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Abstract

Introduction:Neuronal extracellular vesicle (nEV) tau and insulin signaling biomarkers

may detect preclinical Alzheimer’s disease and age-associated cognitive decline.

Methods: This case-control study used repeated serum samples from 73 cognitively

declining and 73 stable Wisconsin Registry for Alzheimer’s Prevention participants

(62.4 ± 6.3 years old). We immunocaptured nEVs; measured tau and insulin signal-

ing biomarkers; and examined biomarker differences by group, their performance in

group classification in training and test datasets (97, 49 individuals, respectively), and

whether they predict cognitive performance change.

Results:Declining compared to stable individuals showed higher baseline total, p231-,

andp181-tauwitholder ageandhigher annualized change for p-IR andp-IGF-1R.Com-

bining biomarkers classified decliners with 94% area under the curve (AUC), 86.0%

sensitivity and 86.7% specificity, in training data, and 75% AUC, 71.4% sensitivity,

and 77.3% specificity, in test data. Insulin biomarkers predicted cognitive performance

change prospectively.

Discussion: Combining nEV biomarkers can identify individuals with age-associated

cognitive decline.

KEYWORDS

Alzheimer’s disease, blood biomarker, cognitive decline, exosomes, extracellular vesicles, insulin
resistance, tau

1 INTRODUCTION

Alzheimer’s disease (AD) has a long preclinical phase extending more

than a decade prior to onset of mild cognitive impairment (MCI) or

dementia1-3 and characterized by progressive biochemical and cellular

changes, including accumulation of amyloid beta (Aβ) plaques and

hyperphosphorylated tau tangles and neurodegeneration.4 A plausible

temporal ordering of neuropathological processes has been based
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on clinicopathological and biomarker studies using cerebrospinal

fluid (CSF) or positron emission tomography (PET) for Aβ and tau.5,6

It is fairly established that Aβ appear before tau deposits, with the

latter being more closely associated with development of cognitive

dysfunction.7-9 Moreover, tau burden has been associated with cogni-

tive performance in clinically unimpaired older individuals.9-11 Despite

insights gained by these studies, PET scans are expensive and not

widely available, whereas CSF sampling is invasive and unappealing.12
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Blood-based biomarkers, which combine wider availability, the possi-

bility of repeated acquisitions, lack of invasiveness, and lower cost, are

necessary for detecting preclinical AD in the general public.

Soluble biomarkers of brain origin show low blood concentrations,

whereas matrix complexity limits their detectability. Moreover, their

concomitant production by peripheral tissues and the presence of the

blood-brain barrier (BBB) challenge their attribution to brain pathol-

ogy. To overcome these limitations, we and others have turned to blood

extracellular vesicles (EVs), exosomes and microvesicles secreted by

various cells that reach the peripheral circulation. The cargo of EVs

depends on their cellular origin and homeostatic and pathologic pro-

cesses active in the parent cells,13 which render EV biomarkers a

reflection of diverse cellular pathologies, including neurodegenerative

diseases.14 We and others have used immunoprecipitation to isolate

enriched sub-populationsof neuronal-originEVs (nEVs) frombloodand

have measured biomarkers reflecting diverse aspects of AD patho-

genesis, such as Aβ and tau cascades, 15-20 insulin resistance,16,21 and

synaptic loss.22,23 We and others have shown that AD patients have

high nEV levels of phosphorylated and total tau, which may be used to

classify them with high accuracy.15,18 The convergent validity of nEV

tau biomarkers has been further suggested by their increase in aging,

Down syndrome, and traumatic brain injury, conditions associatedwith

tau deposits,24-26 and their strong associationwithCSF levels.15 Lever-

aging samples from the Baltimore Longitudinal Study of Aging (BLSA),

we showed that high nEV levels of phosphorylated and total tau and

phosphorylated insulin receptor substrate-1 (IRS-1; reflecting insulin

resistance) predict AD diagnosis ≈3.5 years before clinical onset.16

Furthermore, tau and insulin signaling biomarkers were associated

with cognitive performance.16

Given that therapies for AD may be most effective at the ear-

liest disease stages, there is an urgent need to detect AD among

pre-symptomatic individuals or those manifesting cognitive decline

milder thanMCI or dementia. As a step toward this goal, in the present

study, we examined whether nEV biomarkers previously associated

with AD are associated with cognitive decline in late middle age. We

leveraged serum samples from theWisconsin Registry for Alzheimer’s

Prevention (WRAP) study, which enrolls individuals at higher risk

for AD due to parental history.27 We assessed cross-sectional and

longitudinal differences in tau and insulin signaling nEV biomarkers

between cognitively declining and cognitively stable individuals, tested

models discriminating between cognitive decline groups, and assessed

associations between baseline biomarkers and prospective changes in

cognitive performance.

2 MATERIALS AND METHODS

2.1 Study design and participants

The overall purpose and design ofWRAPwere previously described.27

This study was approved by the University of Wisconsin Institutional

Review Board and all participants provided written informed consent.

Participants underwent longitudinal cognitive testing and repeated

RESEARCH INCONTEXT

1. Systematic review: We searched PubMed and Google

Scholar, meeting abstracts, and presentations for “pre-

clinical Alzheimer’s,” “biomarker,” “extracellular vesicles,”

“exosomes,” “cognitive aging,” and “cognitive decline.”

Developingbloodbiomarkers for detectionof age-related

cognitive decline and preclinical Alzheimer’s disease (AD)

are desirable goals for clinical research and practice. We

identified and cited prior studies of biomarkers noting

their limitations, with an emphasis on blood extracellular

vesicle (EV) biomarkers.

2. Interpretation: Our results suggest that different forms

of tau and insulin signaling mediators carried within

circulating neuronal EVs can identify individuals with

age-related cognitive decline milder than mild cognitive

impairment (MCI) or dementia.

3. Future directions: Further development of neuronal EV

biomarkers, including their prospective implementation

in longitudinal studies, may lead to reliable in vivo detec-

tion of preclinical AD and reveal the timing of specific

pathogenic cascades. Enrolling clinically intact individuals

with evidence of underlying pathology in secondary pre-

vention trials can foster therapeutic discovery in AD.

blood draws. From the WRAP cohort, we identified 393 participants

with stored serum sampleswho had aminimumof three cognitive test-

ing visits, which occurred approximately every 2 years. Cognitive tests

included the Rey Auditory Verbal Learning Test (RAVLT) total trials 1

to 5 (assessing learning), RAVLT trial 7 (assessing delayed recall), the

Wechsler Memory Scale (WMS) Logical Memory I-A (assessing imme-

diate recall), andWMS-Logical Memory II-A (assessing delayed recall).

Repeated measures for these tests were used to calculate slopes (Z-

scored) for each test and participant. We identified 71 participants

with cognitive slope Z-score ≤ –1.5 for one or more memory tests

(indicating measurable cognitive decline) and 2 participants with clin-

ical diagnosis of MCI since their enrollment in WRAP. This strategy

identified 73 “cognitively declining” participants. We also identified

117 participants with slope Z-scores ≥1.0 on all four tests, suggest-

ing stable memory. From these 117 “cognitively stable” participants,

we selected 73 who were age-matched one-to-one with cognitively

declining participants, using case-control matching with an age toler-

ance of 4 years (Table 1). For these 146 participants, we pulled two

sequential serum samples that were collected closest in time to the

last visit used to define cognitive status (hereafter referred to as base-

line and follow-up samples), comprising a total of 292 samples (time

interval between samples: mean [standard deviation (SD)] = 2.5 [0.4]

years). National Institute on Aging (NIA) investigators performing nEV

isolation remained blinded to group until all data were produced and

analyzed.
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2.2 nEV isolation

Venous blood samples were collected using serum collection tubes.

After clotting, sampleswere centrifuged at 3000 rpm for 10minutes at

4oC. Serum was aliquoted from the supernatant and stored at –80oC.

We immunocaptured nEVs using biotinylated antibody against L1 cell

adhesion molecule (L1CAM; 5G3, Thermo Scientific, Inc., Waltham,

Massachusetts, USA) according to Mustapic et al.28 Intact nEVs were

used for nanoparticle tracking analysis (NTA) with NanoSight NS500

(Malvern Panalytical Ltd., Worcestershire, UK). Recently published

data on method reproducibility and nEV characterization16 apply to

the current study.

2.3 Biomarker quantification

We measured total tau, p181-tau, p231-tau, p(Tyr)-IRS-1, p-IGF-

1R, pIR, p70S6K(T389), pGSK-3B(Ser9), and pAkt(Ser473) using

electrochemiluminescence assays (Meso Scale Discovery, Rockville,

Maryland, USA). We used colorimetric enzyme-linked immunosorbent

assay (ELISA) to measure EV marker Alix. Samples were measured

in duplicate. The average coefficient of variation (CV) of duplicates

across plates was< 10% for all assays (Table S1 in supporting informa-

tion); samples with CV among duplicates > 30% were excluded from

analyses (< 13% excluded). Limit of detection (LOD) was defined as

mean of blank plus 2.5 times standard deviation of blank (Table S1).

Values below the LOD were imputed to the LOD. An internal control

(IC) sample from a healthy donor was included in every plate to assess

inter-plate variability. The IC mean CV across plates was < 15% for all

assays. IC measurements informed a correction factor (IC measure-

ment for each plate divided by the mean across plates), which was

used to normalize values. Annualized rates of change were calculated

by dividing the change between follow-up and baseline by the time

betweenmeasurements.

2.4 Statistical analysis

Group differences in participant characteristics were evaluated with

chi-square for categorical and student’s t test for continuous char-

acteristics. All biomarker values were log-transformed before anal-

ysis to reduce skewness. We carried out four families of analyses.

Our primary objective was to assess whether (1) baseline levels and

(2) rates of change differ between cognitively declining and stable

individuals. Secondarily, as a global assessment measure, we exam-

ined the ability of nEV biomarkers to discriminate between cogni-

tive groups (3). Finally, we examined whether baseline levels predict

cognitive performance prospectively (4). Among nEV biomarkers, the

primary measures were p231-tau, p181-tau, and total tau. In an

exploratory fashion, we also examined insulin signaling biomarkers.

For all analyses, we defined statistical significance as P < .05 or 95%

confidence intervals including the null. Because some analyses were

descriptive or conducted to enhance interpretation, raw P-values are

reported.

2.4.1 Differences between cognitive groups in
nEV biomarker baseline levels and annualized rate of
change

First, to assess the cross-sectional association of cognitive group with

baseline biomarker levels, we fit an ordinary least squares linear

regression model, separately for each biomarker (as outcome), includ-

ing effects for group, age (centered at 60), and the group × age

interaction term (motivated by striking age-dependent group differ-

ences observed in our prior study in the BLSA16). Second, we used the

same model to assess associations of cognitive group with annualized

rate of change in biomarkers as the outcome. Sex, and apolipoprotein

E (APOE)-εX/ε4 genotype (present/absent) were included as factors

in all models given their well-known effects on AD risk and cognitive

function.

2.4.2 Classification analyses for cognitive
group membership

Next, we sought to identify a model discriminating declining from sta-

ble individuals. We conducted a random split of the data stratified by

cognitive status into training (2/3) and test (1/3) datasets, resulting

in balanced distributions of declining and stable individuals. To assess

biomarker classification performance individually and collectively, we

used the training dataset to build 12models, including functions of the

following predictors: model (1) age, sex, and APOE-εX/ε4; Model (2)

age, sex, APOE-εX/ε4 plus Alix; Models (3–11) age, sex, APOE-εX/ε4
plus individual biomarkers;Model (12) age, sex, APOE-εX/ε4plusmulti-

ple biomarkers.We considered 12measures of each biomarker as can-

didate predictors: baseline measurement, within-individual average;

within-individual slope; interactions of baseline, average, and slope

with age; interactionswith sex; and interactionswith age and sex.Mod-

els were fit using stepwise logistic regression to appropriately handle

the case-control design. Model selection was based on internal leave-

10%-out cross-validation to optimize the area under the receiver oper-

ating characteristic (ROC) curve (cvAUC). Model 12 was built by iden-

tifying single biomarker measures that maximized cvAUC, recursively

adding these measures until cvAUC no longer increased, followed by

a reduction step to determine whether a sub-model increased cvAUC.

We chose to optimize cvAUC to avoid over-fitting and enhance validity.

The primary comparisonwas between themodelwith the best-fit com-

bination of biomarkers (model 12) and the model without biomarkers

(model 1). In exploratory fashion, individual-biomarker models were

also fit to assess the discriminating value of individual biomarkers

and the incremental discriminating value of multiple biomarkers above

individual biomarkers. To compare the different models’ classification

performance, we plotted ROC curves and non-parametrically com-

paredmodels’ AUC.29

To further evaluate performance we calculated participants’ risk

scores for being classified as cognitive decliners for each model.

We identified the threshold estimated risk score that optimized the

Youden Indexes and computed sensitivity, specificity, and odds ratios.

We conducted the same analysis in the test dataset as a form of exter-

nal validation.
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F IGURE 1 Tau neuronal extracellular vesicle (nEV) biomarker differences between cognitive groups at baseline. Comparisons between groups
at baseline (A) and nEV biomarkers levels as a function of participant age at baseline (B). The nEV biomarker values for Alix (general EVmarker),
p181-tau, p231-tau, and total tau were log (1+value) transformed. nEV biomarkers aremarked according to stable and decliner groups; green dots
represent cognitively stable individuals; purple dots represent cognitively declining individuals. In (A), boxes describemedian and upper and lower
quartiles; error bars, 1.5× interquartile range. Fit lines are derived from linear regression. Shaded areas represent 95% confidence intervals.
*P< .05, **P< .01, ***P< .001, both frommodel 2. Agewas fixed at 60 years old

2.5 Association of baseline nEV biomarkers
with prospective cognitive change

Third, to assess whether biomarkers at baseline were associated with

longitudinal change in cognitive performance prospectively, linear

mixed-effects models were fit separately for five cognitive tests as

outcome variables (R, lme4 package version 1.1). All models included

a random intercept term for each participant nested within subject,

and fixed effects for age (centered at 60), sex, APOE-εX/ε4, prac-
tice effects (exposures to test), cognitive group, nEV biomarker (base-

line), and group × age. Interaction terms of interest (two-way: age

× biomarker and three-way: age × biomarker × group) were added

to null models sequentially and their significance was determined by

comparing the full model to the null model using likelihood ratios.

To ensure this analysis was prospective, only cognitive data from

visits occurring within 1 year of baseline blood collection and after

were included (unlike cognitive data used to inform cognitive group

above).

3 RESULTS

3.1 Participant characteristics

We analyzed 292 serum samples from 146 participants, including 73

cognitively declining (mean age [SD]: 62.9 [6.6] years; female [%]: 46

[63%]; APOE-εX/ε4 carriers [%]: 43 [58.9%]) and 73 cognitively stable

(mean age [SD]: 61.9 [5.9] years; female [%]: 58 [79.5%]; APOE-εX/ε4
carriers [%]: 41 [56.2%]). All participants were cognitively normal at

baseline. In the declining group, two participants were diagnosed with

MCI at follow-up (Table 1).

3.2 Differences in nEV biomarkers between
cognitive groups at baseline

Cognitive groupwas associatedwith tau biomarkers depending on age,

with declining compared to stable individuals showing higher p231-

tau, p181-tau, and total tau levels with older age (group × age inter-

action, p231-tau β = 0.07, 95% confidence interval [CI]: 0.02 to 0.11,

P = .01; p181-tau β = 0.07, 95% CI: 0.01 to 0.13, P = .03; total tau

β = 0.12, 95% CI: 0.05 to 0.18, P = .0005). Alix showed an opposite

marginal effect (group × age interaction β = –0.04, 95% CI: –0.08 to

0.01, P = .09; Figure 1B, Table 2). There were marginal effects for p-

IGF-1R, pS9-GSK3b, and pT389-p70S6K, with declining compared to

stable individuals showing higher levels with older age (group × age

interaction, p-IGF-1R β = 0.04, 95% CI: –0.01 to 0.08, P = .1; p-GSK3b

β = 0.05, 95% CI: 0.004 to 0.11, P = .08; p-p70S6K β = 0.06, 95% CI:

0.002 to 0.11, P = .07). There were no significant effects for baseline

tau biomarkers (Figure 1A), nEV concentration and average diameter,

p-IR, p-IRS-1, and p-Akt (Figures S1 and S2 in supporting information;

Table 2). Exploratory models including Alix as covariate or excluding
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F IGURE 2 Models predicting cognitive group based on neuronal extracellular vesicle (nEV) biomarkers. The upper panels show receiver
operator characteristic (ROC) curves for 12models in the (A upper) training (2/3 of total) and (B upper) test datasets (1/3 of total). The lower
panels show heat maps of pairwise differences in area under the curve (AUC) between all models with 95% confidence intervals (Cis) for the (A
lower) training and (B lower) test datasets. The leading diagonal element shows AUC values for eachmodel with 95%CI; off-diagonal elements are
showing AUC differences between columnmodels and rowmodels. Model 1 includes age, sex, and ApoE-εX/ε4 status. Model 12 includesModel 1
and the best-performing protein set during internally cross-validatedmodel-building, which includesmeasurements of p181-tau, Alix, pS473-Akt,
p-IGF-1R, and p-IR. IGF-1R, insulin-like growth factor 1 receptor; p-tau, phosphorylated tau; IRS-1, insulin receptor substrate 1; IR, insulin
receptor.

APOE had worse fit (by Bayesian information criterion [BIC]) and pro-

duced similar results (data not shown).

3.3 Differences in annualized change in nEV
biomarkers between cognitive groups

The annualized change in proximal insulin signaling biomarkers was

associated with cognitive group depending on age. At age 60, declining

compared to stable individuals showed higher annualized change for

p-IR (group β = 1.26, 95% CI: 0.27 to 2.24, P = .02); p-IGF-1R (group

β = 1.18, 95% CI: 0.17 to 2.19, P = .03); and, marginally, for p-IRS-1

(group β = 1.08, 95% CI: –0.15 to 2.31, P = .09) and p181-Tau (group

β = 1.65, 95% CI: –0.16 to 3.46, P = .08). Older declining compared to

stable individuals had lesser increases for p-IR (group × age β = –0.02,

95%CI: –0.04 to 0.004, P= .02), p-IGF-1R (group× age β= –0.02, 95%

CI: –0.03 to 0.002, P= .03) and marginally for p181-Tau (group × age β
= –0.03, 95% CI: -0.06 to 0.001, P = .07; Table 3, Figures S3 and S4 in

supporting information).

3.4 Classification analyses for cognitive
group membership

The best-performing model for group classification was Model 12,

which included demographics; APOE-εX/ε4 status; and measures of

p181-tau, Alix, p-IR, p-IGF-1R, and pS473-Akt (Table S2 in supporting

information). The model was developed in the training dataset using

10-fold internal cross-validation, where it achieved 94.0% AUC (95%

CI: 89.4% to 98.5%) (Figure 2A). In the test dataset, model 12 was

again the best model with 75.3% AUC (95% CI: 60.4% to 90.3%; Fig-

ure 2B). Model 12 outperformed all single biomarker Models (Figure 2

depicts heat maps of pairwise differences in model AUCs). To further

compare models in group discrimination, we derived risk scores (pre-

sented as boxplots in Figure 3A for training dataset and Figure 3B for

test data set) and calculated thresholds. In the training dataset, individ-

uals with Model 12 risk score over threshold (>0.505) had 40.1 times

higher odds (95% CI: 12.8 to 150.0) of cognitive decline compared to

under-threshold individuals; threshold sensitivity was 86.0% (95% CI:

71.4% to 94.2%) and specificity 86.7% (95%CI: 72.5% to 94.5%). In the
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F IGURE 3 Estimated risk scores for training and test data. Boxplots of risk scores from the predictionmodels for the training data (A) and test
data (B). Estimated risk score for eachmodel using all data for participants (stable and decliner) was shown in y-axis (range, 0 to 1). To calculate risk
scores, exit transformation (expit[x]= exp[x]/[1+ exp(x)]) was used to convert logistic regression predictors to a scale of 0 to 1. Single dots
represent outliers, boxes describemedian and upper and lower quartiles; error bars, 1.5× interquartile range. Statistics for diagnostic
performance ofModel 12 risk score threshold (> 0.505) in classifying individuals with cognitive decline (C)

test dataset, the corresponding odds ratiowas 8.5 (95%CI: 2.3 to 36.9),

sensitivity was 71.4% (95% CI: 47.7% to 87.8%), and specificity 77.3%

(95%CI: 54.2% to 91.3%; Figure 3C).

3.5 Prospective association of nEV biomarkers
with cognitive change

In models assessing effects of baseline nEV biomarkers on prospec-

tive longitudinal memory performance measured by RAVLT (T1-T5),

three-way interactions (cognitive group × age × baseline levels) were

observed for p-IRS1 (β=–0.40, 95%CI: –0.70 to–0.09,P= .02), p-Akt (β
= –0.29, 95%CI: –0.55 to –0.04, P= .03), p-GSK-3β (β= –0.29, 95%CI:

–0.54 to –0.05, P = .02), p-p70S6K (β = –0.28, 95% CI: –0.53 to –0.04,

P= .03) and, marginally, for p-IGF-1R (β= –0.33, 95%CI: –0.66 to 0.01,

P = 0.06), and p-IR (β = –0.32, 95% CI: –0.65 to 0.002, P = .06; Table

S3 in supporting information). A similar three-way interaction effect on

RAVLT (T7)was observed for p-IRS1 (β=–0.14, 95%CI: –0.26 to –0.02,

P= .03). Lower insulin signaling biomarker levels were associated with

greater rates of decline in learning and memory scores with increasing

age, especially among cognitively stable individuals.

4 DISCUSSION

The development of techniques for isolation of nEVs from periph-

eral blood has opened new avenues for detecting and monitoring

neurodegenerative pathologic processes in living individuals. In this

study, we found that older individuals with cognitive decline milder

than MCI or dementia show higher levels of total tau, p181-tau, and

p231-tau than cognitively stable individuals. Results suggest that tau

pathology is implicated in cognitive decline in non-demented indi-

viduals on the AD pathologic continuum, expanding the scope of EV

biomarkers beyond clinical AD prediction. We also found higher annu-

alized rates of change of insulin signaling biomarkers in cognitively

declining compared to stable individuals, thereby expanding the list of

biomarkers associated with cognition beyond p-tau and p-IRS-116 to

include pS473-Akt, pS9-GSK-3β, pT389-p70S6K, p-IGF-1R, and p-IR.
The WRAP study comprises a late middle age cohort with up to

four-fold higher risk for AD compared to the general population,27

given parental history of AD.30,31 From this cohort, we created a case-

control sample including individuals with longitudinal decline in cog-

nitive domains sensitive to AD (further enriching for preclinical AD32)

and longitudinally stable individuals (less likely to harbor preclinical AD

or being resilient to it). This customized sample allowed us to contrast

individuals with genetic predisposition to AD and evidence for individ-

ual cognitive vulnerability to individuals with similar genetic predispo-

sition, but cognitive resilience.

To comprehensively assess tau pathophysiology, we measured dif-

ferent tau species (p181-, p231-, and total).We previously showed that

nEV p181-tau and p231-tau are higher in individuals with preclini-

cal AD compared to controls.16 Furthermore, emerging data indicate

that blood tau biomarkers are closely associated with Aβ pathology.33

The present study revealed an interesting age-dependency of group
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differences for nEV tau biomarkers, with higher levels seen in older

WRAP participants with cognitive decline. These findings are remark-

ably concordant with the BLSA nEV study, in which a strikingly simi-

lar age-dependency of group differences was observed, with p181-tau

levels diverging between future AD and control individuals in older

ages (>75 years) and p231-tau levels maximally different in younger

ages (<70 years).16 Previous studies have claimed that CSF p231-tau

shows stronger diagnostic performance and association with mem-

ory than p181-tau.34,35 Interestingly, p231-tau predominantly stains

pre-neurofibrillary tangles and predates p181-tau staining of intra-

neurofibrillary tangles,36-38 suggesting that p231- and p181-tau car-

goes reflect different stages of phosphorylated tau pathology.

Insulin signaling is essential for normal neuronal function and

memory performance, whereas brain insulin resistance is associated

with impaired cognition.39 Dysregulation of insulin signaling might

be an early event in AD pathogenesis linked to tau phosphorylation

through GSK-3β activity and other mechanisms.40 Insulin signaling

nEV biomarkers have previously been associated with memory per-

formance across diverse groups (eg, older individuals,16 patients with

schizophrenia41), cortical atrophy in AD,42 and response to experi-

mental treatments (intranasal insulin in AD,43 exenatide in PD44). The

observedprospective associationof p-IRS-1 anddownstreameffectors

with memory is concordant with findings of an autopsy study associat-

ing their brain expression with ante-mortem cognition.45 The associa-

tion between all insulin signaling mediators examined and RAVLT (T1-

T5) performance specifically links these markers to episodic learning,

among the earliest-impaired cognitive domains in the development of

ADdementia,46,47 andarguably themost pertinentmeasure in this pre-

clinical cohort.

While significant group differences were observed, there was con-

siderable overlap between groups. This is perhaps not unexpected,

given that the sample comprised individualswhose division into groups

was based on preclinical differences in cognitive trajectories. In this

setting, it is remarkable that nEV biomarkerswere able to achieve such

as a high degree of classification accuracy, which parallels performance

of other biomarkers for themuch easier task of classifying AD patients

and controls.48,49

The strengths of this study include the analysis of a rare popu-

lation likely enriched for preclinical AD and the use of longitudinal

cognitive performance to define groups. NIA investigators who pro-

cessed nEVs remained blinded for the entire investigation. The avail-

ability of repeated samples allowed us to evaluate both cross-sectional

biomarker differences and rates of change. Limitations include the

absence of a “hard” criterion for defining groups (such as disease diag-

nosis), which may have resulted in mis-classification in both groups (ie,

cognitively stable individuals may harbor AD pathology; declining indi-

viduals may never develop clinical AD or have declining cognition from

other causes).However, potentialmisclassification tends tobias results

toward the null, implying that our findings are conservative estimates.

Although the use of a test dataset for external validation is a strength

and supported the conclusions, its small size may have led to sampling

variability and sensitivity to outliers, perhaps contributing to the lower

AUC estimate in this dataset. Analysis in that dataset was not meant

to determine statistical significance and external validation should be

repeated in a larger study sample.

Further development of nEV biomarkers, including their prospec-

tive implementation in longitudinal studies, may lead to reliable in vivo

detection of preclinical AD and reveal the timing of specific pathogenic

cascades. This capability may augment therapeutic discovery by iden-

tifying druggable processes that become active prior to clinical dis-

ease and by helping enroll participants who harbor pathology in clini-

cal trials. Future disease-modifying treatments should target preclini-

cal disease, because even delaying clinical disease by a year could sub-

stantially reduce health-care costs.50 Identifying individuals harboring

preclinical AD with blood biomarkers would allow clinicians to imple-

ment secondary prevention treatment strategies, dramatically improv-

ing disease prognosis.
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