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The myth of generalisability in clinical research and machine 
learning in health care
Joseph Futoma, Morgan Simons, Trishan Panch, Finale Doshi-Velez*, Leo Anthony Celi*

An emphasis on overly broad notions of generalisability as it pertains to applications of machine learning in health 
care can overlook situations in which machine learning might provide clinical utility. We believe that this narrow 
focus on generalisability should be replaced with wider considerations for the ultimate goal of building machine 
learning systems that are useful at the bedside.

Introduction
Dr Lee, an esteemed intensivist from the USA, is 
rounding in an intensive care unit (ICU). He is asked by 
a team member who is taking care of patients with 
COVID-19 if they can triage their patients to optimise use 
of  scarce resources, such as ventilators, with their 
hospital’s new machine learning model to predict 
mortality.1 He is about to say yes, but stops himself. Do 
the findings of the preprints and fast-tracked published 
articles that this model is based on apply to his patient 
population?2 Problems with the increase in hastily 
written articles notwithstanding, are the conclusions of 
research based on patients with COVID-19 in China and 
Italy from several months ago still valid in his ICU today, 
given the differences in practice patterns and rapidly 
changing guidelines and protocols?

The answers to these questions strongly depend on 
context. For a substantial number of individuals who die 
in the ICU, their mortality is a result of cessation of 
treatment. Many factors affect the decision to discontinue 
invasive interventions, including whether the outcome is 
aligned with the patient’s preferences. Therefore, a 
machine learning model that predicts hospital mortality 
is largely identifying which patients are most likely to 
discontinue treatment, and is effectively learning a 
collection of rules to predict this outcome.

As a thoughtful clinician, Dr Lee realised that he 
should consider the broader context in which the ICU’s 
mortality model was developed. Unlike Dr Lee, current 
machine learning systems typically cannot identify 
differences in contexts, let alone adapt to them.3 However, 
the collections of rules derived by machine learning 
systems might still be effective in a specific context. In 
this Viewpoint, we argue that an overemphasis on overly 
broad notions of generalisability overlooks situations in 
which machine learning systems have the greatest ability 
to deliver clinical utility.

In pursuit of generalisability 
Generalisability is not a binary concept, and does not 
have a universally agreed definition. According to one 
common hierarchy,4 a set of rules from a machine 
learning system or a clinician might be applicable: inter
nally, applying only in the narrow context in which it was 
developed; temporally, applying prospectively at the 
centre in which it was developed; or externally, applying 

both at new centres and in new time periods. Other 
hierarchies construct even more detailed levels of 
generalisability.5

A system that achieves the highest possible level of 
generalisability is desirable. Many medical journals 
mandate that articles on machine learning applications 
show results on external cohorts.6–8 This request is only 
natural: such journals often have diverse readerships, 
and research articles with widespread relevance to many 
readers are more likely to be read and circulated, 
increasing the visibility of the journal and publishers. 
Similarly, vendors, such as electronic health record 
companies, prize generalisability in their applications. 
These companies frequently sell generic black-box 
machine learning systems that purport to apply 
universally across many hospitals.9 Broad applicability is 
to their financial advantage as it allows for amortising 
development costs for machine learning and hopefully 
eliminates the need for solutions tailored to each 
hospital.

In some cases, such broad geographical generalisability 
might be feasible—eg, in medical imaging applications 
such as diagnosing diabetic retinopathy.10 However, these 
areas are still not immune to generalisability issues,11 and 
few prospective studies or randomised trials exist.12 More 
often, universality is a myth. As users of these machine 
learning systems can attest, the demand for universal 
rules—generalisability—often results in systems that 
sacrifice strong performance at a single site for systems 
with mediocre or poor performance at many sites.13–15 The 
inherent trade-off that clinicians and researchers alike 
encounter is between improving system performance 
locally and having systems that generalise.

Although we have already explored the story of Dr Lee, 
let us discuss a more general hypothetical scenario. 
Consider a machine learning system built by tertiary care 
hospital A to help clinicians identify patients who are at 
high risk of a hospital-acquired, highly contagious 
diarrhoeal infection. A prospective study at hospital A 
found the system was effective at helping infection-
control practitioners prevent outbreaks, and the system 
was put into general use. Hearing of this success, their 
partner rural-community hospital, hospital B, decided to 
adopt the system. Unfortunately, its performance at 
hospital B was poor. Investigating the problem revealed 
that there was an antibiotic stewardship in hospital A, 
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but not in hospital B. The machine learning system, 
implicitly trained for a context in which a certain policy 
around antibiotics exists, was unusable at hospital B. 
Does this mean it should not be used at hospital A?

Of course not: the machine learning system had 
already shown temporal generalisability at hospital A, 
providing tailored predictions that ensured cases did not 
go unnoticed. Geographical generalisation to hospital B 
is not necessary for clinicians at hospital A to use the 
system to improve patient care. Rather, the desire for 
geographical generalisability is a proxy for validity: a 
theoretical machine learning system applied universally 
would tautologically always work as expected. In situ
ations with strong signals and little local variability across 

sites, this strategy might make sense. However, in many 
scenarios there are too many practice patterns and other 
local idiosyncrasies that make learning a broadly appli
cable model effectively impossible. Instead, machine 
learning systems in these settings can be viewed as an 
aspirational form of evidence-based medicine—local 
data to create local inferences for local patients and 
clinicians.16–19 Issues of generalisability are not unique to 
machine learning and are a dominant concern for clinical 
guidelines where the results of randomised controlled 
trials, the gold standard for evidence generation, might 
not generalise beyond the trial settings.20–23 If hospitals 
want to have useful machine learning systems at the 
bedside, the broader research community need to stop 
focusing solely on generalisability and consider the 
ultimate goal: will this system be useful in this specific 
case?

Beyond generalisability
To create machine learning systems that are clinically 
useful, the emphasis should shift from demanding 
geographical generalisability to understanding how, 
when, and why a machine learning system works. This 
knowledge will help medical professionals use the sys
tem correctly, not only across institutions but also within 
an institution as patients and practices change. For 
instance, if hospital A stopped their antibiotic steward
ship policy, they should know to update their machine 
learning system. Although the precise level of generalis
ability required for a real-world application will depend 
on the context, any system intended to be integrated into 
a clinical environment will need to be at least temporally 
generalisable, ensuring that it performs well prospec
tively. We further suggest that there are several important 
questions to ask when assessing the overall validity of a 
machine learning system for a particular context: when 
the machine learning system is right, is it right for the 
right reasons? Or is it relying on anticausal mechanisms 
due to unobserved confounders (as in the example of 
patients with asthmatic pneumonia who have lower 
mortality rates than people who do not have asthma 
because of more intensive care24)? How do the 
characteristics of the cohort used to develop the machine 
learning system compare with typical patients at the 
institution where it will be used? Does the system rely on 
variables known to be collected differently at different 
centres?

More broadly, all machine learning systems must be 
closely monitored to make sure that their performance 
does not degrade with time as patient demographics 
and practice patterns inevitably shift.25,26 Furthermore, 
techniques from continual learning27 offer enormous 
potential to create more advanced machine learning 
systems that continuously update based on new data. In 
theory, such systems could address many of the pitfalls 
with generalisability (panel). However, these types of 
self-updating algorithms pose enormous regulatory 

Panel: Overview of potential threats to generalisability in clinical research and 
machine learning in health care, along with hypothetical examples of what they 
might look like in practice

Changes in practice pattern over time
•	 Improved patient outcomes through adoption of low-tidal-volume ventilation in the 

intensive care unit (ICU) will affect the performance of models that were developed 
when higher tidal volumes were standard.

•	 Leucodepletion of blood for transfusion became standard of care in most countries. 
Models related to blood transfusion and outcomes require recalibration if validated 
before the practice change.

Differences in practice between health systems
•	 Mortality predictions for patients admitted to the ICU with COVID-19 are highly 

sensitive to criteria for ICU admission across hospitals, which in turn vary depending 
on ICU demand and capacity.

Patient demographic variation
•	 Models to predict the risk of hospitalisation from COVID-19 that are trained on data 

from Italy where there is a high proportion of older individuals in the population will 
not do well in countries with a different age distribution—eg, low-income and 
middle-income countries that typically have a younger population.

Patient genotypic and phenotypic variation
•	 Model performance is linked to the composition of the training cohort with regard 

to disease genotypes or phenotypes, or both. These models will not translate well 
to populations in which the genotypic or phenotypic make-up is different. Some 
phenotypes of sepsis and acute respiratory distress syndrome, for example, might 
be over-represented or under-represented in different settings.

Hardware and software variation for data capture
•	 Bedside monitors that have different sampling rates for the capture of physiological 

signals and that are measured continuously will have different susceptibilities to 
artifacts and will affect models that have time-series data as an input.

•	 Computer-vision models for automated interpretation of CT scans are sensitive 
to the machines used to obtain the images.

Variation in other determinants of health and disease (eg, environmental, social, 
political, and cultural) 
•	 A model developed in the USA to predict neurological outcomes of premature 

babies will not do well in a low-income country because of resource availability.
•	 The relationship of patient and disease factors with clinical events, such as 

hospital-acquired infection, will change when a health-care system is strained 
(eg, during a pandemic).
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challenges, as outlined in a recent white paper by the 
US Food and Drug Administration,28 and there are still 
many technical and cultural barriers to integrate them 
into real-world systems.29

This path to validation will probably require more work 
than simply evaluating a machine learning system on 
multiple datasets and then claiming universal external 
generalisability, as vendors might wish to do. However, 
models thoroughly vetted through these proposed 
standards have the promise of being able to do better for 
the context at hand. We also emphasise that the 
methodological process of developing a high-quality 
machine learning system might be generalisable: the 
lessons hospital A learns about how to prepare data and 
then train, test, and monitor their machine learning 
system can be used by hospital B to do the same with 
their own data. As we gain a deeper understanding of 
what patterns different machine learning systems rely 
on, we can also determine more accurately to what extent 
systems trained in one context might work in another—
eg, perhaps hospital A’s machine learning system would 
also work well at hospital C, a neighbouring tertiary care 
institution that follows very similar practices. Where 
possible, multicentre datasets might offer the potential to 
better capture heterogeneity across sites during model 
development, potentially leading to more generalisable 
models. Multicentre data from the relevant target 
populations are also the only way to validate whether a 
model truly generalises to a new institution.30,31

Finally, we note that there are some circumstances 
where broad generalisability is desirable. For example, if 
we are interested in using machine learning systems to 
understand the underpinnings of disease (eg, a study to 
identify biomarkers that predict which patients with 
COVID-19 will develop cytokine storm), then the machine 
learning system’s output should not be influenced by 
practice-specific variables, such as the specific technology 
used to take measurements. However, clinicians do con
stantly adjust their behaviours and practices depending on 
the unique characteristics of patients, the availability of 
resources, and the local practice norms. If we are to 
build accurate and actionable machine learning systems, 
we should not ignore the fact that practice-specific 
information is often highly predictive.32–34

Conclusion
Machine learning systems are not like thermometers, 
reliably measuring the temperature via universal rules of 
physics; nor are they like trained clinicians, gracefully 
adapting to new circumstances. Rather, these systems 
should be viewed as a set of rules that were trained to 
operate under certain contexts and rely on certain assump
tions, and might work seamlessly at one centre but fail 
altogether somewhere else. We hope this Viewpoint will 
help reframe the narrow focus on generalisability and will 
encourage future researchers, developers, and reviewers to 
be explicit about the appropriate level of generalisability for 

their setting. We believe that a renewed focus on broader 
questions about characterising when, how, and why 
machine learning systems have clinical utility will help 
ensure that these systems work as intended for both 
clinicians and for patients.
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