DDD and resultant back pain. We expect new data to
emerge in the near future as treatments for DDD continue to evolve in parallel to our
greater understanding of disk health and pathology.
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disk cases, presents risks for pseudarthrosis and adjacent
segment disease, resulting in higher rates of reoperation in
patients.4,5 Prosthetic total disk replacement (TDR) devices,
developed to maintain segmental mobility, are an alternative
to fusion surgery. However, recent studies have shown that
not only spinal fusion but also TDR alters spine biomechanics
leading to adjacent segment disease.5,6 Hence, it remains
controversial whether the theoretical advantage of TDR truly
translates to clinical or radiologic superiority over fusion
surgery.5,6 Current treatment options to disk degeneration,
both conservative and surgical, fail to treat the underlying
etiology; the degenerated disk remains unrepaired.

To overcome the limitations of available treatments, bio-
logical repair has emerged as a feasible way to treating
pathologic disk segments. Strategies utilized in biological
IVD repair are specific to the stage of degeneration and can
be classified into three categories: biomolecular therapy, cell
therapy, and tissue-engineered IVD construction (►Fig. 1).7–9

Early degenerated disks with sufficient populations of viable
cells is treatedwith biomolecules, such as recombinant genes
or proteins (►Fig. 2). These agents can enhance selective
protein expression to decrease catabolic or increase anabolic
cascades, favoring extracellular matrix (ECM) regeneration.
Midstage degeneration, characterized by less active and
rapidly disappearing viable cells, is treated with cell implan-
tations to meet the increased demand of the disk. When the
disk structure and function are severely compromised, reach-
ing terminal stage degeneration, implantation of tissue-en-
gineered disklike constructs is the most potent option for
reconstruction of the disk segment. Each treatment modality

utilized can target specific structures of the IVD. The IVD is an
intricate complex composed of diverse but interrelated tis-
sues: the central gelatinous and highly hydrated nucleus
pulposus (NP), the stiffly composed annulus fibrosus (AF)
surrounding the NP, and the cartilaginous end plates that
connect these tissues to the vertebral bodies provide ample
nutrition. Given that degeneration is a multifaceted process
that involves the NP, AF, and end plate, one or all components
can be targets of potential biological repair.

For many years, NP tissue has been the principal focus of
disk repair in early tomidstage degeneration, but interest has
recently turned to the AF as a more practical target.10

Strategies targeted at NP, primarily through transannular
approaches, compromise the AF tissue.11 Additionally, an
annular defect is the underlying etiology for patients with
lumbar disk hernia; diskectomies to remove herniated disks
can unveil annular defects, which are often overlooked and
left untreated by surgeons due to the limited reparative
options. Persistent annular defects are related to rehernia-
tion and progressive disk degeneration postdiskectomy.12,13

Hence, annular repair is an emerging but significant facet in
the treatment of degenerative disk disease (DDD). In the
present study, we review in vivo animal and clinical studies
of biological disk repair. Integrating degenerative stage-
specific and IVD component-specific therapy helps elucidate
a multifaceted treatment module for disk degeneration. An
analysis of the varying research, previous and current, in
degenerated disk repair offers greater insight into potential
clinical applicability, propelling their transition from bench
to bedside.

Fig. 1 Schematic picture of intervertebral disk unit, pathologic conditions, and potential treatments. Schematic pictures of the healthy disk show
three components of the disk both macro- and microscopically. In degenerated disks, metabolism, cells, and structure encounter imbalance of
supply and demand, one, some, or all of which each strategy will redress. Abbreviations: AF, annulus fibrosus; EP, end plate; NP, nucleus pulposus;
VB, vertebral body.
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Methods

A comprehensive search of the literature was performed. Full
publications and abstracts available in the electronic databases
of PubMed, Web of Science, and Google Scholar as of Decem-
ber 2014 were reviewed. Additionally, data from unpublished,
ongoing clinical trials was retrieved from clinicaltrials.gov and
available abstracts from research forums. After the initial search,
the results were reviewed, duplicates were excluded, and only
the relevant studies were included. The primary inclusion
criterion was the presence of in vivo and/or clinical results on
disk regeneration. The secondary inclusion criterion was the
ability to be categorized into one of the following categories: (1)
biomolecular therapy, (2) cell-based therapy, (3) tissue-engi-
neered IVD construction, (4) AF repair, (5) published and ongo-
ing clinical studies. After article selection, we extracted the
following outcome measures for in vivo animal studies: disk
height based on X-ray, signal intensities and degenerative grade
based on magnetic resonance imaging (MRI), histologic assess-
mentof reparative tissue, proteoglycan content, andbiomechan-
ical functionality. For clinical studies, we extracted
questionnaire-based subjective assessment on preexisting pain
and physical function in addition to radiologic outcome
measures.

In Vivo Animal Studies

Biomolecular Treatment
A defining compositional change in degenerated disks is the
gradual decline of NP water content emanating from the loss
of proteoglycan and collagen. The loss of swelling pressure in
the NP is followed by the loss of mechanical tension in the AF
collagen fibers, resulting in abnormal loading of the spine.
These alterations often lead to segmental instability with the
development of neckor back pain and narrowing of the spinal
canal, which may induce neurologic symptoms. In early
degeneration, the disk undergoes an imbalance of anabolic

and catabolic factors that leads to ECM degradation. Biomo-
lecules such as recombinant proteins and genes can regener-
ate expression of target molecules through the increase in
anabolic or decrease in catabolic factor production, thus
facilitating ECM synthesis. The following section will review
recent in vivo studies on biomolecules used to treat disk
degeneration14–40 (►Table 1).

Protein Injection
Protein solutions directly injected into disks can stimulate cell
growth or anabolic responses that may reverse disk degener-
ation. Since the demonstration of the disk’s responsiveness to
exogenous growth factors in an ex vivo organ culture
system,41 the various proteins capable of modulating cell
growth, differentiation, and ECM synthesis have shown
promise in treating degenerative disk disease (DDD). Bone
morphogenic proteins (BMPs) such as BMP2, BMP7 also
known as osteogenic protein 1 (OP-1), and BMP14 or growth
differentiation factor-5 (GDF-5), as well as other members
of transforming growth factor (TGF)-β superfamily such as
TGF-β1 or TGF-β3 have induced bone and cartilage formation.
Their application has been well studied not only in cases of
spinal arthrodesis but also disk regeneration.14–20,22,31 In a
single in vivo rabbit study by An et al, intradiscal OP-1
injection induced an increase in proteoglycan (PG) content
of NP at 2 weeks and disk height at 8 weeks14,19; the
treatment has now segued into clinical trials. Protein injec-
tion, though promising, is challenged by the short duration of
its therapeutic effect, which may be overcome with the
development of slow-release carriers or gene-based delivery
systems.

Gene Therapy
Gene therapy induces modification of intradiscal gene
expression for prolonged effect on degenerated disks. The
genes of interest are delivered through either viral (mostly
adenovirus) or nonviral vectors, which are then either

Fig. 2 Strategy for biological intervertebral disk repair. As degeneration progresses, the disk loses viable cells and structure. Biomolecular therapy
will repopulate the disk with sufficient responding cells. If those cells are unviable, cell implantation can be necessary. If the structure is completely
destroyed, tissue-engineered constructs that mimic the properties of native disks will help with biological reconstruction of the segment.
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Table 1 List of in vivo study of biomolecular treatment

Species Model Molecules Dose Outcome Reference

Protein injection

Rat Compression IGF-1, GDF-5, TGF-β,
bFGF

IGF-1: 8 ng/8 μL/disk,
GDF-5: 8 ng/8 μL/disk,
TGF-β: 1.6 ng/8 μL/disk,
bFGF: 8 ng/8 μL/disk

GDF-5 and TGF-β aid in
expansion of inner annular
fibrochondrocytes into the
nucleus

16

Rat Compression BMP-7 (OP-1) 0.2 μg/μL/disk OP-1 stimulates anabolic
response characterized by
the restoration of normal
disk morphology

22

Rabbit Normal BMP-7 (OP-1) 2 ng/10 μL/disk Increase in disk height 14

Rabbit Chemonucleolysis by
C-ABC

OP-1 100 μL/10 μL/disk Increase in disk height and
PG content

15

Rabbit Needle puncture BMP-7 (OP-1) 100 μg/10 μL/disk Improvement in disk
height and MRI findings

17

Rabbit Needle puncture GDF-5 1,100 ng, 1,100 μg/10
μL/disk

Increase in disk height 18

Rabbit Needle puncture OP-1 100 μg/10 μL/disk Increase in disk height and
PG content of the NP

19

Rabbit Annular tear
5 � 7 mm

BMP-2 100 μL/10 μL/disk Exacerbated degeneration 20

Rabbit Nucleotomy PRP 20 μL PRP þ micro-
sphere / disk

Less degeneration, more
PG

21

Rabbit Nucleotomy PRP 20 μL PRP þ micro-
sphere/disk

Improvement in disk
height and water content

23

Rabbit Annular puncture PRP-releasate 20 μL/disk Better X-ray and MRIs 25

Sheep Annular incision BMP 13 300 ug/70 μL saline BMP 13 prevents loss of
hydration

24

Gene therapy

Rat Degenerative model
induced by
unbalanced dynamic
and static force

Lentivral CHOP
shRNA

1 � 106 PFU/2 μL/disk Significant decrease of
apoptotic incidence in cells
treated with CHOP shRNA
at 7 wk

30

Rat Normal Plasmid DNA mixed
with microbubbles

2 ug/2 μL/disk Reported genes were
expressed up to 24 wk

28

Rabbit Normal Ad/CMV-hTGFβ1 6 � 106 PFU/15 μL/disk Leads to double
proteoglycan synthesis

26

Rabbit Normal Ad-LMP1 1 � 107 PFU/10 μL/disk LMP1 overexpression
increases PG, BMP-2, and
BMP-7

27

Rabbit Annular puncture ADAMTS5 siRNA
oligonucleotide

10 ug/10 μL/disk Improvement in MRI and
histological scores

29

Rabbit Annulotomy AAV2-BMP2 or-TIMP1 6 � 106 virus particles/
15 μL/disk

AAV-BMP2 and -TIMP1
delayed degeneration

31

Rabbit Postannulotomy Ad-Sox9 1 � 109 PFU/10 μL/disk AdSox9 helped retain
chondrocytic appearance,
cellular morphology, and
ECM at 5 wk

32

Abbreviations: AAV2-BMP2, adeno-associated virus serotype 2 vectors expressing bone morphogenetic protein 2; Ad/CMV-hTGF β1, adenovirus/
cytomegalovirus vector expressing human transforming growth factor-beta 1; ADAMTS5, disintegrin and metalloproteinase with thrombospondin
motifs 5; Ad-LMP1, adenoviral vectors expressing Lim Mineralization Protein-1; Ad-Sox9, adenoviral vectors expressing Sox9; bFGF, basic fibroblastic
growth factor; BMP, bone morphogenic protein; C-ABC, chondroitinase-ABC; CHOP, C/EBP homologous protein; ECM, extracellular matrix; siRNA,
small interfering RNA; GDF-5, growth differentiation factor-5; IGF-1, insulin-like growth factor-1; OP-1, osteogenic protein 1; PFU, plaque forming
units; PRP, platelet-rich plasma; shRNA, small hairpin RNA; TGF-β, transforming growth factor- β; TIMP1, tissue inhibitor of metalloprotainase-1.
Note: Animal species and model of disk degeneration are shown. “Normal” means normal healthy disks were treated without any induction of
degeneration. Biomolecules employed and doses are also shown. Outcomes are briefly summarized with reference information.
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directly injected into live tissue (in vivo gene therapy) or
transduced/transfected into cells in vitro prior to in vivo trans-
plantation (exvivogene therapyorcell-basedgene therapy).42 In
one of the earliest in vivo studies in a rabbit model, when the NP
cells were transduced with TGF-β1-expressing adenovirus vec-
tor, proteoglycan synthesis increased by 100% in the treated
tissue.26 Since then, a variety of proteins have surfaced as
promising targets for gene therapy including upstream proteins
such as LIM mineralization protein-1 (LMP-1), which regulates
BMP-2 and BMP-7, ECM degrading enzymes (disintegrin and
metalloproteinase with thrombospondin motifs 5), their inhib-
itors (tissue inhibitor of metalloprotainase-1), chondrocyte-spe-
cific transcription factors (SRY-box 9, Sox9), and apoptosis
inducers (C/EBPhomologousprotein).26–32Thoughgene therapy
is advantageous in its sustained effect, the inherent risk of viral
gene delivery systems becoming infectious or immunogenic has
relayed interest toward nonviral gene delivery systems. Micro-
bubble-enhancedultrasoundgene therapyand injectionof small
interfering RNA have been shown to achieve long-standing
transgene expression in IVD cells in vivo.28,29However, nonviral
gene delivery systems are curtailed by low transfection efficien-
cy, which must be addressed to enhance their clinical applica-
bility. The feasibility of ex vivo gene therapy, which reduces the
risks of infection and immunogenicity and plays an important
role in the future of tissue-engineering technology, has been
explored in a few studies.43,44

Platelet-Rich Plasma
Platelet-rich plasma (PRP), an autologous blood product
produced by the centrifugation of whole blood, offers an
attractive cocktail of proteins for the treatment of degenera-
tive disks due to its high concentration of platelets. Upon
activation, these platelets release a variety of multifunctional
growth factors such as platelet-derived growth factor, insu-
lin-like growth factor, TGF-β1, vascular endothelial growth
factor, and basic fibroblastic growth factor. When used in
early onset disk degeneration, PRP can better enhance disk
hydration.45 Various PRP technologies have emerged to re-
tard the degenerative cascade, including a gelatinous hydro-
gel scaffold impregnated with PRP and soluble releasate
derived from activated PRP.21,23,25 The in vivo efficacy of
PRP in yielding better disk height and hydration has facilitat-
ed its transition to ongoing clinical trials.

Cell Therapy
Biomolecules are of limited efficacy in disks with higher
grades of degeneration, as the number of cells responsive to
injected genes and proteins declines with the progression of
degeneration.46 Cell therapy is the optimal treatment strate-
gy in midstage degeneration, characterized by a decreased
number of cells in the tissue; several in vivo studies reported
the efficacy of using a vast array of cell sources
(►Table 2).46–75

Differentiated Cells Such as Disk-relevant Cells and Articular
Chondrocytes
Implanted differentiated disk chondrocytes, which can pro-
duce demanded ECM components such as proteoglycan and

collagen type II and I under hypoxia and nutrient stress, can
meet the increased cellular and metabolic demands of the
disk.76 Accumulating evidences in an array of animal models
demonstrate that autologous or allogeneic disk cells, when
transplanted, survive and engraft in the disk, yielding reduc-
tion of matrix degradation and recovery of disk height and
MRI intensities (►Table 2). In fact, the pioneering preclinical
study in an injured canine model established that NP disk
chondrocyte implantation contributes to ECM regeneration,
retarding further disk degeneration.54 However favorable,
disk cell transplantation poses several drawbacks: (1) donor
site morbidity; (2) difficulty expanding cells in vitro while
maintaining cell phenotype; (3) paucity of allograft donor
tissue; and (4) issues of immunocompatibility and disease
transmission. Similar to differentiated disk cells, cultured
articular chondrocytes are a well-established nondisk cell
source in regenerative medicine.77 Their easy extraction
from non-weight-bearing parts of the knee and capacity to
produce NP-like ECM when transplanted in vivo makes
autologous or allogenic articular chondrocytes a safe and
feasible cell source in IVD regeneration.48,67 Furthermore,
potential immune evasion by juvenile articular chondrocytes
supports their applicability in allogenic cell transplantation.

Stem Cells
The multipotent mesenchymal stem cells (MSCs) present in
adult bone marrow or adipose tissue can replicate as undif-
ferentiated cells, then differentiate into lineages of mesen-
chymal tissue: bone, cartilage, fat, tendon, muscle, and
marrow stroma.78 These somatic stem cells are potentially
an ideal option for disk repair due to their accessibility and
ability to differentiate along a chondrogenic lineage and
produce the required proteoglycan and collagen for the
disk ECM. The feasibility of MSCs to facilitate disk repair
has been substantiated. Yet, it remains controversial whether
differentiated cells or stem cells are superior in their regen-
erative capacity of disk morphology. A porcine study compar-
ing the utility of different cell sources found that committed
articular chondrocytes are better suited for use in disk repair
than MSCs due to their aptness for survival in the ischemic
disk microenvironment.67 Interestingly, a comparative rabbit
study found that MSC transplantation can serve as an ideal
substitute for differentiated chondrocytes of disk NP owing to
better accessibility with equivalent regenerative potential.68

Studies assessing the combination of both cells demonstrated
that in vitro coculture or coimplantation yields better in vivo
performance of the implanted cells.47,69 Nonetheless, plurip-
otent embryonic and induced pluripotent stem cells,79–81

unlike the lower potent MSCs, have unlimited proliferative
and differentiative capacities, which can be strategically
exploited in cell-based disk repair. Sheikh et al extracted
murine embryonic stem cells (ESCs) and differentiated them
into chondroprogenitor cells; upon implantation into rabbit
injured disks, these cells induced notochordal cell formation
at the site of injury sans xenograft-associated immune re-
sponses.59 Unstable in vitro differentiation into desired cell
lineages and in vivo risks of tumor formation are still major
obstacles in the use of ESCs and induced pluripotent stem
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cells. However, if these issues are overcome, both cells may
offer unparalleled promise in degenerative disk repair.

Tissue-Engineering Strategy
Since Langer and Vacanti pioneered the multidisciplinary
field of tissue engineering in 1993, much effort has been
directed toward the construction of functional substitutes for
damaged disk tissues. Tissue engineering originally consisted
of three and more recently four components82: scaffolds,
cells, growth factors, and physical conditioning using electri-
cal or mechanical stimuli (►Fig. 3). Because extensive loss of
matrix and structural damages are exhibited in advanced
stages of disk degeneration, the development of biocompati-
ble and biomimetic scaffolding materials based on engineer-
ing innovation can facilitate the recovery of native biological
and biomechanical functionality. Numerous studies have
assessed tissue-engineered components as well as whole-
disk constructs of the disk in vivo (►Table 3).43,83–103

Scaffold Development
Numerous scaffold materials that mimic the mechanical and
biochemical properties of the native NP have been studied
including alginate, silk-fibrin/hyaluronic acid composites,
Atelocollagen, synthetic polymers, and collagen 2/hyalur-
onan/chondroitin-6-sulfate composites. Hyaluronic acid, a
native NP ECM component, has been extensively studied in
vivo.85–88,94 In a rabbit study, resorbable cell-free implants
made of a polyglycolic acid felt, hyaluronic acid, and serum
induced disk regeneration after diskectomy, resulting in
improved disk hydration and disk height 6 months after
microdiskectomy.86 Cells are frequently used in conjunction
with biomimicking materials to encourage de novo ECM

production. Ganey et al found that adipose-derived stem cells
contributed to recovery of T2 intensity and disk height in a
canine disk injury model.87 Synthetic polymers such as poly-
glycolic acid or poly (L-lactic-co-glycolic acid) have also been
used to construct cell-laden tissue-engineered composites
either solely or in combination with hydrogels.86,89

Whole Disk Transplantation with Tissue-Engineered
Construct
Advanced tissue engineering enables whole IVD construction
in vitro, which can be implanted in vivo through TDR. The
current standard in whole IVD implantation involves NP and
AF composites that replace the structurally damaged tissues
of a severely degenerated disk. The first tissue-engineered
whole IVD, implanted in vitro within the subcutaneous
dorsum of athymic mice, comprised an NP cell-laden poly-
glycolic and polylactic acid (polyglycolic acid) and AF cell-
laden alginate.84,104 Our group was the first to perform an in
vivo implantation of anatomically correct whole tissue-en-
gineered IVDs (TE-IVDs) in the athymic rat tail model; the
implanted disks engrafted into the disk space for up to
6 months and exhibited analogous biological, biochemical,
and biomechanical properties as the native disks
(►Fig. 4).93,105–107 To bring this innovation closer to clinical
application, we recently performed TDR using TE-IVDs in the
canine cervical spine, characterized by axial loading due to
their upright neck, which most closely resembles that in
humans. Our preliminary data with 1-month follow-up re-
vealed that TE-IVDs when implanted successfully remained
viable in the disk segment, engrafted to the host tissue, and
partiallymaintained disk height.108Nonetheless, the addition
of growth factors or bioactive molecules can encourage de

Fig. 3 Cell therapy and tissue engineering. Allograft transplant is the simplest biological disk repair; however, it has critical drawbacks such as
limited availability of healthy donor disks and potential risk of disease transmission. Cells harvested from different sources can be expanded in
vitro and transplanted in vivo in cell transplant for disk regeneration. Scaffolds can be combined with cells, and, if they have biomimicking
properties, these treatments can be regarded as a part of tissue-engineering strategy, which traditionally included cells, scaffolds, growth, and
factors, but recently included gene treatment and mechanical conditioning. Abbreviations: AC, articular chondrocytes; AF, annulus fibrosus cells;
NP, nucleus pulposus cells.
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Table 3 List of in vivo study of tissue engineering-based treatment

Species Model Construct Outcome Reference

Rat Subcutaneous implantation TE-IVD composed of a NP cell-
laden alginate surrounded by
an AF cell-laden PGA/PLA

Biochemical markers of ma-
trix synthesis, increasing over
time, were similar to native
tissue at 12 wk

84

Rat Subcutaneous Implantation Porous CII/HyA/CS CII/HyA/CS scaffolds had sat-
isfactory cytocompatibility
and histocompatibility, as
well as low immunogenicity

88

Rat Subcutaneous implantation Composite IVD consisting of
demineralized bone matrix
gelatin and CII/HyA/CS scaf-
folds seeded AF and NP cells

Implant, similar to native disk
in morphology and histology,
increased proteoglycan syn-
thesis over 12 wk

92

Rat Total diskectomy TE-IVD composed of a NP cell-
laden alginate surrounded by
an AF cell-laden collagen layer

TE-IVD maintained disk space
height, produced de novo
ECM, and integrated into the
spine—yielding intact motion
segment with dynamic me-
chanical properties similar to
that of native IVD

93

Rat Subcutaneous implantation 5.0 � 106 cells/mL in PPS
containing polyethylene gly-
col/HA

MPC/hydrogel composites
formed cartilage-like tissue,
well tolerated by the host

99

Rabbit Laser diskectomy 2.0 � 106 cells/Atelocollagen
honeycomb-shaped scaffold

AF cells survived and pro-
duced hyaline-like cartilage in
the disk at 12 wk

83

Rabbit Microdiskectomy Cell-free implant composed
of a PGA felt, HA, and allo-
genic serum

Implantation of a cell-free
PGA-HA implant immersed in
serum after diskectomy im-
proved disk hydration and
preserved disk height 6 mo
after surgery

86

Rabbit Postnucleotomy 2.0 � 106 bone marrow
MSCs in 0.04 mL PFG-TGF-β1

MSCs-in-PFG-TGF- ß 1 group
had less degeneration and a
slower decrease in disk height
compared with both degen-
erative and acellular PFG-TGF-
ß1 group

90

Rabbit Nucleotomy Allogenic NP cell-seeded CII/
HyA/CS tri-copolymer
construct

Viability of allografted NP
cells, extracellular matrix de-
position, and disk height
maintenance; restoration of
T2 MRI signal intensity ob-
served at 24 wk

94

Rabbit Postpuncture 5.0 � 103 allogenic bone
marrow MSCs/10 μL hydrogel

MSCs suppressed collagen I in
NP, reduced collagen aggre-
gation, and maintained
proper fibrillary properties
and function

101

Rabbit Postnucleotomy 1.0 � 106 human NP cell line
infected with HNPSV-5 in
Atelocollagen

Deceleration of disk degen-
eration was evident after
HNPSV-5 transplantation as
shown by disk height and
histologic examination at
24 wk

102

Canine Total diskectomy Cell-allograft IVD composites
made of allograft and NP
cells, with in vitro transduced
with r(AAV)-hTERT

The hTERT-loaded NP cells
intervention could effectively
resist the degeneration of the
allogenic transplanted IVD at
12 wk

43

(Continued)
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Table 3 (Continued)

Species Model Construct Outcome Reference

Canine Postnucleotomy ADRC in HA carrier Disk that received ADRC pro-
duced matrix and resembled
native disk in morphology at
12 mo

87

Canine Nucleotomy Cell-scaffold composite made
of three-dimensional porous
PLGA scaffolds and NP cells

Disk height, segmental sta-
bility, and T2-weighted MRI
signal intensity were well
preserved at 12 wk

89

Porcine Nucleotomy Cell-scaffold composite made
of NP cells and injectable hy-
aluronan-derived polymeric
substitute material HYADD
(1.0 � 105 cells/mL)

Injected disks had a central
NP-like region similar to the
normal disk biconvex struc-
ture and viable chondrocytes
forming matrix like that of
normal disk at 6 wk

85

Porcine Post annular injury 1.25 � 105 autologous
MSCs/mL in either Hydrogel
PhotoFix (Zimmer Biologics,
Inc., Austin, TX, United
States) or HA (Zimmer Bio-
logics, Inc.)

Stem cells in hydrogel treat-
ment had significantly higher
T2 MRI intensities and lower
degeneration grade at 24 wk
than hydrogel alone
treatment

95

Porcine Partial nucleotomy 5.0 � 105 autologous bone
marrow MSCs transduced
with retrovirus encoding lu-
ciferase in 1 mL hyaluronan-
enhanced albumin hydrogel

In vivo 3-d analysis showed
persistent metabolically ac-
tive implanted cells in the disk

100

Goat Postdisk injury 2.5 � 105 allogenic bone
marrow stromal cells/10 μL
PBS þ 30 μL chondroitin sul-
fate-based hydrogel

Significant increase in NP
proteoglycan accumulation
at 6 mo

96

Sheep Total diskectomy Noncrystalline polylactide
copolymer interbody cages
filled with1.0 � 106 allogenic
MPC-laden Gelfoam sponge
(Pfizer, New York, NY, United
States) formulated with the
chondrogenic agent PPS

Biodegradable cage-con-
tained MPCs in combination
with PPS produced cartilagi-
nous tissue at 3 mo

91

Sheep Post-chondroitinase-ABC injection 4.0 � 106 or 0.5 � 106 hu-
man MPCs suspended in HA

High-dose injection improved
histopathology scores at 3
mo, while low dose at 6 mo

97

Sheep Nucleotomy Allogenic or autologous disk
cells (0.4–2.0 � 106 cells/
0.5–1 mL hydrogel) in hydro-
gel containing HA and mal-
eolyl-albumin

Biological repair of traumatic
damage occurs in sheep disks
at 6 mo; hydrogel-supported
disk cells may be beneficial

98

Abbreviations: ADRC, autologous adipose tissue derived stem and regenerative cells; AF, annulus fibrosus; CII, type II collagen; CS, chondroitin-6-
sulfate; HA, hyaluronic acid; HNPSV-5, recombinant SV40 adenovirus vector; hTERT, human telomerase reverse transcriptase; HyA, hyaluronate;
HYADD, an amide of hyaluronan-derived polymeric substitute materials; IVD, intervertebral disk; MPC, mesenchymal precursor cell; MRI, magnetic
resonance imaging; MSCs, mesenchymal stem cells; NP, nucleus pulposus; PBS, phosphate-buffered saline; PFG-TGF-β1, fibrin glue containing 10 μg/L
TGF-β1; PGA, polyglycolic acid; PLA, polyglycolic acid; PLGA, poly (L-lactic-co-glycolic acid); PPS, pentosan polysulfate; (rAAV)-hTERT, recombinant
adenoassociated virus vector-mediated hTERT gene; TE-IVD, tissue-engineered IVD; TGF-β1, transforming growth factor-β1.
Note: Animal species and model of disk degeneration are shown. “Normal” means normal healthy disks were treated without any induction of
degeneration. Constructs employed and dose are also shown. Outcomes are briefly summarized with reference information.
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novo ECM deposition. Goldschlager et al demonstrated that
adult allogeneic mesenchymal progenitor cells formulated
with a chondrogenic agent such as pentosan polysulfate could
synthesize a cartilaginous matrix when implanted into a
biodegradable carrier and cage and over time might serve
as a bioactive interbody spacer following anterior cervical
diskectomy.91 Furthermore, the integration of tissue engi-
neering and gene therapy has been attempted by a group
from China that developed a tissue-engineered IVD using an
allogenic disk transduced with human telomerase reverse
transcripase (hTERT) gene within its NP cells. When im-
planted in a canine model, the hTERT-loaded NP cells man-
ifested enhanced antidegenerative effect compared with the
unloaded NP cell.43 Such constructions of whole disk im-
plants, the most ambitious therapeutic strategy yet, are met
with extensive biological and functional challenges in vivo.
Yet, the progressing field of tissue engineering continues to
yield promisingmodifications tomeet the higher demands of
implanted disks.

Annular Repair
Previous studies of intervertebral disk repair, which aim to
halt, delay, or reverse intervertebral disk degeneration, were
primarily focused on NP regeneration.33–38 However, a ma-
jority of these strategies are delivered through a punctured
AF, which even upon modest injury can generate a degenera-
tive cascade within the disk affecting IVD biomechanics,
cellularity, and biosynthesis.109–112 Annular defects can
emerge not only from needle punctures through the AF to
reach the NP but also from the early process of intervertebral

diskdegeneration. Given the sensitivity of theAF, lesions from
the NP treatment can provoke further degeneration, inducing
leakage of the delivered material and eventual failure of the
regenerative treatment. In fact, one retrospective study with
10 years’ follow-up found that diskography performed with a
small needle puncture accelerated disk degeneration, rate of
same-side disk herniation, and changes to the end plate.12

Another study demonstrated that injectingMSCs through the
AF into the NP led to cell leakage and augmented osteophyte
formation.11 Combining an injectable NP regenerative strate-
gy with a sealant that repairs annular defects is the optimal
strategy to circumvent leakage of implanted cells or material
while enhancing therapeutic outcome. Previous approaches
to annular repair have involved mechanical treatments such
as suturing and annuloplasty devices, which failed to improve
annular healing strength in long-term clinical trials.113–115

Although several NP regenerative studies and a few in vitro AF
studies provide critical insight on the reparative process
within the AF tissue,24,53,83,96,116 there is a very limited
number of in vivo studies focusing primarily on annular
repair.107,117–122 Current efforts in the biological treatment
for in vivo AF repair include either development of injectable
material in conjunction with biologics such as biomolecules/
cells or construction of rigid implants derived from synthetic
polymer or biological tissue (►Table 4). In fact, our group has
successfully demonstrated the in vivo efficacy of riboflavin
cross-linked high-density collagen gels to facilitate annular
repair in a needle-punctured rat-tail model through preser-
vation of NP size, hydration, and prevention of further
degeneration (►Fig. 5).107 In another large animal study

Fig. 4 In vivo implantation of TE-IVD under total disk replacement within rat-tail disks. En bloc total diskectomy was performed in the rat-tail
spine. Half of the animals were left untreated and the rest received TE-IVD implants. Resected native disk (right image in A) and TE-IVD (left image
in A) are shown. (B) Postoperative T2-weighed magnetic resonance imaging indicating sustained intensity in the disk segment implanted with TE-
IVD (yellow arrows in B). (C) Six-month postoperative histology with Alcian blue staining showed implanted TE-IVD integrated with host tissues and
production of proteoglycan-rich ECM. The diskectomized segment presented no disklike tissue. This image originates from a previously published
study by our group.93 (Reprinted with permission from Bowles RD, Gebhard HH, Härtl R, Bonassar LJ. Tissue-engineered intervertebral discs
produce newmatrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc Natl Acad Sci U S A 2011;108(32):13106–
13111.) Abbreviations: ECM, extracellular matrix; IVD, intervertebral disk; TE-IVD, tissue-engineered intervertebral disk.
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conducted by Oehme et al, injected mesenchymal progenitor
cells combined with the chondrogenic agent pentosan poly-
sulfate maintained disk height, disk morphology, and NP
proteoglycan content post-microdiskectomy in a sheep
model.120Despite the few studies dedicated to annular repair,
more attention is now being paid to this field given its
enhancement of even NP-targeted therapy.

Clinical Studies

Published Clinical Trials
To date, only few clinical trials targeting IVD repair or
regeneration have been published (►Table 5).123–130 In
2002, a multicenter prospective, randomized, controlled,
nonblinded EuroDISC study comparing the safety and efficacy
of autologous disk chondrocyte transplant implanted
12 weeks after diskectomy concluded that the implant atten-
uated low back pain and preserved disk height over a 2-year
span.55,125,131 The commercially available chondrotransplant
DISC is now available for autologous disk chondrocyte trans-
plant. More recently, a variety of stem cells entered the

spotlight due to their differentiative and proliferative capaci-
ties. The first stem cell–based clinical study published in the
field of disk regeneration was focused on hematopoietic stem
cells, although patients’ discogenic back pain did not improve
after 1 year.123

MSCs derived from bone marrow are the most well-
studied cells in regenerative medicine due to their accessibil-
ity throughminimally invasive procedures and expandability
in ex vivo conditions. Two studies demonstrated the feasibil-
ity of autologous bone marrow MSCs to facilitate disk hydra-
tion based on follow-up MRIs over 1 year.127,128 Orozco et al
demonstrated rapid improvement of pain and disability
despite unrecovered disk height.128 In another prospective
case series using noncultured bone marrow concentrate as a
form of autologous point-of-care biologics, patients with
either cervical or lumbar DDD receiving a single injection
experienced attenuated discogenic pain and improved func-
tion for up to 12 months.

Due to their similar biological profile to disk chondrocytes
and potential immunoprivileged property, allogeneic juve-
nile articular chondrocytes are another promising cell source.

Table 4 List of published annular repair studies

Species Model Treatment Outcome Reference

Rat Degradation tests
with subcutaneous
implantation

Fibrin-genipin adehesive
hydrogel (Fib-Gen)

60% of Fib-Gen remained at
8 wk and nearly all resorbed
at 16 wk; kinetics show bet-
ter in vivo longevity com-
pared with fibrin

121

Rat Needle puncture Injection of cross-linked HDC
gels

Cross-linked HDC capable of
repairing annular defects
most likely due to enhanced
stiffness of HDC at 5 wk

107

Porcine Needle puncture Injection of Gelfoam (Pfizer,
New York, NY, United States),
platinum coil, bone cement,
and tissue glue

Injection of Gelfoam better
improved integrity of punc-
tured disk than the other
three to potentially prevent
recurrent disk herniation at 2
mo

118

Sheep Box annulotomy Patch and plug with SIS and
titanium bone screw

SIS-based treatment led to
better maintenance of hy-
dration and intradiscal pres-
sure at 26 wk after
annulotomy

119

Sheep Box annulotomy Triphase AF implant compos-
ing two outer phases of
absorbable polyglycolic acid
and a centric phase of a non-
absorbable PVDF mesh

Implant-treated disks had
more reparative tissue, but
contrast media leakage tests
under provocative pressure
did not show the difference
between groups

122

Sheep Microdiskectomy Allogenic MPCs þ PPS em-
bedded in a gelatin/fibrin
scaffold

Disks treated with MPC þ
PPS showed higher PG con-
tent than the untreated or
ones treated with solely scaf-
fold at 6 mo

120

Abbreviations: AF, annulus fibrosus; HDC, high-density collagen; MPC, mesenchymal progenitor cell; PPS, pentosan polysulphate; PVDF, polyvinyli-
dene fluoride; SIS, small intestinal submucosa.
Note: Animal species andmodel of disk degeneration are shown. “Normal”means normal healthy disks treated without any induction of degeneration.
Treatments employed are also shown. Outcomes are briefly summarized with reference information.
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In a prospective cohort study, Coric et al demonstrated that
NuQu (ISTO Techonologies, Inc., St. Louis, Missouri, United
States), an injectable percutaneous fibrin-based delivery of
juvenile chondrocytes, attenuated otherwise medically re-
fractory low back pain (or pain that does not respond to
conservative therapy).129 A class II study has recently been
completed. Despite these studies’ promising results, further
investigation with a prospective, randomized, double-
blinded, placebo-controlled study is necessary to make cell
transplantation a valid therapeutic option for DDD.

Although there is no clinical study of tissue-engineering
material, efforts have been made to create functional substi-
tutes for NP. Among many clinical studies focusing on NP
replacement, a single-center, nonrandomized, prospective
feasibility study was undertaken to investigate whether the

use of NuCore Injectable Nucleus hydrogel (Spine Wave, Inc.,
Shelton, Connecticut, United States) post-microdiskectomy
prevented early disk collapse to potentially slow the degener-
ative cascade of the spinal segment over time.126,132A group in
China was the first to bring a whole allogeneic IVD implanta-
tion, inclusive of all three-diskcomponents, to a clinical setting.
Though the implant successfully integrated into thehost tissue,
over the course of 5 years, degeneration was eventually
observed. Despite preserving motion in the treated seg-
ment,124 the clinical advantages of allogeneic IVDs are under-
mined by the limited availability of healthy donor disks and
potential disease transmission. De novo tissue-engineered
constructs utilizing terminally differentiated cells, yet to reach
clinical trials, can potentially overcome limitations of alloge-
neic implants and yield favorable outcomes.

Fig. 5 In vivo annular repair using cross-linked high-density collagen gels. Needle puncture-induced annular injury model in the rat-tail spine was
employed to assess feasibility of high-density collagen (HDC) gels to facilitate annular repair. HDC gels were injected into the defect immediately
after puncture with an 18-gauge needle. Few HDC gels were supplemented with riboflavin to induce a cross-linking reaction that enhances the
stiffness of the gel. In the present study, two distinct concentrations (0.5 and 0.25 mM) were tested along with un-cross-linked HDC without
riboflavin (RF). The adjacent segment without puncture and punctured segment without HDC injection served as healthy and model controls,
respectively. Five-week outcome examples of all punctured rat-tail disks are shown. The displayed specimen from the 0.5-mM RF group
significantly prevented degenerative changes. Disk height, nucleus pulposus (NP) size and hydration, and degeneration grading based on
magnetic resonance imaging and histology were all assessed. Both 0.25 RF and un-cross-linked groups had more aggressive degeneration. The
untreated group reached terminal degeneration. This image originates from a previously published study by our group.107
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Nonpublished Ongoing Clinical Trials
Several ongoing clinical trials aiming at disk repair have yet to
publish their findings (►Table 6).133–141 The first ever bio-
molecular treatments with human recombinant growth fac-
tors rhBMP-7 (OP-1) and rhGDF-5 (human growth/
differentiation factor-5) are currently undergoing clinical
trial. PRP or soluble releasate isolated from PRP, both with
concentrated growth factors from activated platelets, have
been clinically studied in autologous injection models. Akeda
et al first demonstrated the feasibility of intradiscal PRP-
releasate injection in reducing low back pain in patients with
DDD.140 More recently, a prospective, randomized controlled
study assessing the efficacy of intradiscal PRP injections in
discogenic mediated low back pain has already shown im-
provements in pain and function in patients as early as
8 weeks, which was sustained for up to 1 year.139 A 2-year
follow-up is currently under process. Mesenchymal lineage

adult stem cells (MLCs) (Mesoblast, Melbourne, Australia),
the commercially available cell line of in vitro expanded
mesenchymal precursor cells (MPCs), is also under clinical
trial. The randomized, placebo-controlled phase 2 trial of 100
patients with DDD-induced chronic low back pain already
appears promising. Among patients receiving a single injec-
tion of either 6 or 18 million mesenchymal progenitor cells,
44 and 42%, respectively, reached target criteria for treatment
end point (50% reduction in pain, 15-point improvement in
function, and no further treatment needed) at both 6 and
12 months; only 13% of patients administered placebo had
the same outcome.134,142 A few other clinical studies using
autologous disk chondrocytes, allogenic juvenile chondro-
cytes, and autologous and allogenic MSCs derived from bone
marrow or adipose tissues are also underway. One such cell-
based study is using activated NP cells through in vitro
coculture with MSCs to target moderately degenerated disks

Table 5 List of published clinical studies

Trial treatment No. of
patients

Study design Follow-up
(mo)

Outcome Reference

Autologous hematopoi-
etic stem cell injection

10 Case series 12 No patients reported any im-
provement in their discogenic
back pain

123

Total disk replacement
with allogeneic IVD

5 Case series 60 Allograft engrafted disk space
without apparent immunoreac-
tion; all minus one disk pre-
served range of motion

124

Autologous disk chon-
drocyte transplantation
(EuroDisc)

28 Control study 24 ADCT with diskectomy shows
more pronounced decrease in
OPDQ than diskectomy alone

125,131

Injectable biomimetic
nucleus hydrogel

14 Case series 24 Significant improvement in leg
and back pain after
microdiskectomy

126

Autologous bone mar-
row mesenchymal cell
injection

2 Case series 24 Both patients showed improve-
ments in the vacuum phenom-
enon as well as signal intensity
of T2-weighed MRIs

127

Autologous bone mar-
row mesenchymal cell
injection

10 Case series 12 Rapid improvement of pain and
disability; disk height was not
recovered, but disk hydration
was significantly elevated

128

Allogeneic juvenile
chondrocytes injection
(NuQu; ISTO Technolo-
gies, Inc., St. Louis, Mis-
souri, United States)

15 Case series 12 ODI, NRS, SF-36 improved from
baseline; 89% of the patients
showed improvement on MRI

129

Injection of autologous
bone marrow concen-
trate cells

26 Case series 12 Statistically significant improve-
ment in pain scores and im-
pairment was demonstrated;
most dramatic improvement
seen in patients with higher CFU-
F concentrations; rehydration of
the disks observed in 8 of 20
patients

130

Abbreviations: ADCT, autologous disk chondrocyte transplant; CFU-F, colony-forming unit fibroblast; IVD, intervertebral disk; ODI, Oswestry Disability
Index; OPDQ, Oswestry Low Back Pain Disability Questionnaire; MRI, magnetic resonance imaging; NRS, Numeric Rating Scale; SF-36, Short Form 36.
Note: Treatments, patient number, study design, follow-up are shown. Outcomes are briefly summarized with reference information.
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adjacent to the fused segment. Ultimately, the data emerging
from these on-going clinical trials will reinforcefindings from
published studies and provide new insight for future biologi-
cal disk repair.

Discussion

The current article is a review study of in vivo experimental
and clinical data on treatment approaches for degenerative
disk disease, which comprise biomolecular therapy, cell ther-
apy, tissue-engineered construction, and annular repair. A
plethora of animal studies have offered critical insight into
the regenerative capacity of new IVD therapies due to the
similarity in biological and mechanical properties between
animals and humans. Yet, the transition from animal to
human application is met with challenges. In animal studies,
both histologic sections for proteoglycan content and bio-
mechanical testing can be easily evaluated, but these outcome
measures are extremely rare in clinical studies. Rather, clini-
cal studies are primarily focused on questionnaire-based
subjective assessment on pain and physical function, param-
eters that are out of scope in animal studies with the excep-
tion of two that have developed unique pain assessments in
animals.143,144 Due to these model-based limitations, there is
a paucity of studies elucidating direct relation between pain
relief and underlying biological repair. Additionally, the ani-
mal models may provide mechanistic clues (e.g., genes or
signaling factors) to phenotypic manifestations in humans,
but complications in comparison arise due to presence of
notochordal cells not found in human adults.9,145 Notochord-
al cells of NP tissue are present only during the first decade of
human life and then are replacedwith chondrocyte-like cells,
of which the origin has yet to be elucidated. Although cows,
horses, and chondrodystrophoid dogs such as beagles dem-
onstrate similar age-related changes to humans, mice, rats,
rabbits, pigs, cats, and nonchondrodystrophoid dogs such as
mongrels, they are reported to retain notochordal cells past
skeletal maturity, which may enhance intrinsic cellular re-
pair.145 Therefore, results observed in animal models must be
carefully translated prior to clinical application.

Within the last decade, there has been significant progress
in the field of biological treatments for DDD, despite the few
clinical studies published. Injection of biomolecules, such as
proteins or genes, and cells can attenuate the degenerative
cascade at early to midstages of disease progression. Due to
their minimal invasiveness to patients, biomolecular therapy
and cellular therapy are easier to maneuver onto clinical
application than tissue engineering. In fact, the first clinical
trials with rhBMP-7 (OP-1) and BMP-14 (GDF-5) are now
underway. Cell therapy, the most exploited therapeutic strat-
egy in both animal and human application, has already been
fruitful in treating discogenic pain among patients with
nonterminal degeneration. Yet, because all these injectable
strategies employ transannular approaches, integration with
a treatment for resulting annular defects should be utilized
for enhanced clinical outcome.

Annular repair has only recently entered the spotlight due
to its potential to spatially retain remnant NP, but merits

consideration in its restoration of disk integrity and function-
ality. TE-IVD, the multicompartment disk analogues using
cells and biomaterials, can autonomously regenerate disk
morphology and functionality postimplantation. A variety
of in vitro studies have indicated the promise of using disk
constructs for TDR,146–149 the most advanced therapeutic
strategy for terminally degenerated disks. However, only
two translational studies have demonstrated the in vivo
efficacy of TE-IVDs for TDR; more are to come in the near
future. Though tissue engineering is progressing in its devel-
opment, TDR using TE-IVDs remains challenging in both
implantation and function. Implanting biological constructs
as functional disk substitutes requires invasive procedures
with increased patient risks; hence, there are greater surgical
hurdles to overcome to reach clinical trial with TE-IVDs than
with alternative strategies. One preferable option to deliver
the implant into the designated site is the use of minimally
invasive spine surgery, which can significantly curb surgical
damage to surrounding healthy tissue and provide the im-
plant with additional mechanical support based on the
premise that minimally invasive surgery causes a significant-
ly lesser increase in range of motion compared with tradi-
tional open procedures.150 As evidenced by prosthetic
TDR,151 displacement of the implant is a complication
when positioned in a stand-alone fashion, predominantly
due to the weight-bearing human spine yielding severe axial
loading. Therefore, the experimental results obtained from
quadrupedal animal studies, even when promising, must be
interpreted with caution before transitioning the interven-
tions onto humans. Furthermore, the construction of im-
plants that remain viable within a mechanically and
trophically inhospitable environment remains technically
difficult. However, the combined use of implant with a fixator
inducing distraction may enhance the in vivo performance by
reducing the risk of implant displacement, stabilizing the
implanted segment, and improving the nutrition supply.66

In addition to the severe mechanical loading, all therapeu-
tic approaches must combat the disk’s poor nutritional
supply, diffused from the blood vessels of the vertebral
body through the cartilaginous end plate. Despite being one
of three IVD components and implicated in diskdegeneration,
the end plate has hardly been factored into regenerative
strategies.149 In fact, the role of nutrition, critical in the
long-term durability of implanted biological treatments,
has been largely overlooked. A study by Guehring et al
demonstrated that distraction of the disk segment improves
hydration, enhances ECM gene expression, and increases
protein-expressing gel.152 As demonstrated by Hee et al,
distraction facilitates the regeneration of the ECM in both
cartilaginous and osseous end plates aswell as the recovery of
vascular channels, which are vital to the nutritional supply.153

The authors corroborated this result through their finding
that axial distraction using an external fixator enhanced the
regenerative capability of cell injection therapy, based on the
hypothesis that individually both a distracted segment and
cell injection can stimulate disk repair.66 Hence, although the
implantation of therapeutic biologics can independently
regenerate the degenerated disk to some extent, a holistic
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treatment with host environmental conditioning that com-
bats the severe mechanical loading and poor nutritional
supply is required for optimal and durable clinical outcomes.

Research in the treatment of DDD is continually evolving.
Yet, there is a limited understanding of healthy IVD cell
phenotype and adaptation in development and maturity,
which is paralleled in the limited understanding of degener-
ative disease pathogenesis and progression. Although the
treatment interventions currently being studied in the labo-
ratory and those already applied to patients offer some
remedial outcome, there has yet to be an established inter-
vention that offers sustained disk protection, repair, and
regeneration. The future of research in the field of disk
degeneration will therefore rely on elucidating the differ-
ences in the biological features between a healthy and
pathologic disk, which may offer insight into optimizing
current treatments or the development of more novel treat-
ments. Most innovations in animal models have shown
significant promise, although only a few have transitioned
onto clinical settings demonstrating their efficacy. Biomolec-
ular and cellular treatments, the only therapeutics undergo-
ing clinical trials, have shown remarkable progress already as
determined by the available published and nonpublished
data. Tissue engineering and annular repair, on the other
hand, are still in the preclinical stage but offer great potential
to close the gap between the current treatment attempts and
successful disk repair and replacement. The future of human
applications with biomolecular and cell-based interventions,
combined with tissue engineering, offers exciting prospects
in the treatment of DDD.
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