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a b s t r a c t 

In this study, we aimed to establish a radiomics nomogram that noninvasively evaluates the invasiveness of 

pulmonary adenocarcinomas manifesting as ground-glass nodules (GGNs). Computed tomography (CT) images 

of 509 patients manifesting as GGNs were collected: 70% of cases were included in the training cohort and 30% 

in the validation cohort. The Max-Relevance and Min-Redundancy (mRMR) and the least absolute shrinkage 

and selection operator (LASSO) algorithm were used to select the radiomics features and construct a radiomics 

signature. Univariate and multivariate logistic regression were used to select the invasiveness-related clinical 

and CT morphological predictors. Age, smoking history, long diameter, and average CT value were retained 

as independent predictors of GGN invasiveness. A radiomics nomogram was established by integrating clinical 

and CT morphological features with the radiomics signature. The radiomics nomogram showed good predictive 

ability in the training set (area under the curve [AUC], 0.940; 95% confidence interval [CI], 0.916–0.964) and 

validation set (AUC, 0.946; 95% CI, 0.907–0.986). This radiomics nomogram may serve as a noninvasive and 

accurate predictive tool to determine the invasiveness of GGNs prior to surgery and assist clinicians in creating 

personalized treatment strategies. 

I

 

n  

t  

i  

a  

c  

[

 

p  

c  

a  

a  

p

o

c

i  

n  

t  

s  

M  

l  

c  

f  

d  

r  

I

 

d  

p  

h

R

1

(

ntroduction 

With an increased awareness of the importance of physical exami-

ation, the widespread use of computed tomography (CT) has increased

he incidental detection of ground glass nodules (GGNs), defined as hazy

ncreased attenuations of the lung with preservation of the bronchial

nd vascular margins [1] . Most early-stage lung cancers are adenocar-

inomas and manifest as ground-glass nodules (GGNs) on thin-slice CT

2] . 

In 2011, a new classification system for lung adenocarcinoma was

roposed by the International Association for the Study of Lung Can-

er, American Thoracic Society, and European Respiratory Society. Lung

denocarcinomas are classified as preinvasive lesions such as atypical

denomatous hyperplasia (AAH) and adenocarcinoma in situ (AIS), min-
Abbreviations: CT, computed tomography; AAH, adenomatous hyperplasia; AIS, ad

ulmonary adenocarcinoma; GGNs, ground-glass nodules; mGGNs, mixed GGNs; ICCs,

perator; ROI, region of interest; ROC, receiver-operating characteristic; AUC, area

onfidence interval. 
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mally invasive adenocarcinomas (MIAs), and invasive pulmonary ade-

ocarcinomas (IPAs) [3] . However, previous studies have reported that

he 5-year recurrence-free survival rate of patients with preinvasive le-

ions and MIAs is nearly 100% [4] . Therefore, preinvasive lesions and

IAs are defined as indolent lesions, and IPAs are defined as invasive

esions. Prognosis also determines clinical treatment strategies. Specifi-

ally, published reports recommend follow-up or sub-lobular resection

or indolent lesions [5 , 6] , whereas lobectomy with systemic lymph node

issection is generally used for patients with IPAs [7] . Therefore, accu-

ately distinguishing indolent lesions (i.e., AAH, AIS, and MIA) from

PAs before surgery is vital to guide clinical treatment strategies. 

In routine clinical work, we often use CT morphological features to

ifferentiate the pulmonary nodules. However, considering the overlap-

ing of features, it remains a challenge for radiologists to evaluate the
enocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IPA, invasive 

 interclass correlation coefficients; LASSO, least absolute shrinkage and selection 

 under the curve; DCA, decision curve analysis; OR, adjusted odds ratio; CI, 
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Fig. 1. The workflow of this study. 
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nvasiveness of GGNs prior to operation. It is also a challenge to accu-

ately distinguish indolent lesions from IPAs using intraoperative frozen

ections because the final diagnosis requires a rigorous evaluation of the

ntire tumor to exclude the existence of invasive components [4] . Ra-

iomics is a cutting-edge technology that extracts high-throughput data

nd mines reproducible quantitative features from CT images [8 , 9] . It

as been applied in lung-disease diagnosis, prediction of prognosis, and

valuation of treatment response as a bridge between medical imaging

nd personalized medicine [10] . 

Previously, researchers focused on clinical and CT morphological

eatures to diagnose the invasiveness of GGNs [11–14] . Further, some

tudies used CT texture analysis/radiomics to diagnose invasiveness

f GGNs [15–18] . However, these studies were limited to a single

ethodology, which extracted inadequate features to construct diag-

ostic models. In recent years, two studies [19 , 20] constructed a multi-

imensional parametric model that combined clinical and CT morpho-

ogical features with a radiomics signature to differentiate preinvasive

esions (AAH/AIS) from MIAs/IPAs. However, the prognosis and treat-

ent strategy of MIAs are similar to those of preinvasive lesions, so it

s more meaningful to differentiate AAH/AIS /MIA from IPA for clini-

al decision-making. Based on the above literature review, we intend to

ntegrate clinical and CT morphological features with a radiomics sig-

ature to construct a nomogram for differentiating AAH/AIS/MIA from

PA. 

aterials and methods 

This retrospective study received ethical approval from the First Hos-

ital of Jilin University, and the requirement for informed consent was

aived. The workflow is presented in Fig. 1 . 

atients 

First, we retrospectively reviewed the electronic pathological records

f patients with AAH, AIS, MIA, and stage T1N0 IPA from January 2016

o October 2018. Following this review, 1037 patients were initially

ncluded. Next, we reviewed the last preoperative CT scans of these pa-

ients and selected the thin-section plain CT scans manifested as GGNs.

hen, we analyzed the radiological characteristics of the GGNs and se-

ected solitary GGNs ≤ 30 mm in diameter that were completely sur-

ounded by aerated lung and that were not associated with atelectasis,

ediastinal lymphadenopathy, or pleural effusion [21] . Fig. 2 shows
he flow of patient recruitment. Finally, 509 GGNs were included in the

tudy cohort, and their histopathological classification was as follows:

AH group (12 patients), AIS group (58 patients), MIA group (152 pa-

ients), and IPA group (287 patients). The patients were randomly di-

ided into the training and validation cohorts in a 7:3 ratio. 

linical and CT morphological characteristics evaluation 

Clinical characteristics, including sex, age, and smoking history,

ere obtained from the lung cancer database at our hospital. We sum-

arized the CT morphological characteristics used in previous studies

11-14] and classified them as categorical or continuous variables. 

For categorical variables, two radiologists with 12 (reader 1) and 7

reader 2) years of experience, who were blinded to the pathological re-

ults, reviewed each GGN independently on lung window images (level,

 500 Hounsfield units [HU]; width, 1500 HU) until they reached a con-

ensus. The categorical variables were as follows: (a) nodule location,

b) type of nodule, pure GGN or mixed GGN, (c) interface of nodule,

ell-defined and ill-defined, (d) lobulation, (e) vacuole, (f) pleural in-

ention, and (g) vascular convergence. The definition is presented in

upplementary S1. 

For continuous variables, two radiologists (readers 1 and 2) indepen-

ently segmented each GGN using the IntelliSpace Discovery platform

ISD, Philips Healthcare, Best, The Netherlands). The software semi-

utomatically generates a three-dimensional region of interest (3D-ROI)

nd automatically calculates the long and short diameters (mm) on the

argest axial section, volume (cm3), and average CT value (HU). Dif-

erences between the measurements of the two radiologists achieved a

atisfactory inter-observer reproducibility of interclass correlation coef-

cients (ICCs) > 0.8. Finally, we used the results from the senior radi-

logist (reader 1) for subsequent analysis. 

T image acquisition, segmentation, and radiomics feature extraction 

We selected the last thin-section plain CT scan before surgery for

ach patient. All of the CT images were obtained at full inspiration in

he supine position. Details regarding the CT protocol are shown in Sup-

lementary Table S1. CT version and image thickness may have affected

he CT phenotype. To test the generalization ability of the radiomics

ignature, we performed stratification analysis on the subgroups of CT

ersion and image thickness. 
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Fig. 2. Flowchart of the patient recruitment 

pathway. Flowchart shows how selected the 

study population and its retrospective manner. 

Numbers in parentheses are numbers of pa- 

tients. GGN = ground-glass nodule. 
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The enrolled GGNs were segmented by two radiologists (reader 1

nd reader 2) independently using the IntelliSpace Discovery platform

ISD, Philips Healthcare, Best, The Netherlands). The software semi-

utomatically generated a three-dimensional region of interest (3D-

OI), which was defined as the delineation around the nodule border

or every CT axial plane. Thereafter, the inserted plugin-pyradiomics 2.1

22] of feature extraction automatically extracted more than 1000 ra-

iomics features, including volumetric, histogram, textural, and wavelet

eatures. ICCs were used to assess the interobserver reproducibility of

adiomics feature extractions. We retained radiomics features with an

CCs > 0.8. 

adiomics signature building 

We compared five different feature selection methods as shown in

upplementary S2 and Table S2. Finally, we used the Max-Relevance

nd Min-Redundancy (mRMR) and the least absolute shrinkage and

election operator (LASSO) methods to extract features and establish

he multi-variate logistic regression (LR) model, which has a good

nterpretability and judges the contribution of each feature by its

eight coefficient. We used mRMR to eliminate the redundant and ir-

elevant features. The LASSO, which is suitable for the regression of

igh-dimensional data [23] , was used to determine the most useful

nvasiveness-related radiomics features using 10-fold cross-validation

nd 100 repetitions in the training cohort. The radiomics signature was
uantified as a radiomics score, which was calculated by summing the

elected eight features weighted by their coefficients. 

adiomics nomogram construction 

Univariate and multivariate logistic regression were used to select

he invasiveness-related clinical and CT morphological predictors. A ra-

iomics nomogram was established by integrating the retained clinical

nd CT morphologicalcharacteristics with the radiomics score. 

erformance of the radiomics nomogram 

Discrimination, calibration, and clinical use were used to evaluate

he performance of the radiomics nomogram. A bar diagram was plot-

ed to exhibit the discrimination performance of the radiomics signature.

he receiver-operating characteristic (ROC) curve was used to show the

iscrimination performance of the radiomics nomogram, and the cali-

ration curve was plotted to assess its calibration. The goodness-of-fit of

he nomogram was assessed using the Hosmer–Lemeshow test. P > 0.05

as considered well-calibrated. A decision curve analysis (DCA) was

onducted to determine the clinical utility of the radiomics nomogram

y calculating the net benefits of a range of threshold probabilities for

he validation cohort [24] . 
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Table 1 

Clinical and CT morphological characteristics of patients in the training and validation cohorts. 

Characteristics Training cohort ( n = 357) Validation cohort ( n = 152) 

Indolent lesions IPAs P -value Indolent lesions IPAs P -value 

Years/Median(25%, 75%) 53.50(46.00, 61.00) 60.00(54.00, 65.30) < 0.001 54.00(47.00, 62.00) 61.00(56.00, 65.00) < 0.001 

Sex/No.(%) Male 41(26.28) 70(34.83) 0.084 12(18.18) 27(31.40) 0.064 

Female 115(73.72) 131(65.17) 54(81.82) 59(68.60) 

Smoking/No.(%) Never 118(75.64) 58(28.86) < 0.001 57(86.36) 24(27.91) < 0.001 

Former/Current 38(24.36) 143(71.15) 9(13.64) 62(72.09) 

Location/No.(%) RUL 60(38.46) 75(37.31) 0.565 27(40.91) 30(34.88) 0.428 

RML 16(10.26) 16(7.96) 1(1.52) 6(6.98) 

RLL 30(19.23) 46(22.89) 12(18.18) 10(11.63) 

LUL 38(24.35) 41(20.40) 20(30.31) 33(38.37) 

LLL 12(7.69) 23(11.44) 6(9.09) 7(8.14) 

Type/No.(%) pGGN 144(92.31) 116(57.71) < 0.001 60(90.91) 44(51.16) < 0.001 

mGGN 12(7.69) 85(42.29) 6(9.09) 42(48.84) 

Interface/No.(%) Ill-defined 21(13.46) 17(8.46) 0.207 8(12.12) 8(9.30) 0.575 

Well-defined 135(86.54) 184(91.54) 58(87.88) 78(90.70) 

Lobulation/No.(%) Absent 124(79.49) 120(59.70) < 0.001 46(69.70) 51(59.30) 0.186 

Present 32(20.51) 81(40.30) 20(30.30) 35(40.70) 

Vacuole/No.(%) Absent 129(82.69) 130(64.68) < 0.001 58(87.88) 60(69.77) 0.008 

Present 27(17.31) 71(35.32) 8(12.12) 26(30.23) 

Pleural 

indention/No.(%) 

Absent 117(75.00) 132(65.67) 0.057 56(84.85) 60(69.77) 0.030 

Present 39(25.00) 69(34.33) 10(15.15) 26(30.23) 

Vascular 

convergence/No.(%) 

Absent 32(20.51) 22(10.95) 0.003 11(16.67) 9(10.47) 0.322 

Present 124(79.48) 179(89.06) 55(83.34) 77(89.53) 

Short_diameter/Median(25%, 75%) 8.20(6.35, 11.01) 12.30(9.80, 15.43) < 0.001 8.40(6.20, 11.31) 12.75(9.80, 15.91) < 0.001 

Long_diameter/Median(25%, 75%) 10.60(8.20, 14.05) 16.80(13.10, 20.40) < 0.001 10.95(7.59, 14.01) 16.25(12.90, 20.30) < 0.001 

Volume/Median(25%, 75%) 0.46(0.24, 0.99) 1.50(0.86, 3.02) < 0.001 0.52(0.21, 1.03) 1.71(0.83, 2.79) < 0.001 

Average CT value/Median(25%, 75%) − 634.70( − 689.65, − 562.85) − 534.00( − 620.30, − 456.10) < 0.001 − 640.00( − 699.05, − 560.45) − 535.00( − 603.05, − 446.60) < 0.001 

Radiomics score/Median(25%, 75%) − 0.97( − 1.87, − 0.09) 1.53(0.50, 2.27) < 0.001 − 1.03( − 2.41, 0.15) 1.36(0.69, 2.20) < 0.001 

Note: Data are the number of patients with percentage in parentheses. Age is shown as mean ± standard deviation. Abbreviations: IPA, invasive pulmonary adeno- 

carcinoma; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; pGGN, pure ground-glass nodule; mGGN, 

mixed ground-glass nodule; CT, computed tomography. Bold P values < 0.05. 
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tatistical analysis 

Chi square test or Fisher’s exact test was used for the nominal vari-

ble. Mann–Whitney test was used for the continuous variable with ab-

ormal distribution. T-test was used for the continuous variable with

ormal distribution. A two-tailed p -value < 0.05 indicated statistical sig-

ificance. ICCs were used to assess the agreement of the continuous

ariable measurement and extracting features by two-level radiologists.

ll statistical analyses for the present study were performed with R (ver-

ion 3.5.1; http://www.Rproject.org ). The detailed used R packages of

his paper are listed in the Supplementary S3. 

esults 

linical and CT morphological characteristics 

We pathologically confirmed 509 GGNs as lung adenocarcinoma,

mong which 222 were indolent lesions (AAH, AIS, or MIA) and 287

ere IPA at Stage T1N0. The clinical and CT morphological character-

stics of the GGNs in the training and validation cohorts are shown in

able 1 . 

We found that the median age, smoking history, type of nodule, vac-

ole, and all continuous variables (including long and short diameter,

olume, and average CT value) showed statistically significant differ-

nces between the indolent lesions and IPAs, with P < 0.05 in both the

raining and validation cohorts. 

eature selection and radiomics signature building 

In the training cohort, the mRMR retained 30 features. The LASSO

elected the optimal subset of eight radiomic features when log- 𝜆 of –

 was chosen ( Fig. 3 a–c). Radiomics score was calculated by summing

he selected eight features weighted by their coefficients. The formula

f the radiomics score and the details of the eight radiomics features
ere presented in the supplementary S4 and Table S3. The mean value

f the radiomics score of IPAs was significantly higher than that of in-

olent lesions in both the training cohort (1.53 vs. − 0.97, respectively;

 < 0.001) and validation cohort (1.36 vs. − 1.03, respectively; P < 0.001)

 Table 1 ). The radiomics score for each patient is shown in the bar di-

grams ( Fig. 4 a and b), which exhibit an outstanding discrimination

erformance. A stratified analysis showed that the performance of ra-

iomics score was not affected by the vendors (GE, Philips, and Siemens)

r slice thickness (Supplementary S5 and Fig. S1). 

adiomics nomogram construction 

We performed univariate logistic analysis on the clinical and CT mor-

hological characteristics in the training cohort, as shown in Table 1 .

leven characteristics associated with invasiveness of GGNs were re-

ained with statistical significance ( P < 0.05) ( Table 2 ). Then, multivari-

te logistic analysis was performed on these eleven characteristics. Fi-

ally, four characteristics were selected as independent predictors of in-

asiveness: age, smoking history, long diameter, and average CT value

 Table 2 ). These were incorporated with the radiomics signature to de-

elop a nomogram ( Fig. 5 ). 

valuating the performance of the radiomics nomogram 

The discriminating performances of the radiomics signature and ra-

iomics nomogram are displayed using ROC curves ( Fig. 6 ). The ra-

iomics signature showed favorable predictive efficacy, with an AUC of

.892 (95% CI, 0.860–0.926) in the training cohort and 0.892 (95% CI,

.838–0.947) in the validation cohort. The radiomics nomogram, which

ncorporated the clinical and CT morphological characteristics with the

adiomics score, yielded an AUC of 0.940 (95% CI, 0.916–0.964) in the

raining cohort and 0.946 (95% CI, 0.907–0.986) in the validation co-

ort. Furthermore, DeLong’s test revealed that the AUC of the radiomics

http://www.Rproject.org
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Fig. 3. Radiomics feature selection using a LASSO regression model. (a) selection of the tuning parameter ( 𝜆) in the LASSO model via 10-fold cross-validation based 

on minimum criteria. Binomial deviances from the LASSO regression cross-validation procedure were plotted as a function of log ( 𝜆). (b) The vertical black dotted 

line drawn at the optimal Log( 𝜆) of − 4 resulted in eight non-zero coefficients using 10-fold cross-validation. (c) The y-axis indicates the selected eight radiomics 

features, and the x-axis represents the coefficient of the features. 

Fig. 4. Bar diagrams of the radiomics scores in the training (a) and validation (b) cohorts. Green and red bars refer to actual invasive and indolent nodules, 

respectively. Bars going up and down refer to the predicted invasive and indolent nodules, respectively. The green bar pointing up or the red bar pointing down 

indicates the radiomics score made a correct prediction. Conversely, the green bar pointing down or the red bar pointing up indicates the radiomics score made an 

incorrect prediction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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omogram was significantly higher than that of the radiomics signature

n the training cohort (0.940 vs. 0.892; P < 0.001) and in the valida-

ion cohort (0.946 vs. 0.892; P < 0.001). The calibration curve ( Fig. 7 )

f the radiomics nomogram showed good agreement in the training co-

ort (Hosmer–Lemeshow test statistic, P = 0.2414 > 0.05) and in the val-

dation cohort (Hosmer–Lemeshow test statistic, P = 0.6773 > 0.05). The

CA for the radiomics score and radiomics nomogram are presented

n the validation cohort ( Fig. 8 ). The DCA indicated that using the ra-

iomics score or nomogram to predict the probability of invasiveness

dded more net benefit than the “treat all ” or “treat none ” strategies.

dditionally, the nomogram added more benefit than using only the

adiomics score at any given threshold probability. 
iscussion 

We developed and validated a radiomics nomogram that incorpo-

ated the clinical and CT morphological characteristics with a radiomics

ignature to preoperatively evaluate the invasiveness of GGNs. The

omogram demonstrated excellent discrimination with an AUC of 0.940

n the training cohort and 0.946 in the validation cohort, which shows it

ay assist clinicians in accurately evaluating the invasiveness of GGNs

rior to operation and taking appropriate treatment measures. 

Lung cancer is common among the elderly with a smoking his-

ory. A clinical model of lung cancer prediction reported that age

nd smoking status were independent predictors of nodule invasive-
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Table 2 

Predictors for the invasiveness of GGNs in the training cohort. 

Characteristics Univariate logistic regression Multivariate logistic regression 

OR (95% CI) P OR (95% CI) P 

Age 1.065 (1.041–1.091) < 0.001 1.033 (0.999–1.070) 0.0624 

Sex 0.667 (0.421–1.057) < 0.001 

Smoking 4.676 (3.360–6.509) < 0.001 4.427 (3.013–6.756) < 0.001 

Type of nodule 8.793 (4.581–16.877) < 0.001 

Lobulation 2.616 (1.618–4.227) < 0.001 

Vacuole 2.609 (1.574–4.327) < 0.001 

Pleural indention 1.568 (0.985–2.496) < 0.001 

Long diameter 1.275 (1.204–1.350) < 0.001 1.234 (1.151–1.332) < 0.001 

Short diameter 1.297 (1.211–1.388) < 0.001 

Volume 2.863 (2.135–3.839) < 0.001 

Average CT value 1.007 (1.005–1.010) < 0.001 1.008 (1.005–1.011) < 0.001 

Note: Abbreviations: GGN, ground-glass nodules; OR, odds ratio; CI, confidence interval; CT, computed tomography. 

Fig. 5. The radiomics nomogram. It was con- 

structed based on the integration with long di- 

ameter, average CT value, age, smoking history 

and radiomics score. The probabilities of each 

predictor can be converted into scores accord- 

ing to the first scale "point" at the top of the 

graph. The corresponding prediction probabil- 

ities are added up, and at the bottom of the se- 

quence is the invasiveness of GGNs. 

Fig. 6. Receiver-operating characteristic (ROC) curves of the radiomics score (blue lines) and nomogram (red lines) in the training cohort (a) and validation cohort 

(b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Calibration curves of the radiomics nomogram in the training cohort (a) and in the validation cohort (b). The 45-degree gray lines represent perfect predictions. 

The blue dotted lines represent the predictive performance of the nomogram. The closer fit to the gray line represents a better prediction. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. DCA for the radiomics score and ra- 

diomics nomogram. The y-axis represents the 

net benefit. The x-axis represents the thresh- 

old probability. The red line represents the ra- 

diomics nomogram. The blue line represents 

the radiomics signature. The gray line repre- 

sents the hypothesis that all GGNs are invasive 

(all). The black line represents the assumption 

that all GGNs are indolent (none). Using the 

radiomics nomogram to predict invasiveness 

adds more benefit than using the radiomics 

score at any given threshold probability. (For 

interpretation of the references to color in this 

figure legend, the reader is referred to the web 

version of this article.) 
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a  

e  
ess [25] . Kobayashi et al. [26] reported that a history of smoking

as robustly associated with GGN growth. In our study, all GGNs were

athologically confirmed as early-stage lung cancer. There were statis-

ical differences in age and smoking history when identifying the inva-

iveness of GGNs, which was consistent with the findings of previous

tudies. 

The CT morphological characteristics are usually used in routine

linical practice for predicting the invasiveness of GGNs. Some previ-

us studies [27–29] have reported that categorical variables, such as

esion size, ill-defined margin, irregular shape, and vascular changes,

ere predictors of the invasiveness of GGNs. However, these conclu-

ions are not uniform. She et al. [29] reported that lesion size, margin,

nd shape were the predictive factors of invasiveness. However, Zhao

t al. [20] showed that there were no significant differences in CT mor-

hological characteristics between preinvasive lesions and invasive le-

ions. Therefore, it is not reliable to predict the invasiveness of GGNs

ased on CT morphological categorical variables. In our study, the mul-

ivariate logistic regression model eliminated all categorical variables
ased on CT morphology. This may be because the GGNs included in

his study were all early-stage lung cancer. Usually, the characteristics

f early-stage lung cancer are atypical; they rarely exhibit typical malig-

ant signs of lobular, spicule, or pleural indention. Apart from that, the

adiologist’s experience and ability to recognize the signs also play a key

ole in diagnosis. Some studies used quantitative CT characteristics to

nalyze the invasiveness of nodules. To date, the most commonly used

uantitative indicators are average CT value and diameter [30–32] . In

ur study, the multivariate logistic regression analysis only retained two

uantitative radiological characteristics (long diameter and average CT

alue) as predictors of invasiveness, which was consistent with previous

tudies [33 , 34] . Average CT value reflects the heterogeneity of GGNs

aused by the infiltration of invasive tumor cells [35] . The Fleischner

ociety has recommended lesion size for management of lung nodules

36] . 

Radiomics was introduced in 2012 [37] , and it has been increasingly

pplied in clinical practice, especially for lung cancer. A review by Park

t al. [38] showed that radiomics has been widely used to identify the
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pecific driver mutational status of non-small cell lung cancer, predic-

ors of treatment response and prognosis, and the immune phenotype

f tumors. Radiomics can extract high-throughput quantitative features,

hich are not easily recognized visually, to reflect a tumor’s heterogene-

ty. The heterogeneity of invasive nodules is more obvious than that of

ndolent lesions. According to the hypothesis, radiomics may play an

mportant role in predicting the invasiveness of GGNs. 

There have been some recent studies that applied radiomics to pre-

ict the invasiveness of GGNs. She et al. [18] developed a model to

ifferentiate AIS/MIA from IPA using gender and a radiomics signature

ith an AUC of 0.96 in the training set and an AUC of 0.90 in the vali-

ation set. Xue et al. [19] constructed a nomogram that combined pure

r mixed density and fractal dimension to differentiate preinvasive le-

ions (AAH/AIS) from invasive lesions (MIA/IPA) with an AUC of 0.76

n the training set and an AUC of 0.79 in the validation set. Zhao et al.

20] used radiomics signature and mean CT value to discriminate sub-

entimeter nodules with a C-index of 0.716 in the training set and a

-index of 0.707 in the validation set. In this study, we constructed a

omogram integrating age, smoking history, long diameter and average

T value and the radiomics score to differentiate AAH/AIS/MIA from

PA with a promising performance, an AUC of 0.940 in the training co-

ort and 0.946 in the validation cohort. 

The strengths of this study lie in the following aspects. First of all, we

lassified the GGNs from the perspective of prognosis, which was more

nstructive for clinical decision-making. Considering the prognosis and

reatment strategy of MIAs is similar to those of preinvasive lesions, so

e combined them as indolent lesions and differentiate them from IPA,

hich was different from the study from Xue et al. and Zhao et al. In in-

olent lesions group, 12 AAHs confirmed by pathology were included,

hich were excluded from She et al. study. Though this number was

mall in our study, it was necessary. AAH usually manifests as GGN,

nd some are atypical (large size or uneven attenuation), which makes

t difficult to distinguish them from IPA. For this reason, we believe it is

mportant to include AAH. Second, we evaluated the CT morphological

haracteristics, which were not included in She et al. study. Although

ll of the categorical variables were excluded in our study, this nega-

ive result provided important evidence of the inaccurate visual mor-

hological assessment. But we reserved two quantitative morphological

ndicators, diameter and average CT value, which can reflect the het-

rogeneity of lesions. Third, we extracted a more comprehensive set

f radiomics features based on the plugin of pyradiomics 2.1 [22] in-

talled on ISD, including wavelet features, which were not included in

he et al. study. Though the wavelet features are obscure and difficult to

nterpret, they embody the deep information in CT images that cannot

e recognized by the human eye and better reflect the heterogeneity of

GNs. To solve the intractable challenge of interpretability of radiomics

eatures, we normalized the extracted radiomics features and calculated

he radiomics score, which is easier to use in clinical work. Furthermore,

e compared the effects of different feature selection methods on the

iagnostic performance of the model, and found no difference, which

ndicated that the extracted features have good stability. Fourth, our

ata were obtained from different CT vendors with different slice thick-

esses, which were also presented in the previous studies. However, we

erformed a stratified analysis to analyze the influence of CT vendor

nd slice thickness on radiomics signature, which was not carried out

n the previous studies. The result showed that the performance of the

adiomics score was not affected by the slice thickness and vendors from

E, Philips and Siemen (Delong test P > 0.05), which improved the gen-

ralization and robustness of our radiomics signature. Finally, we used

emiautomatic segmentation comparing with manual segmentation in

he previous studies, and ICC was used to evaluate the consistency of

wo radiologists, which ensured the reliability and robustness of the ex-

racted features. Based on the above aspects, we believe that our model

s more stable, reliable, and robust, and has a higher diagnostic perfor-

ance in the validation cohort; our model may better assist radiologists

n making diagnostic decisions. 
To further improve the predictive efficiency of the model, we inte-

rated clinical and CT morphological characteristics with the radiomics

core to construct a nomogram. A nomogram is a statistical model that

an generate an individual numerical probability of a clinical event by

ntegrating multiple variables; its use spurs the drive toward person-

lized medicine [39] . The radiomics nomogram yielded a significantly

igher AUC than that of the radiomics score. It also demonstrated good

alibration and added more benefit than using the radiomics score at

ny given threshold probability in the DCA curve. These results indi-

ate that this radiomics nomogram may be useful for radiologists in the

ecision-making process. It may also facilitate individualized precision

edical treatment. 

This study had several limitations. First, it was retrospective; there-

ore, our analysis may have been influenced by selection bias. Second,

he distribution of pathological subtypes of GGNs was biased, and the

umber of AAH was small. This was due to the fact that AAH is mostly

ollowed-up and rarely excised by surgery. We will continue to collect

ata on more AAH with pathological confirmation in the study follow-

p. Third, we did not conduct a multi-center study or obtain external

alidation; therefore, the universality of our findings may be reduced.

n the future, we will conduct a multi-center prospective multicenter

tudy to verify our model and enhance its universality. 

onclusion 

Radiomics nomogram may serve as a noninvasive and accurate pre-

ictive tool to determine the invasiveness of GGNs prior to surgery and

ssist clinicians in creating personalized treatment strategies. 
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