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Anxiety enhances pain in a model of osteoarthritis
and is associated with altered endogenous opioid
function and reduced opioid analgesia
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Abstract
Introduction: Negative affect, including anxiety and depression, is prevalent in chronic pain states such as osteoarthritis (OA) and
associated with greater use of opioid analgesics, potentially contributing to present and future opioid crises.
Objectives: We tested the hypothesis that the interaction between anxiety, chronic pain, and opioid use results from altered
endogenous opioid function.
Methods: A genetic model of negative affect, the Wistar–Kyoto (WKY) rat, was combined with intra-articular injection of
monosodium iodoacetate (MIA; 1 mg) to mimic clinical presentation. Effects of systemic morphine (0.5–3.5 mg·kg21) on pain
behaviour and spinal nociceptive neuronal activity were compared in WKY and normo-anxiety Wistar rats 3 weeks after MIA
injection. Endogenous opioid function was probed by the blockade of opioid receptors (0.1–1 mg·kg21 systemic naloxone),
quantification of plasma b-endorphin, and expression and phosphorylation of spinal mu-opioid receptor (MOR).
Results: Monosodium iodoacetate–treated WKY rats had enhanced OA-like pain, blunted morphine-induced analgesia, and
greater mechanical hypersensitivity following systemic naloxone, compared with Wistar rats, and elevated plasma b-endorphin
levels compared with saline-treated WKY controls. Increased MOR phosphorylation at the master site (serine residue 375) in the
spinal cord dorsal horn of WKY rats with OA-like pain (P 5 0.0312) indicated greater MOR desensitization.
Conclusions: Reduced clinical analgesic efficacy of morphine was recapitulated in a model of high anxiety and OA-like pain, in which
endogenousopioid tonewas altered, andMOR function attenuated, in theabsenceof previous exogenousopioid ligandexposure. These
findings shed new light on the mechanisms underlying the increased opioid analgesic use in high anxiety patients with chronic pain.
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1. Introduction

Chronic pain is a major clinical problem with limited treatment
options. Since the 1990s, clinical use of opioids shifted from
managing acute pain and pain in terminally ill patients, to wide-

spread prescribing19 for long-term pain conditions, despite
limited usefulness in most people.6,17 Opioid drugs, such as
morphine, predominantly produce their effects through m-opioid
receptors (MOR) at key sites in the spinal cord and brain.39 The
effects of chronic pain states on endogenous opioid function
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include increased release of endogenous opioid peptides, such
as b-endorphin, alterations in MOR function, and lower analgesic
responsiveness to morphine.12,45

Osteoarthritis (OA) is the fastest growing cause of chronic pain
worldwide,25,57 underpinned by both nociceptive and neuro-
pathic mechanisms26,44 and central sensitization in ;20% of
people with OA pain.3,51 Despite high rates of opioid-prescribing
for OA pain,10,53 they have no superior effect over nonopioid
treatments over 12 months,33 and long-term opioid use is
associated with increased risk of adverse events.10

Negative affect is associated with exacerbated chronic pain20

and is common in people with OA,5,8 and complex relationships
between endogenous opioid function and depressive symptoms
and trait anxiety have been reported.14 Negative affect is
associated with the greater use of opioid analgesics in people
with OA.8,41,56 We hypothesised that the interaction between
high anxiety, chronic pain, and increased opioid use in people
may result from altered endogenous opioid function, which could
be tested in a clinically relevant animal model.

Rodent models and molecular and pharmacological studies of
opioid receptor function have advanced knowledge of pain
mechanisms and opioid-induced analgesia.42,43 Inbred Wistar
Kyoto (WKY) rats are an experimental model of anxiety-like
behaviour.38 We reported increased magnitude and spread of
pain behaviour in a model of OA pain in WKY rats,15 replicating the
clinical association between anxiety and exacerbated OA pain. In
this article, we measured opiate-mediated analgesia in a clinically
relevant model of OA-like pain in WKY rats and normo-anxiety
Wistar rats. Effects of morphine on spinal cord neuronal excitability
and antagonist-mediated blockade of opioid receptors were used
to probe endogenous opioid system function in this model.
Measurements of plasma levels of b-endorphin and spinal cord
levels of MOR protein andMOR receptor phosphorylation at serine
residue 375 (P-ser-375), which is required for opioid-mediated
desensitization,50 provided important new mechanistic insights.

2. Materials & methods

2.1. Experimental animals

Studies were conducted in accordance with UK Home Office
Animals (Scientific Procedures) Act (1986) and ARRIVE guide-
lines.31 211 male rats were used: Wistar n 5 101 (Charles River,
Margate, United Kingdom) and Wistar Kyoto n 5 110 (WKY;
Envigo, Bicester, United Kingdom). The relationship between
anxiety and clinical prescription opioid use is stronger in males
than females47; therefore, this study was restricted to male rats,
althoughwe recognise this as a limitation.Wistar rats are themost
genetically similar control strain toWKY. Rats were group housed
by strain, 4 per cage in a specific pathogen-free environment with
a 12-hour light or dark cycle and ad libitum access to food and
water. Treatments were assigned randomly, with experimenters
blinded throughout the study. 17 rats were excluded from the
study (8.1%; see Supplemental Table 1 for further details,
available at http://links.lww.com/PR9/A130).

2.2. Induction of the monosodium iodoacetate model of
osteoarthritis pain

Rats received a single intra-articular injection, randomly assigned
to either 1mg/50mLMIA in 0.9% saline (Wistar n5 54 andWKY n
5 51) or 50 mL 0.9% saline (Wistar n 5 47 and WKY n 5 47),
through the infrapatellar ligament into the left knee, under
isoflurane anaesthesia (3% in 1L.min21 O248). 12 naı̈ve WKY

animals were also used in this study (see 2.3 below). Health and
welfare checks were performed immediately after anaesthetic
recovery, daily for 3 days, and weekly thereafter. Pain behaviour
was assessed twice weekly from D3 to 21.

2.3. Behavioural testing

Pain behaviour was assessed byweight-bearing (WB) asymmetry
using an incapacitance tester11 (Linton Instrumentation, Diss,
United Kingdom). Weight-bearing asymmetry was calculated as
[ipsilateral g/(ipsilateral g1 contralateral g)]. Mechanical hind paw
withdrawal thresholds (PWTs) were determined by von Frey hair
(vFH) monofilaments using the up-down method.16 As the
intervals between successive vFH are logarithmic,40 PWTs are
reported as log vFH values to avoid biasing statistical compar-
isons. To enable pooling of experimental studies (see Supple-
mental Table 2, available at http://links.lww.com/PR9/A130) and
preserve the interval nature of the vFH scale, PWTs were
converted to change in the number of vFHs from baseline for
Figure 1.

To measure anxiety-like behaviour, the total time spent in
closed vs open arms in the elevated plus maze (EPM58) over a
period of 10 minutes was quantified using EthoVision software
(Noldus Information Technology, Netherlands).

Tomeasure the locomotor activity, the number of beambreaks
over 30 minutes in activity boxes (Photobeam Activity System;
San Diego Instruments) was assessed at baseline and 19 to 21
days after model induction.46 To rule out effects of morphine on
motor activity, the locomotor activity was assessed 60 to 90
minutes after the last of 3 consecutive doses of morphine (0.5, 2,
and 3.5 mg·kg·mL21, s.c.; n 5 6) or saline (50 mL; n 5 6) in a
separate cohort of WKY rats.

2.4. Pharmacological interventions

2.4.1. Systemic morphine or naloxone or CTAP behavioural
study

To assess differences in opioid sensitivity or alterations in endoge-
nous opioidergic tone, behavioural nociceptive responses after
consecutive subcutaneous (s.c.) dosesofmorphine, the nonselective
opioid receptor antagonist naloxone, and the MOR-selective
antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP1) or
vehicle (0.9% saline) were determined in separate groups of Wistar
and WKY rats 21 days after model induction. Pain behaviour was
assessed inMIA-treated or saline-treated rats predrug and then after
the following treatments: study 1—morphine (0.5, 2, and 3.5
mg·kg·mL21, s.c.; Wistar/MIA n 5 10, WKY/MIA n 5 10) or vehicle
(Wistar/saline n5 8 andWKY/saline n5 8); study 2— naloxone (0.1,
0.3, and 1 mg·kg·mL21, s.c.; Wistar/saline n 5 12, Wistar/MIA n 5
12,WKY/saline n5 10, andWKY/MIA n5 11); study 3—CTAP (0.1,
0.3, and 1mg·kg21·mL21,i.p.;Wistar/MIA n5 10 andWKY/MIA n5
10). Drug treatments were given at 60 minute intervals, and pain
behaviour assessed at 15, 30, and 60minutes after each dose (study
1 and 2), or 30 minutes only after each dose (study 3) (based on
previous published literature9,37). % morphine analgesia was
calculated for weight-bearing, with 100% analgesia equalling total
normalisation of weight-bearing asymmetry. For effects of drug
treatments on PWT, data are reported as logPWT values.

2.4.2. In vivo spinal electrophysiology

Responses of deep dorsal horn wide dynamic range (WDR)
neurons to hind paw stimulation were recorded 21 days after
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model induction (Wistar/saline n5 10, Wistar/MIA n5 15, WKY/
saline n 5 12, and WKY/MIA n 5 12) as previously described55

(see Supplementary Methods, available at http://links.lww.com/
PR9/A130). WDR neuronal responses to mechanical hind paw
stimulation with 8, 10, 15, and 26 g vFH (10 seconds application
and 10 seconds interstimulus interval) were recorded at 10
minute intervals to establish baseline responses and then every
10 minutes after consecutive doses of morphine sulfate (0.5, 2,
and 3.5 mg·kg21, s.c., 60 minute intervals).

Responses of WDRs were binned according to poststimulus
latency for major primary afferent fibres (Ab 0–20ms, Ad 20–90ms,
C90–300ms, andpost-stimulus discharge 300–800ms). Degree of
wind-up was determined as the total number of C fibre and post-
stimulus discharge spikes after a train of 16 stimuli (3x C-fibre
threshold, 0.5 Hz). For mechanical stimuli, average firing rates (Hz) in
response to 10 seconds stimulation with each vFH were recorded.

The mean maximal inhibition (MMI) was calculated as maximal %
change vs baseline for each dose of morphine and plotted by strain
and treatment for eachdose. For each vFH, the area under the curve
(AUC) was calculated from MMI values for each dose for each
individual animal and animals grouped by strain and treatment and
compared in Prism 8.

2.5. Assessment of opioid function in ex vivo tissues

2.5.1. b-endorphin ELISA

Levels of the endogenous opioid peptide b-endorphin were
measured in plasma frommale Wistar (n5 18) andWKY (n5 18)
rats from study 3 using a commercially available enzyme-linked
immunosorbent assay (ELISA) kit (Phoenix Pharmaceuticals,
Burlingame, CA) according to the manufacturer’s instructions

Figure 1. Anxiety-like phenotype and exacerbated OA-like pain in the WKY-MIA model. At baseline, WKY rats spent significantly less time in the open arms of the
elevated plusmaze (A). Bars indicatemedian values, and error bars represent IQR. **P, 0.01 vsWistar rats, one-tailedMann–WhitneyU test (Supplemental Table
3, available at http://links.lww.com/PR9/A130). Three weeks after model induction, there was no significant effect of treatment on duration spent in the open arms
of the elevated plus maze (B). MIA-treated and saline-treated WKY rats had a significant anxiety-like phenotype, compared with their respective Wistar groups.
Data represent total duration in the open arms for each 10 minutes trial. Individual data points are shown, and bars represent the mean and SEM. ##P5 0.0032,
###P, 0.003 vsWistar/saline,1 P5 0.0246 vsWistar/MIA, 2-way ANOVA with the Tukey multiple comparison post hoc test (Supplemental Table 6, available at
http://links.lww.com/PR9/A130). MIA-treated rats had lowered ipsilateral PWT in WKY and Wistar rats (C). Contralateral PWTs were unaltered in MIA-injected or
saline-injected Wistar rats but significantly lowered in MIA-treated WKY rats (D). Data are mean6 SEM change in vFH compared with baseline, *P, 0.05, **P,
0.01, ***P , 0.001 WKY/MIA vs WKY/saline, ##P , 0.01, ###P , 0.001, ####P , 0.0001 Wistar/MIA vs Wistar/saline, mixed-effects model analysis with the
Tukey multiple comparison post hoc test (Supplemental Table 7, available at http://links.lww.com/PR9/A130). Macroscopic assessment of cartilage damage in
ipsilateral knee joints in MIA-injected WKY and Wistar rats. Little or no cartilage damage was observed in saline-injected rats (E). Data represent the summed
scores for each of the 5 individual joint compartments (0–5, max score 25). Individual data points are shown, and bars represent the mean and SEM. ##P 5
0.0054, ####P, 0.0001 vs Wistar/saline, ****P, 0.0001 vs WKY/saline,1 P5 0.0123 vs Wistar/MIA, 2-way ANOVA with the Tukey multiple comparison post
hoc test (Supplemental Table 6, available at http://links.lww.com/PR9/A130). ANOVA, analysis of variance; MIA, monosodium iodoacetate; OA, osteoarthritis;
PWTs, paw withdrawal thresholds; vFH, von Frey hair; WKY, Wistar Kyoto.
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(see Supplemental Methods, available at http://links.lww.com/
PR9/A130).

2.5.2. Western blotting

Fresh spinal cord tissue was collected fromWKY and Wistar rats
21 days after MIA or saline treatment (cohort 3, n5 4/strain) and
probed for the expression of total MOR (rabbit anti–mu-opioid
receptor, Neuromics, RA10104, 1:500), P-ser375 MOR (rabbit
anti–mu-opioid receptor Ser375, BIOSS-Stratech, bs-3724R, 1:
500), and b-actin (mouse anti–b-actin, Sigma, A5441, 1:5000)
using Western blotting (see Supplemental Methods, available at
http://links.lww.com/PR9/A130).

2.6. Assessment of joint pathology

Knee joints from each animal were fixed in 10% neutral buffered
formalin (48 hours), disarticulated, and macroscopic cartilage
damage scored by a blinded experimenter by established
methods.28 7% of rats were excluded due to joint pathology
inconsistent with the treatment group (see Supplemental Table 1,
available at http://links.lww.com/PR9/A130).

2.7. Statistical analyses

Power calculations based on data from a similar previous study in
thismodel15 were used to determine appropriate group sizes (see
Supplemental Methods, available at http://links.lww.com/PR9/
A130). Data were analysed using Prism 8 (GraphPad, La Jolla,
CA). Data distributions were assessed by Shapiro–Wilk normality
testing, and treated as parametric or nonparametric, as appro-
priate. Further statistical details are provided in Supplemental
Methods (available at http://links.lww.com/PR9/A130).

3. Results

3.1. Wistar Kyoto rats exhibit a basal anxiety-like phenotype
and exacerbated pain behaviour in the monosodium
iodoacetate model of osteoarthritis

Wistar Kyoto rats spent significantly less time in the open arms of
the elevated plus maze (EPM) when compared with Wistar rats
(Fig. 1A, Supplemental Table 3, available at http://links.lww.com/
PR9/A130). These data support a basal anxiety-like phenotype in
the WKY strain. There was a significant effect of strain (Fig. 1B,
Supplemental Table 6, available at http://links.lww.com/PR9/
A130, P , 0.0001), but a nonsignificant effect of treatment (P 5
0.086) on the time spent in the open arms of the EPM, consistent
with our previous work.15 Locomotor activity was comparable
between strains (Supplemental Figure 1C, available at http://
links.lww.com/PR9/A130).

WKY and Wistar rats exhibited comparable hind paw
withdrawal thresholds (PWTs), and weight was borne equally
on both hind paws before any intervention (Supplemental
Table 2, available at http://links.lww.com/PR9/A130). Consis-
tent with previous work,15 ipsilateral PWT were lowered in both
strains of rats (Fig. 1C), from day 10 after intra-articular
injection of MIA. A significantly greater reduction in ipsilateral
PWTs was observed in WKY rats, compared with Wistar rats
(Supplemental Tables 2 and 6, available at http://links.lww.
com/PR9/A130), with a reduction in contralateral PWTs in
WKY rats alone (Fig. 1D, Supplemental Table 7, available at
http://links.lww.com/PR9/A130), consistent with the pres-
ence of central sensitization and an exacerbated OA-like pain
phenotype in WKY rats.15 Rats treated with MIA exhibited

weight-bearing asymmetry in both strains of rats (Supplemen-
tal Figure 1A, available at http://links.lww.com/PR9/A130);
this was less pronounced in the WKY strain, presumably
because of lowered contralateral pain PWTs confounding this
measure in a similar manner to models of neuropathic pain.

3.2. Osteoarthritis-like joint pathology

There were significant increases in cartilage damage in the MIA
model in both WKY and Wistar rats (Fig. 1E, Supplemental
Table 6, available at http://links.lww.com/PR9/A130). It is
noteworthy that, despite the exacerbated pain phenotype, there
was significantly less cartilage damage observed in WKY rats
compared with Wistar rats.

3.3. Reduced effects of systemic morphine in the Wistar
Kyoto-monosodium iodoacetate model of high anxiety and
osteoarthritis-like pain behaviour

Systemic administration of morphine (0.5, 2, and 3.5 mg·kg21

s.c.) produced a significant, dose-related reduction in weight-
bearing asymmetry in Wistar rats (Fig. 2A, Supplemental Table 5,
available at http://links.lww.com/PR9/A130). By contrast, only
the highest dose of morphine significantly inhibited weight-
bearing asymmetry in MIA-treated WKY rats (Fig. 2A). Similarly,
morphine had a significantly blunted inhibitory effect on lowered
ipsilateral PWTs in MIA-treated WKY rats, compared with the
Wistar strain (Fig. 2B, Supplemental Table 6, available at http://
links.lww.com/PR9/A130). All 3 doses of morphine significantly
restored PWTdeficits inMIA-treatedWistar rats, whereas only the
highest dose of morphine produced significant reversal of
ipsilateral PWTs in WKY rats (Fig. 2B, Supplemental Table 6,
available at http://links.lww.com/PR9/A130). The highest dose of
morphine also significantly reversed the lowered contralateral
PWT evident in MIA-treated WKY rats (Fig. 2C, Supplemental
Table 6, available at http://links.lww.com/PR9/A130). The
assessment of locomotor activity after the dosing paradigm
confirmed that the blunted effects of morphine in WKY rats were
not due tomorphine-induced suppression of locomotor activity in
WKY rats (Supplemental Figure 2A&B, available at http://links.
lww.com/PR9/A130).

3.4. Evidence for altered systemic endogenous opioid
signalling in Wistar Kyoto rats

We hypothesised that the reduced inhibitory effects of morphine
on pain behaviour in WKY rats may arise as a result of changes in
opioid receptor function or circulating levels of endogenous
opioids. The effects on pain behaviour of blocking the m-opioid
receptor with the antagonist naloxone were assessed in the MIA
model in both strains of rats (Fig. 3). Naloxone (0.1–1 mg·kg21

s.c.) did not alter PWTs in Wistar rats in the absence of the model
of OA-like pain (intra-articular injection of saline), suggesting no
overt basal endogenous opioidergic tone in these rats. However,
all 3 doses of naloxone (0.1–1 mg·kg21) significantly lowered
ipsilateral PWTs in MIA-treated Wistar rats, suggesting the
presence of endogenous opioid tone after the induction of the
model of OA pain in this strain of rats. In WKY rats, naloxone
(0.1–1mg·kg21) produced a significant bilateral lowering of PWTs
(Fig. 3A–D, Supplemental Table 6, available at http://links.lww.
com/PR9/A130), which was similar in both saline-treated and
MIA-treated WKY rats. These effects were mirrored in animals
treated with the selective MOR antagonist, CTAP (Supplemental
Figures 3A&B, available at http://links.lww.com/PR9/A130),
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supporting an effect mediated by m-opioid receptors. These data
suggest the presence of altered endogenous opioid peptides, or
increased constitutive activity of MOR, inWKY rats in the absence
of the OA pain model, which is not further increased in the
presence of the model.

Plasma levels of b-endorphin were assayed in tail vein blood
from both strains of rats collected under brief isoflurane
anaesthesia. At baseline, plasma b-endorphin was significantly
lower in WKY rats, compared with Wistar rats (Fig. 3E,
Supplemental Table 3, available at http://links.lww.com/PR9/
A130). At 21 days after intra-articular injection of saline, plasma
levels of b endorphin were higher in both Wistar and WKY rats
compared with baseline (Fig. 3F). At 21 days after intra-articular
injection of MIA in Wistar rats, plasma levels of b-endorphin were
comparable with levels in saline-treated Wistar rats at this
timepoint (Fig. 3F). At 21 days after intra-articular injection of
MIA in WKY rats, plasma levels of b-endorphin were increased
compared with levels in saline-treated WKY rats at this timepoint
(Fig. 3F, Supplemental Table 4, available at http://links.lww.com/
PR9/A130). In our hands, plasma levels of enkephalin were below
the detection limits (measured by commercially available ELISA),
and therefore, we cannot rule out changes in other endogenous
opioids (data not shown).

3.5. The spinal cord: a potential site of reduced morphine
efficacy in this model of high anxiety and osteoarthritis pain

To evaluate a potential locus for the altered behavioural
phenotype in the WKY-MIA model, in vivo single-unit recordings
of WDR neurons in the spinal cord dorsal horn were made in
saline or MIA-treated rats (see Supplemental Figure 4 for sample
data, available at http://links.lww.com/PR9/A130). Basal neuro-
nal characteristics were similar across groups (see Supplemental
Table 8, available at http://links.lww.com/PR9/A130). Neuronal
responses to an overtly nociceptive electrical stimulus (3x C-fibre
threshold, 2ms) were significantly higher in the WKY strain and
further elevated in MIA-injected rats (Fig. 4A, B, Supplemental
Table 7, available at http://links.lww.com/PR9/A130, P ,
0.0001). Action potentials recorded in the Ad range were
significantly elevated (3-fold) in WKY rats compared with Wistar
rats (Fig. 4A, Supplemental Table 6, available at http://links.lww.
com/PR9/A130), and responses in theC-fibre latency rangewere
significantly higher inMIA-injectedWKY rats, comparedwith both
saline-treated and MIA-treated Wistar rats (Fig. 4B, Supplemen-
tal Table 6, available at http://links.lww.com/PR9/A130). A
significant effect of strain was also observed for the degree of
wind-up, a proxy of central sensitization35 (Fig. 4C, Supplemental
Table 6, available at http://links.lww.com/PR9/A130 P ,
0.0001), with the highest responses evident in MIA-treated
WKY rats. There were no differences in responses in the
nonnoxious Ab-fibre latency, post-stimulus discharge (Supple-
mental Figure 5A&B, available at http://links.lww.com/PR9/
A130), or mechanically evoked responses of WDR neurons
(Supplemental Figure 5C, Supplemental Table 6, available at
http://links.lww.com/PR9/A130).

In line with our behavioural data, inhibitory effects of
consecutive systemic doses of morphine on evoked responses
of spinal neurons were significantly blunted in MIA-treated WKY
rats, compared with Wistar rats (Fig. 4D–I). The lowest dose of
morphine (0.5 mg·kg21) had a similar mean maximal inhibitory
effect on a range of noxious and nonnoxious mechanical

Figure 2. Reduced behavioural response to systemic morphine in the WKY-
MIA model of high anxiety and OA-like pain. Systemic administration of
morphine produced dose-related inhibition of weight-bearing asymmetry in
the MIA model in Wistar rats (A), inhibitory effects of low dose morphine were
significantly attenuated in WKY rats. Data represent % analgesia to 3
consecutive doses of systemic morphine, with abolition of weight-bearing
asymmetry representing 100% analgesia **P 5 0.01, Wilcoxon signed-rank
test with a hypothetical value of 0 (Supplemental Table 5, available at http://
links.lww.com/PR9/A130). The lowest dose of morphine restored MIA-
induced decreases in ipsilateral PWTs in Wistar, but not WKY, rats (B).
Morphine did not significantly alter contralateral PWTs in MIA-injected Wistar
rats; the highest dose of morphine reversed lowered contralateral PWTs in
MIA-injected WKY rats (C). Data represent mean6 SEM logPWT values. *P,
0.05, **P, 0.01, ***P, 0.001 vs baseline, repeated measures 2-way ANOVA
with Dunnett multiple comparison post hoc testing (Supplemental Table 6,
available at http://links.lww.com/PR9/A130). ANOVA, analysis of variance;
MIA, monosodium iodoacetate; OA, osteoarthritis; PWTs, paw withdrawal
thresholds; vFH, von Frey hair; WKY, Wistar Kyoto.
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stimuli–evoked responses, but there was little additional inhibition
after successive increased doses of morphine in the WKY-MIA
rats, unlike inhibitory effects evident in Wistar-MIA rats (Fig.
4D–E, G–H, Supplemental Table 3, available at http://links.lww.
com/PR9/A130).

3.6. Spinal m-opioid receptor function altered in the high
anxiety model of osteoarthritis pain

To explore potential changes in MOR function, we quantified
spinal cord MOR expression. Western blotting revealed no
significant effect of strain or treatment on total dorsal horn MOR
expression (Fig. 5A, B). There was a significant increase in

phosphorylation at P-ser375 in MIA-treated WKY rats compared
with saline-treated WKY rats (Fig. 5C, Supplemental Table 6,
available at http://links.lww.com/PR9/A130). This was not
evident in Wistar rats (Fig. 5C, Supplemental Table 6, available
at http://links.lww.com/PR9/A130). These data support an
alteration in spinal MOR function in MIA-treated WKY rats, in
the absence of exogenous morphine treatment.

4. Discussion

Clinically, people with high anxiety and chronic pain, including OA
pain, have greater opioid consumption compared with people
with comparable pain but less anxiety.8 This clinical problem was

Figure 3. Altered endogenous opioid tone in rats with an anxiety-like phenotype. Systemic administration of the MOR antagonist naloxone (0.1–1 mg·kg21, s.c.)
significantly lowered ipsilateral PWTs in MIA-injected, but not saline-injected, Wistar rats (A). In both saline-treated andMIA-treatedWKY rats, naloxone produced
a significant, dose-dependent, and bilateral lowering of PWTs (A and B). Data represent mean 6 SEM for baseline PWTs and MMI values for each consecutive
dose of naloxone. #P, 0.05, ##P, 0.01, ###P, 0.001, ####P, 0.0001 vsWistar/saline; *P, 0.05, ****P, 0.0001 vsWKY/saline;1 P, 0.05,11 P, 0.01,
111 P, 0.001,1111 P, 0.0001 vs Wistar/MIA, 2-way ANOVA with Tukey multiple comparison post hoc testing (Supplemental Table 6, available at http://
links.lww.com/PR9/A130). LogPWTs were plotted for each dose and the AUC calculated for each individual animal via Prism. These data revealed a significantly
greater effect of naloxone on ipsilateral (C) and contralateral (D) PWTs in WKY rats when compared with Wistar rats. Individual data points; bars represent mean
and SEMs. #P, 0.0167, ####P, 0.0001 vs Wistar/saline;11 P5 0.026,1111 P, 0.0001 vs Wistar/MIA, 2-way ANOVA with Tukey multiple comparison
post hoc testing (Supplemental Table 6, available at http://links.lww.com/PR9/A130). Baseline plasma levels of b-endorphin were measured by ELISA in samples
collected from naı̈ve Wistar (n 5 18) and WKY (n 5 18) rats (E). Bars represent the mean value, error bars indicate SEM. ****P 5,0.0001, unpaired t test
(Supplemental Table 3, available at http://links.lww.com/PR9/A130). At 21 days after injection ofMIA, plasma levels ofb-endorphin were higher inWKY rats (n5 9)
but not Wistar rats (n5 8–9). Bars represent the mean value, and error bars indicate SEM *P5 0.044, unpaired t test (Supplemental Table 4, available at http://
links.lww.com/PR9/A130). ANOVA, analysis of variance; MIA, monosodium iodoacetate; MOR, m-opioid receptors; OA, osteoarthritis; PWTs, paw withdrawal
thresholds; vFH, von Frey hair; WKY, Wistar Kyoto.
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mimicked in a rodent model of high anxiety and OA-like pain; our
mechanistic studies revealed multiple lines of evidence support-
ing altered endogenous opioid function, including increased
phosphorylation at serine residue 375 of MOR, which is required
for opioid-mediated desensitization,50 in the absence of previous
exposure to exogenous opioid ligand.

Systemically administered morphine produced a robust in-
hibition of behavioural pain responses after OA-induced joint
pathology in Wistar rats, which do not normally exhibit an
anxiogenic phenotype. However, in WKY rats, which have a
heightened anxiety-like phenotype, the effects of morphine on
OA-induced pain behaviour were significantly blunted. The lowest
dose of morphine did not reverse weight-bearing asymmetry or
hind pawwithdrawal thresholds in MIA-treatedWKY rats, despite
significant inhibitory effects in the MIA-treated Wistar rats. This
may reflect the greater pain behaviour in MIA-treated WKY rats;
however, a similar low dose of morphine reversed far greater
weight-bearing asymmetry induced by tibio-tarsal carrageenan
injection.49 In our study, the highest dose of systemic morphine
studied produced comparable inhibitory effects on MIA-induced

pain behaviour in both strains of rats, thus reduced efficacy of
opioid signalling, rather than a loss of receptors in WKY rats, is
likely to explain these differences in the effects of morphine.
Plasma levels of morphine after systemic administration have
been shown to be equivalent in WKY and SD rats,23 and
therefore, metabolism of exogenous opioids is an unlikely
confounder. Reduced efficacy of morphine in WKY rats has been
reported in both acute pain tests and the formalin model,23 and
here, we report blunted opioid analgesia in a clinically relevant
model of chronic OA pain in WKY rats. Our data are consistent
with the clinical evidence that anxiety in people with joint pain is
associated with the greater8 or more prolonged41 use of
prescription opioids.

To investigate the basis for the blunted analgesic efficacy of
morphine in WKY rats with the model of OA pain, the effects of
pharmacological blockade of MOR on pain behaviour were
explored. Systemic naloxone or the MOR-selective antagonist
CTAP lowered hind paw withdrawal thresholds in Wistar rats in
the presence of the model of OA pain, but not in pain-free, saline-
treated Wistar rats. These data are consistent with the

Figure 4. Enhanced excitability of spinal neurons and reduced efficacy of systemic morphine in the WKY-MIA model. In vivo electrophysiological recordings of
responses of WDR neurons in the deep dorsal horn. The number of action potentials after a noxious electrical stimulus at 3x C-fibre latency was binned according
to latency. Responses in the Ad-fibre latency range were higher in WKY rats compared with Wistar rats (A). Responses in the C-fibre latency range were higher in
WKY rats (B) and significantly increased in MIA-treated WKY rats. Data are the average number of action potentials recorded within each poststimulus latency
band, with individual data points shown; bars represent themedian values and IQR. #P5 0.0144, ##P5 0.0067, ###P5 0.0002 vsWistar/saline,1 P5 0.0365,
11 P5 0.0017,111 P5 0.0004 vs Wistar/MIA, 2-way ANOVA with the Tukey post hocmultiple comparisons test (Supplemental Table 6, available at http://
links.lww.com/PR9/A130). Wind-up responses of WDR neurons was greater in WKY rats (C). The number of action potentials recorded in the 90 to 800 ms
poststimulus (C fibre to post-stimulus discharge latency range) was significantly higher in saline-injected WKY rats (stimuli 5 and 6) and MIA-injected WKY rats
(stimuli 3–6), compared with Wistar rats. Data represent mean 6 SEM number of action potentials. *P, 0.05 vs WKY/saline, 1 P, 0.05 vs Wistar/MIA, 2-way
ANOVA with the Tukey post hocmultiple comparisons test (Supplemental Table 6, available at http://links.lww.com/PR9/A130). There was a blunted effect of 2
and 3.5 mg.kg21 morphine on mechanically evoked responses of spinal WDR neurons in MIA-injected WKY rats: 8 g- (D), 10 g- (E), and 26 g-evoked (F) vFH
evoked responses of WDR neurons in MIA-injected WKY rats, which was confirmed by AUC analysis (G–I). Data represent median6 IQR, *P, 0.05, **P, 0.01
Mann–WhitneyU tests (Supplemental Table 3, available at http://links.lww.com/PR9/A130). ANOVA, analysis of variance; MIA, monosodium iodoacetate; PWTs,
paw withdrawal thresholds; vFH, von Frey hair; WDR, wide dynamic range; WKY, Wistar Kyoto.
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engagement of the endogenous opioidergic systems to counter
increased pronociceptive signalling in models of chronic pain and
align with evidence from clinical pain states.24,30,34 Unlike Wistar
rats, both systemic naloxone or CTAP significantly lowered hind
paw withdrawal thresholds in the absence of the model of OA
pain in the WKY strain of rats, suggesting the endogenous
opioidergic system is basally active in WKY rats in the absence of
a pain state. In the presence of the model of OA pain in WKY rats,
neither systemic naloxone nor CTAP had any additional effect on
the hind paw withdrawal thresholds, suggesting in the presence
of the model of OA pain, the endogenous opioidergic system is
not further activated in WKY rats. One plausible explanation for
this lack of chronic pain-induced engagement of the opioidergic
inhibitory pathways in WKY rats is that the endogenous opioid

system is already maximally activated in the absence of the pain
state.

Increased levels of b-endorphin have previously been reported
in the MIA model of OA pain in mice.2 In this article, baseline
plasma levels of b-endorphin were significantly lower in WKY rats
compared with Wistar rats; this difference was also observed
after intra-articular injection of saline in the 2 strains of rats. These
data do not neatly align with the effects of naloxone and CTAP,
which suggest the presence of greater endogenous opioid tone in
WKY rats in the absence of theOA painmodel. Thismay point to a
role of other endogenous opioid peptides; however, in our hands,
plasma levels of enkephalin were below the limits of the detection
assay and could not be tested. In the presence of established
MIA-induced OA pain behaviour, only WKY rats had elevated
levels of plasma b-endorphin, supporting a specific role in the
model of high anxiety and OA pain behaviour. Nevertheless,
contributions of other endogenous opioid peptides and the
relationship between circulating and tissue-specific levels of
opioids27 remain to be determined.

The spinal cord dorsal horn is a key signalling hub in pain
pathways54 and a major site of action of both endogenous and
exogenous opioids.18,59 Recordings of spinal cord dorsal horn
WDR neurons in MIA-treated WKY rats compared with MIA-
treated Wistar rats showed that the effects of systemic morphine
on WDR responses to low-force and high-force mechanical
stimulation of the hind paw were blunted in WKY MIA-treated
rats. These effects may arise as a result of altered MOR function
or exacerbated pronociceptive signalling due to inflammatory
processes29 or increased NMDA receptor signalling.36,52,60 We
hypothesised that these blunted inhibitory effects of exogenous
morphine may arise, at least in part, due to desensitization or
dysregulation of MOR.

The C terminus of MOR has a number of phosphorylation sites
that contribute to receptor desensitization and internalization. Of
the residues that undergo agonist-dependent phosphorylation,
residues 375 to 379 (STANT) have a critical role in endogenous
opioid-induced acute desensitization, recovery from desensiti-
zation, and internalization of MOR.4,32 Phosphorylation of the
serine-375 residue of MOR was significantly elevated in the
ipsilateral dorsal horn of the spinal cord of MIA-treated WKY rats,
suggesting greater MOR tolerance in MIA-treated WKY rats. This
may account, at least in part, for the loss of inhibitory effect of
morphine under this condition. Nevertheless, we cannot discount
changes in MOR expression or phosphorylation at other sites in
the brain.

The limitations of our study include the use of an inbred rat
strain to model anxiety-like behaviour. Differences in MOR gene
expression between WKY and Sprague–Dawley rats have been
reported for some brain regions.13 Despite no differences in MOR
expression in the reward-associated nucleus accumbens,22

acquisition of morphine-induced conditioned place preference
was reduced in WKY rats, supporting our evidence for
dysfunctional responses to exogenous opioids in this strain.
Alongside altered opioid function, WKY rats have lower basal
levels of limbic serotonin and dopamine, resulting in a blunted
response to acute stress,21 which is likely relevant to the clinical
situation. Given the key roles for supraspinal monoamines in
descending modulation of pain signalling,7 it is possible that both
opioidergic and monoaminergic dysfunction contribute to aug-
mented OA-like pain responses in WKY rats. Our study was only
performed inmale rats; although the relationship between anxiety
and prescription opioid use for chronic pain is stronger in males
than females,47 future work in female rats is important. Finally,
although MOR internalization was not quantified here, increased

Figure 5. Altered P-ser375 in the spinal cord in the WKY or MIA model.
Western blots of the expression of total MOR and P-ser375 in ipsilateral lumbar
spinal cord homogenates (A). Densitometry quantification revealed consistent
levels of total MOR (B) across strains and treatments (n 5 4/group) and in P-
ser375 in MIA-injected Wistar rats (C). There was a significant increase in the
proportion of P-ser375MOR in MIA-injected WKY rats, compared with saline-
injected controls. For expanded images of Western blots, see Supplemental
Figure 6, available at http://links.lww.com/PR9/A130). Bars represent median
values and IQR, *P5 0.0312, 2-way ANOVA with the Tukey post hocmultiple
comparisons test (Supplemental Table 6, available at http://links.lww.com/
PR9/A130). ANOVA, analysis of variance; MIA, monosodium iodoacetate;
MOR, m-opioid receptors; WKY, Wistar Kyoto.
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MOR internalization in dorsal root ganglia has been demonstrated
in amodel of chronic inflammatory pain61 and shown to be further
increased by morphine treatment.

Understanding why people with high anxiety and OA pain
have higher opioid consumption is essential to develop
alternative treatment strategies. Using a translationally rele-
vant model, our data support a role of altered endogenous
opioid receptor function and increased phosphorylation at
serine residue 375 of MOR, which is required for morphine-
mediated desensitization,50 in the absence of previous
exposure to exogenous opioid ligand. Our study highlights
the functional impact of the combination of anxiety, chronic
pain, and altered opioidergic tone, which leads not only to
increased pain responses but also to decreased efficacy of
opioid analgesia.
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