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As is known to all, glioma, a global difficult problem, has a high malignant degree, high
recurrence rate and poor prognosis. We analyzed and summarized signal pathway of
the Hippo/YAP, PI3K/AKT/mTOR, miRNA, WNT/β-catenin, Notch, Hedgehog, TGF-β,
TCS/mTORC1 signal pathway, JAK/STAT signal pathway, MAPK signaling pathway, the
relationship between BBB and signal pathways and the mechanism of key enzymes
in glioma. It is concluded that Yap1 inhibitor may become an effective target for the
treatment of glioma in the near future through efforts of generation after generation.
Inhibiting PI3K/Akt/mTOR, Shh, Wnt/β-Catenin, and HIF-1α can reduce the migration
ability and drug resistance of tumor cells to improve the prognosis of glioma. The
analysis shows that Notch1 and Sox2 have a positive feedback regulation mechanism,
and Notch4 predicts the malignant degree of glioma. In this way, notch cannot only
be treated for glioma stem cells in clinic, but also be used as an evaluation index to
evaluate the prognosis, and provide an exploratory attempt for the direction of glioma
treatment. MiRNA plays an important role in diagnosis, and in the treatment of glioma,
VPS25, KCNQ1OT1, KB-1460A1.5, and CKAP4 are promising prognostic indicators
and a potential therapeutic targets for glioma, meanwhile, Rheb is also a potent activator
of Signaling cross-talk etc. It is believed that these studies will help us to have a deeper
understanding of glioma, so that we will find new and better treatment schemes to
gradually conquer the problem of glioma.

Keywords: glioma, gene expression, signal pathway, prognosis, neoplastic

Abbreviations: PTEN, phosphatase and tension homolog deleted on chromosome ten; GBM, glioblastomas; Sav, salvador;
Mats, mob as the tumor suppressors; Yki, yorkie; Yap, yes-associated protein; PI3K, phosphatidylinositol-3-kinase;
PIP3, phosphomembrane-bound phosphatidylinositol-3; PI3K, phosphatidylinositol-3-kinase; Mtor, mammalian target
of rapamycin; SHH, sonic hedgehog; LATS1, large tumor suppressor homolog 1; MGMT, O6-methylguanine-DNA
methyltransferase; CKAP4, cytoskeleton-associated protein 4; TFA, transcription factor A; AMOTL1, Angiomotin-like 1;
TMZ, temozolomide; Mst1, mammalian sterile 20-like 1; P, phosphorylation; SMC, stromal Mesenchymal Cells; CBL, casitas
B lineage lymphoma proto-oncogene; JM, juxtamembrane; ADAM, a disintegrin and metallo_x0002_proteinase family;
STAT3, signal transducer and activator of transcription 3; FAK, focal adhesion kinase; MAPK, mitogen-activated protein
kinase; PI3K, phosphoinositide 3-kinase; RTK, receptor tyrosine kinase; RISC, RNA-induced silencing complex; FGF1,
fibroblast growth factor-1; HOTAIR, hox transcript antisense RN; Sox2, sex determining region Y-box 2; MNK1, mitogen-
activated protein kinase-interacting kinase 1; ID1, inhibitor of DNA binding protein-1; GALNT2, galactosaminyl transferase
2; Akt/FoxM1, Forkhead box M 1; MYBL2, MYB-related protein B2; EMT, Epithelial-mesenchymal transition; TSC,
tuberous sclerosis complex; S6K, protein S6 kinase; 4E-BP, 4E binding proteins; HIF1a, hypoxia-inducible factor 1a; VEGF,
vascular endothelial growth factor; SGs, stress granules; Rheb, Ras homolog enriched in brain; lncRNAs, long non-coding
RNAs; ZNRF3, zinc and ring finger 3; TF, transcription factors; JAK/STAT, Janus kinase/signal transducer and activator of
transcription; LGG, low-grade glioma; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase;
EGFR, epithelial growth factor receptor; NF1, neurofibromatosis type 1; BBB, blood–brain barrier; ECs, endothelial cells;
CNS, central nervous system; GPCR, G protein-coupled receptor; NVU, neurovascular unit; AQP4, aquaporin 4; BTB,
blood–tumor barrier.
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INTRODUCTION

Glioma is the most common primary malignant tumor. It is
characterized by a high recurrence rate. There is a lack of
effective treatment strategies, resulting in high mortality and
short survival time. Only 5.5% of patients usually survive for 5
years after diagnosis (Ostrom et al., 2020).The median overall
survival is approximately 14.5–16.6 months (Wen and Reardon,
2016). According to the classification of the tumors of the central
nervous system (by WHO and CBTRUS), brain gliomas are
divided into four levels (grade I–IV). Grade IV is characterized
by the highest degree of malignancy, the strongest invasiveness,
the worst prognosis, and the highest proportion of malignancy.
The tumors belonging to this grade are known as glioblastoma
or pleomorphic glioblastoma. Glioblastomas, based on gene
expression, can be classified into anterior neural type, neural type,
classical type, and mesenchymal type (Omuro and DeAngelis,
2013). Although different subtypes have been discovered over the
years, there is no precise and effective targeted therapy for glioma
that can improve its prognosis (Chen et al., 2017). Moreover,
most low-grade gliomas recur, and gene mutations are observed
post operation (Fangusaro et al., 2019). The tumor heterogeneity
changes, the biological morphology worsens, and abnormalities
are observed (Dentro et al., 2021). Inevitably, the generation
of pleomorphic glioblastoma linked with high-grade gliomas is
observed (Claus et al., 2015).

Despite the tremendous advances in the area of surgery,
radiotherapy, and chemotherapy, but the prognosis of glioma still
remained considerably unsatisfactory, which could be attributed
to its complex and variability of pathogenesis and cellular origin
(Xu S. et al., 2020). Therefore, to develop and find efficient
treatment methods for glioma, it is significant important to
further understand the pathogenesis associated with glioma.
Due to the complexity of genetic and environmental initiation
events and the lack of clarity of primitive cells or tissues,
the initial origin of glioma and the specific correlation and
crosstalk of gene mutations and signal pathways in various
links (Johnson et al., 2014). Since the beginning of mRNA
translation, there have been more complex and variable progress
mechanisms (Sellars et al., 2020). Researchers associated with the
sphere of basic research and clinical trials have reported that
polygenic mutation is the primary mechanism responsible for
the occurrence of glioma (Han S. et al., 2020). It is also linked
with the processes of development, mutation superposition, and
multi-step formation (Zhang et al., 2019). Tumor suppressor
genes such as TP53, phosphatase, p16, and phosphatase tensin
homolog (PTEN) control the progression of the cell growth
cycle, proliferation, and invasion (Suwala et al., 2021). The
mutation or deletion of tumor suppressor genes are conducive to
regulate the microenvironment of glioma (Calvo et al., 2021). The
“6” expression and modification of proteins (phosphorylation,
ubiquitination, methylation, acetoxylation, glycosylation, and
nitrosylation) can enable them to occur or further deform
(Van Meir et al., 2010; Urulangodi and Mohanty, 2020). It
has been widely reported that it is the key regulator of
numerous GBM cell lines (Ishii et al., 1999). Oncogenes or
anticancer genes usually control the malignant behavior of

cancer cells by regulating different signal pathways (Liu et al.,
2021). This affects the treatment efficiency and prognosis of
glioma (Asad et al., 2021). This review describes the key
signaling pathways and the associated regulatory mechanisms
that affect the prognosis of glioma. The recent findings have been
presented herein.

HIPPO/YES-ASSOCIATED PROTEIN
SIGNAL PATHWAY

Origin of Hippo/Yes-Associated Protein
Pathway
The Hippo signaling pathway was first identified in Drosophila
melanogaster (Moloudizargari et al., 2022). This pathway plays
a considerable important role in regulating the homeostasis
of the tissue environment. The pathway primarily affects the
processes of organ development and tumor promotion (Qiao
et al., 2018). The key core kinases are Salvador (Sav), Hippo
(Hpo), Warts (Wts), and Mob as the tumor suppressors (Mats)
(Shimizu et al., 2008). The Hpo–Sav complex can activate
the Wts–Mats complex, thereby the downstream effector of
the Hippo signaling pathway and the transcription coactivator
Yorkie (Yki) can be gradually phosphorylated (Sun X. et al.,
2019). Through the study and analysis of evolutionary processes,
researchers have found and confirmed that most of the core
kinases belong to families of homologous genes, These studies
shown that the Hippo signal pathway had not changed in
multistage, multi overlap, and multi genes in the evolutionary
process, but presents a highly conserved condition (Kim D. H.
et al., 2019). According to research findings that the core
kinases present in Drosophila melanogaster and mammals are
highly homologous (Hong and Guan, 2012). Four types of core
kinases,MST1/2, SAV1, LATS1/2, and MOB1A/B, are related
with the Hippo signaling pathway in mammals (Juan and
Hong, 2016). During the process of regulation, when various
upstream signals are received, three types of core kinases
(SAV1, LATS1/2, and MOB1) are activated by the activated
MST1/2 system, subsequently, they also are phosphorylated
(Zhou and Zhao, 2018). The bioactivity of the MST1/2 kinase
is promoted under the conditions of the mutual crosstalk
between MST1/2 and SAV1 (Bae et al., 2020). Under the above
conditions, the expression and function of LATS1/2 are further
enhanced. The activated Hippo signaling pathway facilitates
the phosphorylation of Yap/TAZ on multiple serine residues,
enables it to be degraded independently (Luo et al., 2020), All
the above processes are mediated by proteasome. Through the
negative feedback, the Hippo signaling pathway regulates the
Yes-associated protein (Yap), which is a major of importance
transcriptional coactivator (Figure 1; Yan F. et al., 2020).
The Hippo signaling pathway is widely correlative a variety
of biological processes, such as cell proliferation, apoptosis,
tissue repair, and regeneration (Fan et al., 2016). The incidence
and progression of varieties of tumors, including glioma, can
be potentially traced when the Hippo signaling pathway is
abnormally regulated (Johnson and Halder, 2014). Recently,
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FIGURE 1 | Hippo/YAP signal pathway.

the function of CKAP4 (Cytoskeleton-associated protein 4) on
glioma was investigated in vitro and in an orthotopic brain
tumor model in mice. The results shown that CKAP4 is highly
upregulated in glioma and high CKAP4 expressing tumors were
associated with poor patient survival. And CKAP4 promotes
malignant progression of gliomas via inhibiting Hippo signaling
(Luo et al., 2021). It has been widely reported that it plays
a rather of importance inhibitory role in human cancer and
the core key enzymes MST1/2 and LASTS1/2 are involved in
the advancement of the Hippo signaling pathway (Xia et al.,
2017). It has also been demonstrated that MST1 had a certain
impact on glioma, including the process of progression and
occurrence of the tumors. Chao et al. (2015) had indicated that
the down-regulation of Mst1 can accelerate the proliferation
and growth of glioma cells, can also help to inhibit the course
of apoptosis. The Akt/mTOR pathway is able to inhibit the
proliferation of glioma cells when Mst1 is in over-expression
condition (Chao et al., 2015). In vitro studies of glioma cells
showed that the levels of mRNA and proteins which associated
with LATS1decreased significantly (Ji et al., 2012). The migration,
proliferation, and aggression of cells were suppressed by the
over-expression of LATS1. Liu et al. (2019) indicated that
when SOCE was activated, the phosphorylation of LATS1/2 was
subsequently triggered, meanwhile, the growth of glioblastoma
was also restrained. Other researchers have verified that the
proliferation of glioma cells could be potentially stifled by LATS2
(Guo et al., 2019). The path might enable to proceed via the
reduction in the expression levels of cyclin D1, CDK4, and
CDK6. A perspective has also been raised that the way of G1/s

transformation is influenced by CDK4, CDK6, and cyclin D1
(Guo et al., 2019).

Carcinogen Yes-Associated Protein
Yes-associated protein (YAP) plays a key regulatory role in
the mediation of numerous malignant tumors (Vargas et al.,
2020). It also provided an appropriate and suitable cellular
environment for the progression of tumors (Panciera et al.,
2020). YAP1 is an oncogene which is over-expressed during
the invasion and infiltration of glioblastoma. Guichet et al.
(2018) studied 117 glioma samples to analyze the expression
of YAP protein in detail. They drawn a conclusion that the
expression of YAP was closely relevant to the molecular subtype
of glioma and was capable of affecting the prognosis of patients.
Some researchers came to conclusion that YAP might be a
potentially prognostic indicator of overall survival in patients
suffering from gliomas. It is a particular of importance finding
for patients suffering from low-grade gliomas. The upregulation
of YAP has been widely studied in gliomas (Zhao et al., 2021).
Unfortunately, it is not complete clear that whether the specific
mechanism is associated with the process. The track of cell
transformation can be possibly induced under the conditions
of overexpression of YAP (Zhang C. et al., 2021). This way
can be beneficial to prevent cell contact inhibition. Attack on
host tissues and metastasis may also be fostered under these
conditions (Zhao et al., 2007). The role of YAP1 in the process
of proliferation of glioma cells was deeply studied by analyzing
shRNA and using over-expression-based methods (Zhang et al.,
2016). YAP1 is a major carcinogen that affects tumorigenesis
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(Hatterschide et al., 2022). As YAP1 is such an important
regulator of tumor progression, its role in glioma expressing
IDH1 with an R132H mutation was reported (Patrick et al.,
2021). Attenuated nuclear levels of YAP1 in IDH1 mutant
glioma tissues and cell lines were concomitant with decreased
levels of mitochondrial transcription factor A (TFAM). It is
of importance that these findings indicated that bosutinib
treatment also aggrandized ROS levels and induced apoptosis in
IDH1 wild-type cells when YAP1 was simultaneously exhausted.
These findings emphasize the participation of YAP1 in coupling
mitochondrial dysfunction with mitochondrial shuttling of TERT
to constitute an essential non-canonical function of YAP1 in
the regulation of REDOX homeostasis (Patrick et al., 2021).
In multiple different types of tumors, including glioma, the
amplification of the chromosome zone in the Yap1 gene
(11q22) has been discovered (Modena et al., 2006). The over-
expression of YAP1 leads to an imbalance in the Hippo signal
transduction pathway (Hayashi et al., 2015). Under the above
conditions, it is extremely difficult to control the processes of
cell proliferation and tumor growth (Liu and Wang, 2015). An
increased extent of nuclear localization and overexpression of
YAP1 has been inspected in numerous cancer tissues (Zhao
et al., 2007). Epigenetic changes or mutations result in the
inactivation of the Hippo signaling pathway in cancer cells
(Cavalli and Heard, 2019; Wu et al., 2019). Under all the
conditions, YAP1 is activated and then is transferred to the
nucleus. Cancer cells will be transformed into cancer stem cells
when YAP1 is activated (Schaal et al., 2018). The activation of
YAP1 also promotes occurrence of tumors and aggravates the
deterioration and metastasis of tumors (Maehama et al., 2021). In
addition, some findings suggested that AMOTL1 (Angiomotin-
like 1) may exert a tumor-promoting function in glioma by
enhancing the activation of YAP1 signaling. Thus, AMOTL1 may
be a potential target for the development of antiglioma therapy
(Xu et al., 2021).

To sum up, according to the above results, we speculated
that CKAP4 has potential as a promising biomarker and can
predict the prognosis of patients with gliomas. And targeting
CKAP4 expression may be an effective therapeutic strategy for
the treatment of human gliomas. YAP1’s up-regulated molecular
pathway in glioma is the most feasible molecular target that needs
to be broken in the future to improve the treatment processes
of glioma. It can also help to promote the development of the
area of medical research and provide a point of penetration
and breach for the emergence of a new field. The results can
potentially help the realm to reach a new peak, meanwhile More
clinical patients are benefit from the process. With the further
growth in YAP1 expression, the invasive trait of glioma also
raises. The down-regulation of YAP1 can be potentially helpful
to develop new treatment methods for glioma. Furthermore
deeper researches, including basal studies and clinical trials,
need to be testified if the YAP1 inhibitor can be a promising
therapeutic target. Hence, it is so profound of importance
to identify YAP inhibitors that to develop new and efficient
treatment methods for glioma. Recently, researchers have been
focusing on this aspect. It has been recently reported that
metformin is a YAP inhibitor, and it can be used to treat

glioma (Yuan et al., 2018). We believe that efforts are able to
accomplish arduous tasks.

PI3K/AKT/MAMMALIAN TARGET OF
RAPAMYCIN SIGNAL PATHWAY

Composition and Classification of
Phosphatidylinositol-3-Kinase
Serine/threonine and lipid kinases, including
phosphomembrane-bound phosphatidylinositol-3 (PIP3)
kinases, constitute the phosphatidylinositol-3-kinase (PI3K)
family (Stefani et al., 2021; Yoshioka, 2021). These enzymes,
along with the downstream Akt and rapamycin targets (mTOR),
play considerable important roles in numerous key cellular
processes such as growth, differentiation, metabolism, survival,
and proliferation and so on (Miricescu et al., 2020; Xu Z. et al.,
2020). PI3K enzymes can be classified into class I, class II, and
class III enzymes (Yoshioka, 2021). Class I PI3K is one of the
most widest considered as aberrant class of enzyme which is
associated with cancer (Fruman et al., 2017; Koundouros et al.,
2020). It consists of heterodimers of a regulatory subunit and a
catalytic subunit (Canaud et al., 2021). Based on the activation
mode, it is divided into the 1A and 1B categories (Sun and
Meng, 2020; Yue et al., 2021). Class 1A PI3K is activated by
many cell-surface tyrosine kinases and consists of catalytic p110
and regulated p85 subunits (Clayton et al., 2022). Class II and
III PI3Ks are necessary to maintain normal cell functions, up
to now, Both are not yet shown to have carcinogenic effects in
human (Bilanges et al., 2019). Acetylgalactosaminyltransferase 2
(GALNT2), the enzyme that regulates the initial step of mucin
O-glycosylation, has been reported to play a role in influencing
the malignancy of various cancers. However, the mechanism
through which it influences gliomas is still unknown. Overall,
GALNT2 facilitates the malignant characteristics of glioma
by influencing the O-glycosylation and phosphorylation of
EGFR and the subsequent downstream PI3K/Akt/mTOR axis.
Therefore, GALNT2 may serve as a novel biomarker and a
potential target for future therapy of glioma (Sun Z. et al., 2019).

Downstream Target Akt of PI3K
A dominant product of PI3K is PIP3, which is the
phosphorylation form of membrane-bound phosphatidylinositol
(Lien et al., 2017). It can initiate a wide range of active signal
cascades. Serine/threonine kinase Akt is the major downstream
target of PI3K (Liu R. et al., 2020). This is also the primary
carcinogenic effector of the PI3K/Akt pathway. The phosphatase
and the tensin homolog (PTEN) are mainly associated with the
dephosphorylation of PIP3 (Lee and Pandolfi, 2020; Chauhan
et al., 2021). All mentioned above are Akt’s the main negative
regulators. The tumor suppressor gene PTEN is lost via the
processes of somatic mutation or epigenetic silencing, and this
process is widely observed in various types of cancers (Álvarez-
Garcia et al., 2019). Membrane-bound PIP3 can promote Akt
to dock with various kinase targets (Lien et al., 2017). Akt is
involved in the indirect activation of mTOR, which is a complex
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cell growth checkpoint and is affected by growth factor signal
transduction and the adenosine monophosphate levels (Kim
S. W. et al., 2019). When TSC2 is phosphorylated by activated
Akt at ser939 (Moore et al., 2014; Miyazaki and Takemasa,
2017). It dissociates from TSC1, resulting in the activation of
mTORC1 (Carroll et al., 2016). A heterodimeric protein complex
TSC1/TSC2 was considered as a key hub of signal transduction
through which various environmental cues were merged to
determine the functional activity of mTORC1 signaling. Growth
factor-induced activation of the PI3K/ Akt pathway led to the
TSC2 phosphorylation at numerous residues (two key points,
Ser939 and Thr1462), which are considered as be targeted by
Akt. About the mechanism of interaction between TSC1, TSC2,
and mTORC1. Some researchers have found that VEPH1 is
frequently decreased in cancer, an event associated with poor
prognosis of cancer patients. VEPH1 forms a stable trimeric
complex with TSC1/TSC2. Loss of VEPH1 decreases TSC2
GAP activity, and relieves Rheb to activate mTORC1, which
promotes cancer cell proliferation, invasion, and EMT process.
Rapamycin can suppress VEPH1 deficiency induced mTORC1
activation and hepatocellular carcinogenesis (Inoki et al., 2002;
Manning et al., 2002; Huang and Manning, 2008). MTORC1
activates translation inhibitors-eukaryotic translation initiation
factors 4EBP1 and S6K1 and is sensitive to rapamycin such as
mTOR inhibitors (Hua et al., 2019). These are also sensitive
to rapamycin-like mTOR inhibitors. With increase the activity
of MTORC1, an increase in the extent of mRNA translation,
protein synthesis, and cell proliferation was observed (Cho
et al., 2021). MTORC2 is the “upstream” of Akt, which directly
phosphorylates Akt and participates in the regulation of the
cytoskeleton (Cirone, 2021). Inhibition of mTORC1 can result in
the activation of the PI3K pathway (Cai et al., 2021). This can be
attributed to the negative feedback from mTORC2 that results in
the phosphorylation of Akt (Amin et al., 2021). The researchers
found that Akt/FoxM1 (Forkhead box M1) signaling pathway-
mediated up-regulation of MYBL2 (MYB-related protein B2)
fosters progression of human glioma. Down regulation of
FoxM1 and MYBL2 by siRNAs induced the cell cycle blocking,
apoptosis and EMT (Epithelial-mesenchymal transition) of
glioma cells. Furthermore, inactivations of Akt/FoxM1 signaling
by Akt inhibitor and siRNA-FoxM1 diminish the expression
of MYBL2 in glioma cells. So we concluded that MYBL2 is
of importance downstream factor of Akt/FoxM1 signaling to
stimulate advancement of glioma, and could be considered as a
promising gene for molecular targeting therapy and biomarker
for radiotherapy of glioma (Zhang et al., 2017).

Phosphatase Tensin Homolog Gene:
Mutation
In gliomas, the PI3K/Akt/mTOR signaling pathway is
Anomalously regulated (Liu Z. et al., 2017; Fan et al., 2018;
Xu F. et al., 2020; Figure 2). Shortly survival time of patients
and strongly invasive features of tumor were associated with
decreased PTEN levels and increased Akt activity (Zhu and
Wei, 2020). In cases of extremely aggressive high-grade gliomas,
mutations and the loss of functions of PTEN are observed

(Mattoo et al., 2019). Cell growth and the expression of PI3K
are inhibited by PTEN, which is the prime tumor suppressor
gene. PTEN depletes the PIP3 level, and its loss is directly related
with invasive phenotype (Huang W. et al., 2018). The origin of
approximately 20–40% of malignant gliomas can be attributed
to PTEN mutations (Mattoo et al., 2019). PTEN mutations
are also observed in approximately 65% of high-grade gliomas
and 15–40% of primary glioblastomas (Xia and Xu, 2015). It
has been previously shown that malignant glioma cell lines
containing wild-type PTEN gene can significantly reduce the
invasion characteristics cell and migration ability of transfected
cells. Rapamycin is a classic mTOR inhibitor (Huang et al.,
2019). When these alternative drugs bind to mTOR, they can
inhibit kinase activity, and prevent the G1 period of cell cycle to
further progress the next step. Preclinical trials were conducted
to study and confirm the cell inhibiting effects of rapamycin
on glioblastoma and medulloblastoma xenografts (Kuger et al.,
2013). However, compared to PTEN-positive tumors, the PTEN
negative tumors are more sensitive to the inhibiting effects of
rapamycin (Zeng et al., 2020). Clinical study results revealed
that the mTOR and PI3K inhibitors were the candidate drugs
which could be used to treat solid tumors in mice (LoRusso,
2016). Highly activated PI3K/Akt/mTOR and the occurrence of
the Sonic Hedgehog (SHH) signaling pathways were detected in
original cells of glioblastoma. The recent research shown that
the combined with inhibitors of PI3K/Akt/mTOR and SHH is
obviously better therapeutic effect than the single inhibitor for
glioma (Nanta et al., 2019; Zhang et al., 2020).

Tuberous Sclerosis Complex-mTORC1
Pathway
The tuberous sclerosis complex (TSC) complex suppresses
mechanistic target of rapamycin complex 1 (mTORC1) (Tee,
2018; Kim and Guan, 2019; Liu and Sabatini, 2020; Prentzell
et al., 2021), a central driver of anabolism (Mossmann et al.,
2018; Hoxhaj and Manning, 2020). mTORC1 hyperactivity
causes diseases related to cellular overgrowth, migration, and
neuronal excitability and (Condon and Sabatini, 2019) often
arises from disturbances of the TSC complex, consisting of TSC
complex subunit 1 (TSC1, 9q34), TSC2 (16p13.3) (van Veelen
et al., 2011), and TBC1 domain family member 7 (TBC1D7)
(Dibble et al., 2012). mTORC1, consisting of mTOR, raptor
and mLST8, controls cell growth mainly through the regulation
of protein translation (van Veelen et al., 2011). Activated
TSC1:TSC2 complex expresses GTPase activating protein activity
toward Rheb, thereby inducing conversion of active GTP-bound
Rheb to inactive GDP-bound Rheb. Active Rheb promotes
mTORC1 activation, controlling protein translation by activating
the ribosomal protein S6 kinase (S6K), inhibiting inhibition
eukaryotic initiation factor 4E binding proteins (4E-BP) (Hara
et al., 2002; Kim et al., 2002) and inhibiting the RNA polymerase
III (PolIII) repressor MAF1 (Kantidakis et al., 2010; Michels
et al., 2010). In addition, mTORC1 induces angiogenesis through
induction of hypoxia-inducible factor 1a (HIF1a)-dependent
expression of vascular endothelial growth factor (VEGF), and
inhibits autophagy by phosphorylating ATG13 and ULK1/2
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FIGURE 2 | The mechanism of PI3K/AKT/mTOR signaling pathway in glioma.

FIGURE 3 | TSC-mTORC1 signaling pathway.

(Hosokawa et al., 2009; Jung et al., 2009). In addition to TSC-
dependent regulation of mTORC1 activity, the complex is directly
activated by sufficient levels of energy (ATP) and nutrients
(amino acids), as well as through phosphorylation of mTOR
by PKB and of raptor by AMPK (Vander Haar et al., 2007;
Gwinn et al., 2008; van Veelen et al., 2011; Figure 3). Another
some researches that Plk1-mediated phosphorylation of TSC1
enhances the efficacy of rapamycin (Li et al., 2018), the results

indicates Plk1 activates mTORC1. The researches elucidated that
mTOR activity is controlled by two different pathways during cell
cycle. In interphase, the PI3K/AKT pathway plays a key role to
activate the mTOR pathway by AKT-mediated phosphorylation
of TSC2 in response to intracellular signaling. However, in
mitosis, Plk1 is the major kinase to activate the mTOR pathway
by targeting TSC1. Instead of activation of the mTOR pathway,
Plk1 phosphorylation of TSC1 also leads to mitotic defects in an
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mTOR-independent manner. A novel signaling pathway where
Plk1 regulates mTOR independently of AKT in mitosis. The latest
researcher indicated that in the context of tumors, low G3BP1
levels enhance mTORC1-driven cancer cell motility and correlate
with adverse outcomes in patients. G3BPs are not only core
components of SGs (stress granules) but also a key element of
lysosomal TSC-mTORC1 signaling (Prentzell et al., 2021).

The Role of Rheb on mTORC1 Activation
Rheb (Ras homolog enriched in brain) is a member of the Ras
superfamily that appears to be conserved in all eukaryotes and,
despite the term “brain” in its name, is in fact ubiquitously
expressed in mammals (Huang and Manning, 2008). A Rheb
homologue exists, named Rhebl1 (Rheb like-1) or Rheb2, that
appears to have overlapping functions with Rheb in controlling
mTORC1 signaling downstream of TSC1 and TSC2 (Tabancay
et al., 2003; Tee et al., 2005). Rheb is a potent activator of
mTORC1 (Gromov et al., 1995; Inoki et al., 2003; Yuan et al.,
2005). It can stimulate mTORC1, but some researchers suggest
that Rheb does not stimulate the activity of mTORC2 kinase
(Yang et al., 2006; Huang et al., 2008; Sato et al., 2009). However,
active Rheb can indirectly suppress PI3K and mTORC2 signaling
by eliciting stimulus varieties of mTORC1-dependent negative
feedback circuit systems. Genetic and biochemical studies unified
some pathways through identification of two missing links
between Akt and mTORC1: the small GTPase Rheb and its
negative regulator, the TSC complex, and Rheb is the main
mechanism through which PI3K signaling activatesmTORC1
(Goncharova et al., 2002; Castro et al., 2003; Garami et al., 2003;
Zhang et al., 2003). Akt inhibits the tuberous sclerosis complex
(TSC), the specific GTPase activating protein (GAP) for the small
GTPase Once mTORC1 is activated by Rheb, the coinstantaneous
phosphorylation of its inhibitory subunit 40-kDa proline-rich
Akt substrate (PRAS40) by Akt and mTORC1 itself causes
PRAS40 to dissociate from mTORC1. This is thought to increase
substrate access to the complex. Glucose, oxygen, and energy
levels are also sensed upstream of the TSC complex. Amino acids
(and glucose) are sensed upstream of mTORC1 via pathways
that regulate the Rag GTPases, which do not directly activate
mTORC1 but serve to bring it in proximity to Rheb in cells.
mTORC1 directly phosphorylates many substrates including
ribosomal protein S6 kinase (S6K) and eukaryotic translation
initiation factor 4E-binding protein (4E-BP), which mediate its
control of anabolic metabolism, cellular growth, and proliferation
(Dibble and Cantley, 2015).

Hypoxia and HIF-1α Promote Cell
Proliferation
The induction of hypoxia can activate the PI3K/Akt/mTOR
pathway and impulse the migration, expansion, and invasion
of the U87 cells (Huang W. et al., 2018). When the inhibitor
acts on the PI3K/Akt/mTOR pathway and hypoxia-inducible
factor-1α, the migration, expansion, and invasion of the U87
cells were significantly inhibited. Under the same conditions,
the expression of HIF-1α can be inhibited by siRNA or the
PI3K/Akt/mTOR pathway inhibitors (Xia and Xu, 2015). It can be

inferred that tumors exposed to hypoxic environments are often
more invasive than those not exposed to such environments.
These may evolve into highly malignant tumors (Kim and Lee,
2017). Therefore, these tumors are potentially more resistant
to clinical postoperative chemotherapy and radiotherapy. They
also exhibit the potential of self-renewal, proliferation, and
multidirectional differentiation. It can be further inferred that
hypoxia may be related to HIF-1α (Domènech et al., 2021).
The combined inhibition of PI3K/Akt/mTOR and the Shh dual
pathways and knockout or inhibition of HIF-1α can help reduce
the migration ability of tumor cells and prolong the postoperative
survival of patients.

In conclusion, the development of drug-resistant tumors
presents a significant challenge to the success of conventional
treatment approaches. Activation of the PTEN/PI3K/Akt/mTOR
pathway is implicated both in the pathogenesis of malignancies
and development of resistance to anticancer therapies. Therefore,
PI3K/Akt/mTOR inhibitors appear as a promising therapeutic
option in association with cytotoxic and other targeted therapies
to circumvent mechanisms of resistance. Novel therapeutic
strategies could be tailored according to appropriate biomarkers
and patient-specific mutation profiles to maximize clinical
efficacy and benefit of combination therapies. This will enable
administration of selective therapies based on the expression
of molecular targets, more appropriately individualizing cancer
treatment for patients.

LONG NON-CODING RNAs AND MIRNA

Long Non-coding RNA Is a Promising
Biomarker
Glioma is characterized by a variety of regulation modes at
the RNA level (Lu et al., 2020). Such as miRNA, lncRNAs,
and snoRNA, etc. LncRNA is a molecule that also affects
the survival ability and various functions of tumor cells
(Wang et al., 2020). It is composed of a non-protein-coding
unit, the length of which ranges from approximately 200
nucleotides (NT) to > 100 kb (KB) (Hsiao et al., 2016). Thus,
LncRNA is a short non-coding RNA. Although IncRNA is
emerging in glioma genetics research, it is also a hotspot of
current research such as lncRNAOR, lncRNHoxA11-AS and
lncRNTUG1. Based on the different genomic positions and
backgrounds, lncRNAs is classify as follows: (Jarroux et al.,
2017; Lin et al., 2020): sense, antisense, intron, intergenic,
and bidirectional (transcribed near the transcription starting
point toward the sense and antisense direction) (Ma et al.,
2013). As transcriptional regulators, lncRNAs can alter gene
transcription through transcriptional interference and chromatin
remodeling (that follows the processes of chromatin remodeling
and transcriptional interference) (Sarkar et al., 2015). In addition,
lncRNA can also regulate and guide translation through the
processes of base pairing. It can also regulate the process
of splicing by getting combined with splicing factors (Cech
and Steitz, 2014). This way can help to change the levels
of gene expression after transcription. Results from research
conducted in the last 5 years revealed that LncRNAs play an
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important role in tissue homeostasis and biological processes,
including the process of cancer progression (Tan et al., 2021).
Recent studies have shown that the epigenetic inheritance,
regulation of cell differentiation and cycle of lncRNAs presented
abnormal biological behavior, which may affect the occurrence
and development of glioma (Plasek and Valadkhan, 2021).
Therefore, lncRNAs can be a promising biomarker for the
diagnosis, prognosis assessment and targeted therapy of glioma
(Bian et al., 2015).

Long Non-coding RNA
Long non-coding RNAs (lncRNAs) have been shown to be closely
related to cancer progression and therapy. Recent demonstrated
that lncRNA KB-1460A1.5 inhibits glioma tumorigenesis via
miR-130a-3p/TSC1/mTOR/YY1 feedback loop. The researchers
shown that the lncRNA KB-1460A1.5 is downregulated and
positively correlated with prognosis in glioma, and further
manifested that over-expression of KB-1460A1.5 inhibits glioma
cell proliferation, migration and invasion in vitro and in vivo,
while down-regulation of KB-1460A1.5 has the opposite effects
(Xu et al., 2022). Another some studies have shown that the
expressions of HOTAIR1 and CRNDE are positively correlated
with the degree of malignancy of tumors, and CRNDE is the
most up-regulated lncRNA in gliomas (Seo et al., 2021; Zhang
F. et al., 2021). (CRNDE is a long non-coding RNA with
alternative splicing and is implicated in the pathogenesis of
several cancers) (Jing et al., 2016; Ma et al., 2019). Kaplan-
meier analysis revealed that the up-down regulation of BC002811
XLOC-010967 and NR-002809 was significantly correlated with
the prognostic survival cycle (Zhi et al., 2015). Another study
confirmed that the expression of CRNDE promotes or inhibits
the proliferation and migration of cell by phosphorylation of
p70S6K (Lu et al., 2018). This suggests that CRNDE can affect
the process of mTOR signal transduction (Wang et al., 2015).
It has been reported that the expression of MALAT1 in glioma
tissue is lesser than normal brain tissue. In the human glioma
cell line and glioma xenotransplantation model, the knockout of
the MALAT1 gene promotes cell proliferation and invasion (Su
et al., 2021). On the contrary, the over-expression of MALAT1
plays a dominant role in the processes of tumor cell proliferation
and invasion (Xiao et al., 2020). It can neutralize the significant
inhibition of cell proliferation and invasion in vitro and in vivo.
These results indicated that MALAT1 exhibits tumor-inhibiting
properties (Han et al., 2016). In addition, inhibition of the
ERK signal (U0126) can simulate the levels of phosphorylated
ERK1/2 and MMP2 (induced by MALAT1 over-expression).
The results indicate that the tumor inhibitory property of
MALAT1 can be attributed to the inhibition of the ERK/MAPK-
mediated cell growth and MMP2/9-mediated invading processes
(Han et al., 2016).

MiRNA-Long Non-coding RNA
Interaction in Glioma: Research
Outcomes
MicroRNA (miR)-mediated mRNA and multiple signaling
pathway dysregulations have been extensively implicated in

several cancer types, including gliomas. Long non-coding RNA
FAM66C regulates glioma growth via the miRNA/LATS1
signaling pathway. The luciferase activity of FAM66C
was block by miR15a/miR15b, and the promotion of cell
growth effects caused by FAM66C deficiency was attenuated
by miR15a/miR15b mimics, further proved that FAM66C
functioned as a competing endogenous RNA to regulate glioma
growth via the miRNA/LATS1 signaling pathway (Xiao and
Peng, 2021). Based on The Cancer Genome Atlas and Chinese
Glioma Genome Atlas databases. The study identified that miR-
301a was significantly upregulated in gliomas and was associated
with a poor prognosis. Moreover, zinc and ring finger 3 (ZNRF3)
exerted a critical role in the miR-301a-mediated effects on the
malignant phenotype, such as by affecting proliferation and
apoptosis. Mechanistically, ZNRF3 was a direct functional target
of miR-301a (Sun et al., 2021). Another study shown that lncRNA
KCNQ1OT1 promotes proliferation and invasion of glioma cells
by targeting the miR-375/YAP pathway. The results indicated
that KCNQ1OT1 was upregulated in glioma tissues compared
with adjacent tissues, which was associated with poor prognosis
(Ding et al., 2020).

MiRNAs are small non-coding RNA molecules that silence
target mRNA through post-transcriptional mechanisms and can
leapfrog regulate multiple mRNAs (Mishra et al., 2016). For
example, miRNA-21 is highly expressed in GBM, after being
inhibited, it can promote the apoptosis of tumor cells (Labib et al.,
2020). It plays an important regulatory role in normal cells and
tumor cells. Following the processes of transcription, shearing,
assembly, silencing, and recombination, they finally recognize
the target mRNAs by base complementation. These can degrade
the silencing complex or block the further translation of the
target mRNA (Kim H. et al., 2017). These can also regulate the
expression levels. The miRNAs helps to promote the incidence
and development of glioma (Zhang et al., 2017). They also act as
a cancer-promoting factor/tumor suppressor factor. It has been
reported that miRNAs are characterized by different expression
patterns and functional significances in different types of cancers
(including glioma) (Godlewski et al., 2015). MiRNAs regulate
GSCs, invasive properties, pathogenesis, epigenetic, and signaling
pathways (Vinchure et al., 2019; Jiang et al., 2020). MiRNAs
have different expression patterns and functional implications
in many cancers, including gliomas. MiRNAs are important
regulators of GSCs in maintaining aggressive pathogenesis and
epigenetic and signaling pathways. Evidences from the new
study also indicates that miRNA and lncRNA are associated
in controlling the occurrence and development of glioma, and
proposes that the mirNA-lncrNA interaction may provide new
insights into the therapeutic targets of glioma (Mu et al., 2020;
Figure 4). The expression of Mir-148b-3p, a member of the
mir148/152 family, is poor in several tumor cell lines. In addition,
the research shown that Mir-148B-3p binds to HOTAIR in
a sequence-specific manner (Wang et al., 2016a). The down-
regulated expression of Mir-326 in glioma specimens and glioma
cell lines (U87 and U251) was negatively correlated with the
pathological grade of glioma (Ke et al., 2015). Studies have shown
that HOTAIR promotes development of glioma by inhibiting
Mir-326 and further promoting the expression of fibroblast
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FIGURE 4 | Interaction of miRNA and lncRNA in glioma.

growth factor 1 (FGF1), which plays a significant carcinogenic
role in tumorigenesis by activating the MEK1/2 and PT3K/AKT
pathways (Hadari et al., 2001; Ke et al., 2015). It has been recently
reported that miRNA and lncRNA control the occurrence and
development of glioma, and it is proposed that the interaction of
miRNA-lncRNA may provide new insights into the identification
of therapeutic targets of glioma (Angelopoulou et al., 2020;
Wang et al., 2021). The level of expression of miR-148b-3p,
belonging to the miR148/152 family, decreased in several tumor
cell lines. In addition, miR-148b-3p was also demonstrated to
bind to HOTAIR in a sequence-specific manner (Sa et al., 2017).
Downregulation of the expression of miR-326 was observed
in glioma specimens and glioma cell lines (U87 and U251),
which correlated negatively with the pathological grade of glioma
Studies have shown that HOTAIR inhibits miR-326 and promotes
the expression of the fibroblast growth factor 1 (FGF1) to
promote the development of glioma. FGF1 plays a significant
carcinogenic role in tumorigenesis by activating the MEK1/2 and
PT3K/AKT pathways (Ke et al., 2015).

To sum up, miRNA can be potentially used for the
diagnosis of glioma. MiRNA-21 has been proved to be the
most reliable marker for the diagnosis of glioma. A novel
miR-301a/ZNRF3/wnt/β-catenin signaling feedback loop that
serves critical roles in glioma tumorigenesis, and that may
represent a potential therapeutic target. Targeting KCNQ1OT1
may represent a promising strategy in glioma therapeutics.
However, the treatment applicability of miRNA is limited as it
exhibits poor stability and low efficiency under conditions of
targeted delivery. However, progress has been made in recent
years in the field of the development of nano carriers. MiRNAs
can be enclosed inside nano capsules to improve their stability
and achieve targeted delivery. This can block the delivery of

nutrients to the tumors and effectively inhibit the growth of
tumors. Thus, new ideas for the identification of therapeutic
targets of gliomas can be obtained. MiRNA can effectively help
in the diagnosis and treatment of glioma. However, to date,
preliminary experiments have been conducted. However, with
the progress of scientific research, the accuracy of the targeted
delivery method and the drug loading rate or organic or inorganic
nanoparticle carriers can be improved. It is noteworthy that
the drug-releasing property is controllable. The process of nano
drug loading can also block the key factor activation pathway
associated with the signal pathway to limit the further occurrence
and development of tumors. We believe that the results can help
us gain a deeper understanding of gliomas. The results can also
help to identify new treatment methods to gradually address the
global problem posed by tumors.

HGF/MET SIGNAL PATHWAY

Expression of MET and HGF in
Glioblastoma
More research has shown that MET and its ligand HGF play
an important role in proliferation, survival, migration, invasion
of angiogenic stem cells, drug resistance and recurrence of
glioblastoma cells (Guo et al., 2017). The loci of human MET
proto-oncogene is located on chromosome 7q31, and HGF
on chromosome 7q21.1 (Saccone et al., 1992; Parikh et al.,
2014). Analysis of TCGA data demonstrated that about 30%
of glioblastomas showed over-expression of HGF and MET
(Mulcahy et al., 2020). Immunohistochemical staining showed
that MET was located in cytoplasm and cell membrane, and
there was a high expression of MET in tumor cells, blood
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FIGURE 5 | HGF/MET signal pathway.

vessels and necrotic regions of glioma samples, and the high
expression intensity of MET was correlated with WHO grade
of glioblastoma, shorter PFS and OS of patients suffering from
glioblastoma (Petterson et al., 2015; Yu et al., 2021). Analysis of
MET gene 7Q31.2 indicated that, high expression was found in
47% of primary GBM and 44% of secondary GBM (Pierscianek
et al., 2013), the above data suggest that genetic alteration
plays a certain role in the pathogenesis of both glioblastoma
subtypes. In addition, the activation mutation of MET is an
important promoter of the transformation of from low-grade
glioma to secondary glioblastoma (Hu et al., 2018). Increased
MET in diffuse astrocytoma was associated with shorter OS time.
MET was over-expressed in 23% of unamplified glioblastomas,
and the range of staining intensity was mainly from weak to
moderate (Burel-Vandenbos et al., 2017). In addition to autocrine
HGF, paracrine HGF can also promote the invasion of glioma
and enhance the chemotactic invasion and proliferation of the
MET-positive cells (Yamamoto et al., 1997). In the meantime,
HGF also acts as a chemokine of microglia and may be
related with the infiltration of glioma (Badie et al., 1999). All
of the above mechanisms may stimulate the highly invasive
progression of gliomas.

Crosstalk Between MET and Other
Signal Pathways
Recent studies have found that the interaction between the
HGF/MET signaling pathway and other signaling pathways
play a profound and significant roles in the pathogenesis of
glioblastoma (Cheng and Guo, 2019; Moosavi et al., 2019). The
Wnt/β-catenin RAS/MAPK PI3K/Akt and STAT pathways which
belong to downstream signal transduction medium of HGF/MET

signal can enable to mediate a variety of behaviors of glioblastoma
cells, including the progression of the cell cycle, invasion, dryness,
angiogenesis, migration, drug-resistant, and recurrence (Zhang
Y. et al., 2018; Figure 5). Both Wnt/β-catenin and HGF/MET
signaling pathways regulate proliferation, migration and stem
cell behavior of glioblastoma cells via increasing phosphorylation
of β-conjunction (Y142) and Snail/Slug expression (Mimeault
and Batra, 2011; Náger et al., 2015). In addition, the COX-
2/PGE2 signaling pathway can influenced most markers of
cancer and activate the PGE2-dependent downstream pathways
(such as Ras-MAPK) (Majchrzak-Celiñska et al., 2021). It has
been shown that HGF/MET signaling can promote growth and
migration of gliomas cells via up-regulating COX-2 expression
and stimulating the release of PGE2 (Zhao et al., 2015). Heat
shock protein 90 (HSP90) plays a key role in protein folding,
stabilization and degradation. A cancer study by Greenall et al.
(2015) demonstrated that the expression of MET receptor is
dependent on HSP90 protein. Therefore, inhibitors of HSP90
can prevent the growth and migration of glioma cells though
inhibiting the expression of MET receptors. HGF/MET signaling
is also involved in crosstalk with EGFR HER3 and EGFRvIII,
which can lead to enhance activation of oncogenic signaling
in glioblastoma. In addition, EGFRvIII is able to induce trans-
activation of JNK2 in glioblastoma cells and then to promote
increase of invasion of cell by stimulating the HGF/MET
signaling circuit (Saunders et al., 2015).

MET Receptor Is a Potential Therapeutic
Target
Dysregulation of MET signal is closely associated with the
tissue grade, treatment resistance, tumor recurrence and poor
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FIGURE 6 | On/OFF WNT/β-catenin signal pathway.

prognosis (Vengoji et al., 2019). Hence, the receptor of MET
signal is considered as an potentially attractive target for
treatment. The humanized anti-HGF monoclonal antibody
YYB101 can inhibit the growth of tumors in vitro and
in situ mouse model of human glioblastoma (Kim and Heo,
2021), Importantly, it can downregulate effective factors of cell
molecular including such as p-FAK, p-met, Ki-67, pGab1, MMP2,
and uPA/plasminogen (Kim H. K. et al., 2017). Onartuzumab
is an anti-MET antibody, preclinical trials shown that it can
inhibit the growth of glioblastoma. Similarly Crizotinib can
inhibit structure-dependent tyrosine kinases, such as ROS proto-
oncogenes 1 and ALK (Junca et al., 2017). Crizotinib can also
effectively inhibit the survival and proliferation of MET-positive
glioma stem cells, meanwhile, and can prolong survival of mice
with MET-positive GSCs. However, for MET -negative GSCs, it is
invalid (Tasaki et al., 2016).

Thus, we speculate that the inhibitors of the MET receptor
could be a potentially promising target for treatment of glioma.
At present, there are many studies on interference of HGF/MET
signal in pre-clinical experiments. It is a key factor that we
need to pay much closer attention to the crosstalk between
the signals and then to bit by bit conquer every aspect of
glioma, including mechanism, signal pathway, mutation, BBB,
BTB, immune system, drug-resistant, exosome, and so on.

WNT/β-CATENIN SIGNALING PATHWAY

Wnt Signal Transduction
Wnt is a member of a large family of cysteine-rich secretory
glycoproteins. At least, 19 members are found in humans
(Jhanwar-Uniyal et al., 2013). During the process of development,
wingless/integrated (Wnt) is involved with the processes of
migration, cell differentiation and proliferation (Bahmad et al.,

2018). The process of Wnt signal transduction is carried out
in extracellular and intracellular systems (Roussel and Hatten,
2011). The Wnt/β-catenin pathway is a classic pathway that
proceeds via the activation of the Wnt target genes which can
regulate the processes of cell differentiation and proliferation and
can control stress reaction (Sheng et al., 2021). The procedures
are mediated by β-catenin/T cytokine systems. The Wnt/β-
catenin pathway is associated with tumorigenesis (Kim et al.,
2000). It has been reported that the downregulation of the Wnt
inhibitor-1 is observed in the abnormal Wnt signaling pathways
in 75% of glioma cells (Wang et al., 2018). To date, a minimum
of 11 crimp protein (Fz)-based transmembrane proteins have
been identified as the receptors of the Wnt ligands (Bai et al.,
2018). The pathway of Wnt signaling is initiated by after the Wnt
ligand binds to the target FZ, the co-receptor, and the low-density
lipoprotein receptor associated with the protein LRP5 (or LPR6)
(Dai et al., 2018). Nuclear β-catenin has been reported to be a
marker of the active Wnt pathway, and it can supervise the gene
expression of MGMT. β-catenin is the primary mediator of the
Wnt signal transduction process (Dai et al., 2018). It can activate
the downstream target genes (such as c-Jun, c-Myc, c-fos, cyclin
D1, fra-1, and those belonging to the AP1 family members) (Koch
et al., 2005), which are primarily associated with the regulation of
cell attribution and proliferation. The downstream target genes
are activated by the interaction of β-catenin and T cytokine/LEF
transcription factors in the nucleus (Dai et al., 2018; Figure 6).

Highly Expressed β-Catenin
In glioma tissues, the expression of β-catenin was significantly
higher than normal tissues (Du et al., 2020). The primary
signal pathway associated with the process of glioblastoma cell
invasion (induced by ionizing radiation) is the Wnt/β-catenin
pathway (Dong et al., 2015). Inhibition and stimulation of
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the Wnt/β-catenin signaling pathway can affect the cell cycle
(Gao et al., 2017). Some experiments indicated that inhibitors
can reduce the proliferation and survival extent of the U87
glioma cells (Gao et al., 2017). The over-expression of Frizzled2,
Wnt2, β-Catenin, and Wnt5a are observed in gliomas (Pu
et al., 2009). Wnt2 and β-catenin (the key mediator) were
knocked down by siRNA in the human glioma U251 cells. Under
these conditions, cell proliferation and invasion were obviously
inhibited, and apoptotic cell death was induced (Pu et al., 2009).
In addition, the growth of tumor was delayed when nude mice
which be subcutaneously inoculated with U251 glioma were
treated with siRNA targeting Wnt2 and β-catenin. In vitro and
in vivo studies were conducted, and the results revealed that the
down-regulation of Wnt2 and β-catenin could be attributed to
the decrease in the PI3K/p-Akt expression levels. The finding
indicated that Wnt/β-catenin was interacted with the PI3K/Akt
signal (Pu et al., 2009). The intracranial transplantation model of
glioblastoma mice was studied, it was observed that the inhibition
of Wnt5a activity could prevent the process of brain invasion and
enhance the survival rate of the host (Li et al., 2021).

WnT/β-Catenin Can Regulate
O6-Methylguanine-DNA
Methyltransferase
Temozolomide (TMZ) is a first-line key clinical drug for
postoperative glioma. The significant drug-resistant could be
attributed to the existence of MGMT (Oldrini et al., 2020). It
has been confirmed that MGMT methylation combined with
TMZ can be effectively served as the treatment of glioma. The
postoperative survival time can also be significantly prolonged.
It has also been found that Wnt/β-catenin can regulate the
expression of the MGMT gene and reduce the drug-resistant
of the tumor cells (toward chemotherapeutic drugs) (Bi et al.,
2018). The approach provides a new treatment idea for
clinical treatment.

Therefore, we believe that a combination of drugs which are
used in chemotherapy (TMZ and Wnt/β-catenin inhibitor) can
enable to prolong the survival time of postoperative of glioma.
This may be a promising target for the treatment of glioma.

NOTCH SIGNALING PATHWAY

Cytoplasmic Receptor: Notch
Notch1, Notch2, Notch3, and Notch4 are the four homologous
proteins that are displayed in mammals (Katoh and Katoh,
2020), and these can bind to Delta-like (Dll1-3 and -4) and
serrated proteins (Jagged 1 and -2) (two ligand families). These
ligands and receptors belong to the category of unidirectional
transmembrane proteins (Fulop et al., 2019). The maintenance
and development of the central nervous system depend on the
proper functioning of these ligands and receptors. The origin
of neurogenesis and other neural functions can be ascribed
to neural stem cells (Bond et al., 2015). These stem cells are
beneficial to maintain the homeostasis of the central nervous
system. Therefore, genetic changes and functional features of

neural stem cells can potentially cause occurrence of brain
tumors, such as glioma (Achanta et al., 2010). The failure of
treatment methods of glioma and the recurrence of glioma can
be attributed to the existence of a small number of tumor cells
which are known as glioma stem cells, in the microenvironment.
According to reports, the glioma stem cells are identical in
characteristics and invasive phenotype characterize to stem cells
(Ma et al., 2018). A highly active Notch signal is observed in GSCs
(Yi et al., 2019). Inhibition of the process of differentiation is
observed, and stem cell-like properties are maintained. It is a of
importance reason that glioma can enable to occur and resist to
conventional treatment.

Extracellular and Intracellular Notch
Signaling Transduction Pathways
In the course of evolution, Notch signal pathway always presents
a relatively conserved and stable condition. But, it plays a certain
significant role in cell proliferation, apoptosis, stress regulation,
differentiation, and angiogenesis. It can stimulate a cascade
reaction and generate a series of biological effects (McIntyre et al.,
2020). The notch can promote its proliferation by inhibiting the
differentiation process associated with neural stem cells (An et al.,
2020). During cell interaction period, notch can be transcribed
when it combined with ligands.

Notch1-Sox2 Regulates GSCs
The levels of proteins and mRNA in Notch1, Dll1, Notch4,
Dll4, Hey1, Jagged1, CBF1, Hey2, and Hes1 in glioma cells
are higher expression than those in healthy brain cells. These
phenomena could be attributed to the increased expression
levels of pAKT and VEGF and the decreased PTEN level
(Bazzoni and Bentivegna, 2019). The low overall survival could
be ascribed to the over-expression of Notch1 (Han et al., 2017).
It was also observed that the expression of Notch1 exist in GSCs
around the tumors (Biswas and Rao, 2017). At the same time,
the neural stem cell transcription factor Sox2 was up-regulated to
reduce the methylation level of Notch1 promoter and enhance the
expression of Notch1 in GSCs (Wang C. et al., 2019). The Notch4
and Notch1 levels were, respectively, associated with vimentin
and GFAP (Dell’Albani et al., 2014). The expression level of
Notch4 increases with the increase of the grade and primary
tumor (Dell’Albani et al., 2014). The level of expression of Notch2
(in glioblastoma) could be positively correlate with the neural
stem cell gene (SOX2), glial fibrillary acidic protein, vimentin,
and anti-apoptotic protein (Wang J. et al., 2019). However, the
expression level is negatively correlate with the pro-apoptotic
protein (Dell’Albani et al., 2014; Figure 7).

Based on the transduction and regulation mechanism of
the Notch signal pathway associated with extracellular and
intracellular processes, we can speculate that Notch 1 and Sox2
are positively regulated by a feedback loop. It can also be
hypothesized that these are related to the poor prognosis of
glioma. It can further inhibit the invasion of GSCs. At the
same time, based on the characteristics of over-expression of
Notch4 (associated with the increase in the degree of tumor
malignancy), it can be considered as the basis of classification
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FIGURE 7 | He regulatory mechanism of notch in giloma.

for glioma. Thus, not only we can pay much closer attention
to clinically treat glioma stem cells but also regard notch as an
effective index of evaluation prognosis. A valuable indicator is of
importance, which can assist us to formulate the future direction
of glioma treatment.

HEDGEHOG SIGNALING PATHWAY

SonicHedgehog Signaling Pathway and
GLI
The hedgehog (HH) signal significantly influences the process
of development of organs and tissues (Finco et al., 2015). It
was prove to be pivotal in a mitogen and (or) Morphological
characteristics. It also plays a significant role in differentiation
factor. Except it can help to maintain tissue conditions. The
HH pathway presents significant lower-activity state in adults
(Petrova and Joyner, 2014). The abnormal activation of the
protein cause the development of several malignancies in
humans, including glioma. Hence, it is a very effective therapeutic
target for the treatment of cancer (Skoda et al., 2018). The major
participants associated with the HH pathway include HH ligands
sonic (SHH), Patched transmembrane receptors (PTCH1 and 2),
Indian (IHH) or Desert Hedgehog (DHH), glioma-associated
oncogene transcription factors (GLI1, GLI2, and GLI3), and G
protein-coupled receptors, such as Smoothened (SMO) (Asiabi
et al., 2021). Typically, HH signal is activated when the HH ligand
binds with PTCH1, then cause the release of SMO. Subsequently,
the SMO receptor is transposed to the primary cilia and then

initiates the signal cascade reaction, which eventually results in
the dissociation of GLI from the negative regulator SUFU. It
also causes its subsequent nucleation. The activated form of the
GLI factor raises the transcription of the Hh target genes (i.e.,
CCND2, BMI1, MYCN, and VEGF) (Huang D. et al., 2018).
Thereby, the path of cell survival, invasion, and angiogenesis
are regulate throughout the entire sequential procedures. The
processes correlative with the self-renewal of stem cell and the
process of epithelial mesenchymal transformation (EMT) are also
regulated and controlled (Figure 8; Infante et al., 2018).

Sonic Hedgehog Inhibitor Cooperates
With Temozolomide
An abnormal HH signaling pathway is observed in glioma cells.
It is especially true for the Shh signaling pathway (Gampala
and Yang, 2021). Somatic mutations and changes in the copy
number in key genes associated with the Shh signaling pathway
are observed in most of the patients suffering from glioma
(Garcia-Lopez et al., 2021). These mutations are accompanied
by the deletion or loss of function of PTCH1 or SUFU.
These are also accompanied by mutations that activate GLI1
and SMO, or GLI2 amplification (Northcott et al., 2017). In
some cases, the MYC/MYCN gene which is responsible for
transcriptional regulation is repeatedly amplified (Infante et al.,
2018). The changes in the genetic characteristic result in the
ligand-independent activation of the HH pathway. This promotes
tumorigenesis and further worsens the condition. A number of
experimental investigation have manifested that the inhibition
of the Shh pathway can enhance the chemotherapeutic effect
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FIGURE 8 | Hedgehog signal pathway.

of TMZ, reduce GSCs, and even prevent the growth of GSCs,
and cause tumor proliferation, differentiation, and migration
(Ming et al., 2017).

Based on the recent findings of many studies, we believe
that the inhibition of the HH pathway, especially the Shh
signaling pathway (attributable to Shh inhibitors), can reduce
the extent of tumor proliferation and then promote apoptosis.
It can also strengthen the chemotherapeutic effect of the first-
line clinical drug TMZ. Multi-targeted drug combination can
control and reduce the recurrence and deterioration of tumors,
and then prolong the survival time of patients in the near
future. To be sure, this therapeutic effect is positive and worth
looking forward to.

TGF-β SIGNALING PATHWAY:
PROGRESS MADE

Inhibitors of TGF-β
TGF-β is a type of cytokine with a molecular weight of 25
kDa, which regulates the processes of cell proliferation and
differentiation (Morikawa et al., 2016). It can be secreted by
various types of cells, such as immune cells and nausea tumor
cells. It also can regulate various biological functions, such as cell
proliferation, migration, embryonic stem cell differentiation, and
immune surveillance (Yang et al., 2010). The binding of TGF-β to
its receptor can initiate the SAMD signal cascade (Held-Feindt
et al., 2003). In many malignant tumors, such as intracranial
tumors, gastrointestinal tumors, respiratory tumors, and urinary

tumors, the expression of TGF-β is associated with the grade and
degree of malignancy (Kjellman et al., 2000). It has been clinically
proven that the TGF-β signal pathway which is interrupted is
an effective strategy which can restore the antitumor immune
function of glioma. LY2109761, an inhibitor of TGF-βR1 kinase,
can improve the sensitivity of glioma cells toward radiotherapy.
The most promising drug is Trabedersen, which is an oligoclonal
nucleotide that can antagonizes TGF-βmRNA (Infante et al.,
2018). It can play an inhibitory role by down-regulating TGF-
β2 mRNA and can enhance the 2-year survival rate of patients
suffering from late-stage glioma (Zhang et al., 2011).

MNK1 Increases the Translation of
SMAD2 mRNA
Over-expressed and activated mitogen-activated protein kinase
interacting kinase 1 (MNK1) is a potentially attractive and
promising therapeutic target (Hou et al., 2012). This can increase
the extent of translation of SMAD2 to promote the TGF-
β pathway through the SMAD2/3/4 complex (Wang et al.,
2016b; Mao et al., 2020). The TGF-β pathway interacts with
the transcription factors (TF). This interaction induces the
expression of various genes which are interrelated with the
movement, proliferation, and survival of malignant GBM cells
(Northcott et al., 2017). Atypical pathways can also be activated
by the overactivated TGF-β receptors (TβRI and TβRII). This can
lead to the phosphorylation of ERKs and p38 kinases. MNK1can
further increase the extent of translation of specific mRNAs which
are closely correlated with the process of cancer progression and
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FIGURE 9 | TGF-β signal pathway. TGF-β pathway interacts with TF to induce the expression of GBM cell proliferation, motility and survival genes, and participates
in the translation of tumor mRNA.

can also be activated under these conditions (Northcott et al.,
2017). It has been shown and reported that primary glioblastoma
and glioma cell lines contain overexpressed MNK1 (Grzmil et al.,
2011). The mRNA related with the regulation of the TGF-β
pathway was identified by conducting microarray analysis of total
RNA and polychromatic RNA obtained from MNK1-depleted
GBM cells (Grzmil et al., 2011). After activating SMAD2/3/4,
TGF-β promotes LIF transcription, thus activates the JAK/STAT3
signal pathway and then improves the proliferation ability of the
stem cells. TGF-β can also induce the expression of the DNA
binding inhibitory protein 1 (ID1) in GSCs and enhance the
malignant proliferation of cells (Infante et al., 2018). The MNK1
signaling pathway affects and controls mRNA translation, TGF-
β-induced cell movement, and vimentin expression. Results from
tissue microarray analysis revealed a positive correlation between
MNK1 and SMAD2 immunohistochemical staining. Grzmil et al.
(2011) reported that SMAD2 is a of importance component
associated with the TGF-β signaling pathway. They provided an
insight into the MKN1 pathway and the mode of control of the
translation process associated with the cancer-related mRNA,
including SMAD2. In addition, they also suggested that the
MNK1-controlled translation pathway should be used to develop
targeting strategies which can even be used to effectively treat
GBM (Figure 9).

A series of biological behaviors (such as over-expression of
MNK1) and the increase of the translation properties of MNK1
were deeply studied. The proliferation of malignant GBM cells
was also studied, and based on the results, we hypothesized that
MNK1 could be used as a marker for predicting tumors. At
present, eFT508 is considered as an efficient and highly selective

inhibitor of MNK1 during experiments (Jin et al., 2021). But
further deeper researches and more trails are needed to conduct
and confirm whether inhibitors of MNK1 can be applied to
the stage of clinical experiment. We believe that MNK1 is an
attractive and promising therapeutic target in the near future.

JANUS KINASE/SIGNAL TRANSDUCER
AND ACTIVATOR OF TRANSCRIPTION
SIGNALING PATHWAY

The Janus kinase/signal transducer and activator of transcription
(JAK/STAT) signaling pathway is considered as one of the
central communication nodes in the cell function (Darnell, 1997).
The JAK/STAT signaling pathway has profoundly influenced
recent understanding attained of human health and disease.
The JAK/STAT signaling pathway is evolutionarily conserved.
It is composed of ligand-receptor complexes, JAKs, and STATs.
There are 4 members in the JAK family: JAK1, JAK2, JAK3,
and TYK2. The STAT family comprises seven members: STAT1,
STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6 (Xin et al.,
2020). The composition of the JAK/STAT pathway is as follows:
one is the classical JAK/STAT signaling pathway, another one is
the non-classical JAK/STAT signaling pathway. Many researches
have reported the importance of this pathway in malignancies
(Aaronson and Horvath, 2002; O’Shea and Plenge, 2012; Ivashkiv
and Donlin, 2014; O’Shea et al., 2015; Banerjee et al., 2017;
Villarino et al., 2017). Thus, inhibiting the JAK/STAT pathway
is promising for treating various diseases. Currently, many JAK
inhibitors have achieved efficacy in many clinical settings, and

Frontiers in Molecular Neuroscience | www.frontiersin.org 15 July 2022 | Volume 15 | Article 910543

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-910543 July 20, 2022 Time: 6:49 # 16

Wu et al. Key Signal Pathways of Glioma

FIGURE 10 | JAK/STAT signaling pathway.

more medications are currently being studied, such as STA-
21, LLL-3, LLL12, and curcumin etc. (Ashrafizadeh et al., 2020;
Xin et al., 2020; Shi et al., 2021). There are two ways of the
regulation in JAK/STAT signaling pathways, that are positive
and negative (Hu et al., 2021). The resent research shown that
YTHDC1-mediated VPS25 regulates cell cycle by targeting JAK-
STAT signaling in human glioma cells. VPS25 was upregulated
in glioma tissues, which was correlated with poor prognosis in
glioma patients. Furthermore, VPS25 knockdown inhibited the
proliferation, blocked the cell cycle, and promoted apoptosis in
glioma cells. Meanwhile, VPS25 induced a G0/G1 phase arrest of
the cell cycle in glioma cells by directly mediating p21, CDK2, and
cyclin E expression, and JAK-signal transducer and activator of
transcription (STAT) activation. These results suggest that VPS25
is a promising prognostic indicator and a potential therapeutic
target for glioma (Zhu et al., 2021).

Signaling Cross-Talk Between Janus
Kinase/Signal Transducer and Activator
of Transcription and Other Pathways
Signaling cross-talk between JAK/STAT and other pathways is
an intricate and colossal network, happens at different levels,
and covers varieties of molecules, such as a ligand, receptor,
phosphorylation, JAK, STAT, and gene transcription factors etc.
(Zhu et al., 2021). These cross-talk activities play crucial roles in
pluripotency and differentiation transcription program, immune
regulation, and tumorigenesis. For example, TGF-β hedges IL-
12 mediated JAK2 and TYK2 tyrosine phosphorylation (Bright

and Sriram, 1998). Notch signaling inhibits JAK/STAT activation
by interfering with STAT translocation to the DNA domain,
and signals of JAK/STAT inhibited Notch signaling conversely
(Assa-Kunik et al., 2007). SMAD3 inhibits STAT3 activation via
recruiting PIAS3 to STAT3 and so on (Saitoh et al., 2016; Hu et al.,
2021; Figure 10).

According to the above analysis, the future studies should
offer innovative insights into the potential mechanisms of the
JAK/STAT pathway effects and cancer development. Moreover,
we should concentrate all efforts on maximize efficacy and
minimize side effects in patients in different stages of certain
tumors and to explore more biomarkers that predict efficacy and
offer prognoses.

LOW-GRADE GLIOMA AS
NEURODEVELOPMENTAL DISORDERS
AND MITOGEN-ACTIVATED PROTEIN
KINASE SIGNALING PATHWAY

Pediatric low-grade glioma (the most common glioma is
the WHO grade I pilocytic astrocytoma PA) is the most
common CNS tumor of childhood. Although overall survival is
good, disease often recurs (Fangusaro et al., 2019). Abnormal
MAPK pathway activation is the most common genetic
aberration in pediatric low-grade glioma (Hargrave, 2009;
Jones et al., 2013, 2018). Several drugs that target the MAPK
pathway have been developed (Zhang et al., 2013). Selumetinib is
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FIGURE 11 | MAPK signaling pathway.

FIGURE 12 | BBB and signal pathways.
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TABLE 1 | Key signal pathways inhibitors glioma.

Type Inhibitors References

Hippo/YAP NSC682769 Saunders et al., 2021

peptide 17 Liu M. et al., 2017

Verteporfin Deng et al., 2022

Cbx7 Nawaz et al., 2016

Digoxin Elbaz et al., 2012

miR-376a Deng et al., 2022

G007-LK Kierulf-Vieira et al., 2020

Silibinin Bai et al., 2018

PI3K/AKT/mTOR p-mTORS2448 Liu M. et al., 2017

Apitolisib (GDC-0980) Omeljaniuk et al., 2021

POU2F2 Yang R. et al., 2021

Carnosine Oppermann et al., 2019

(2-(2,4-dioxopentan-3-
ylidene)hydrazineyl)
Benzonitrile,

Viswanathan et al., 2019

Gartanin Liu M. et al., 2017

NVP-LDE-225 Nanta et al., 2019

NVP-BEZ-235 Nanta et al., 2019

β-mangostin Li et al., 2020

RES-529 Weinberg, 2016

TSC-mTORC1 Everolimus Trelinska et al., 2017

G3BPs Prentzell et al., 2021

PQR309 Yang et al., 2020

HGF/MET SB-hHgf.Met.ShP53 Qin et al., 2020

SPINT2/HAI- Kongkham et al., 2008

Selumetinib Ryall et al., 2020

Trametinib Ryall et al., 2020

Cobimetinib Ryall et al., 2020

AZD4547 Ryall et al., 2020

TLN-4601 Mason et al., 2012

PI3K/Akt P4HA2 Lin et al., 2021

Baicalein Yang Y. et al., 2021

JQ1 Wen et al., 2019

LINC00673 Zhang F. et al., 2018

miR-128-3p Huo et al., 2019

COX-2 Majchrzak-Celiñska et al.,
2021

Annexin-A1 Wei et al., 2021

STAT CX-4945 Liu X. et al., 2020

WnT/β-catenin G007-LK Kierulf-Vieira et al., 2020

Celecoxib Majchrzak-Celiñska et al.,
2021

2,5-DMC, etori-, rofe- Majchrzak-Celiñska et al.,
2021

Valdecoxib Majchrzak-Celiñska et al.,
2021

MIR22HG Han S. et al., 2020

CBX7 Bao et al., 2017

MRK003 Herrera-Rios et al., 2020

Notch LDFI (Leu-Asp-Phe-Ile) Panza et al., 2020

RO4929097 Xu et al., 2016

MRK003 Herrera-Rios et al., 2020

Hedgehog CBL0137 Mo et al., 2021

LDE225/Sonidegib Rimkus et al., 2016

(Continued)

TABLE 1 | Continued

Type Inhibitors References

GDC-0449/Vismodegib Rimkus et al., 2016

TGF-β LY3200882 Yap et al., 2021

Cediranib Pham et al., 2015

Vandetanib Pham et al., 2015

COX-2 Wang C. et al., 2019

mPGES-1 CYP4A Wang C. et al., 2019

JAK/STAT AZD3759 Yin et al., 2021

Ruxolitinib Delen and Doğanlar, 2020

YM155 Jane et al., 2017

WP1066 Vangala et al., 2020

Curcumin Hu et al., 2021

LLL-3 Hu et al., 2021

LLL12 Hu et al., 2021

MAPK Trametinib Perreault et al., 2019

PD325901 Wu et al., 2020

sHH NVP-LDE-225 Nanta et al., 2019

NVP-BEZ-235 Nanta et al., 2019

a selective and potent orally available non-ATP-competitive small
molecule inhibitor of MEK1/2 (Fangusaro et al., 2019). To our
knowledge, aside from the use of mTOR inhibitors in tuberous-
sclerosis-associated subependymal giant cell astrocytoma, 33
which is rare in the pediatric population, selumetinib is one
of the first prospectively tested and active molecularly targeted
agents in pediatric low-grade glioma (Fangusaro et al., 2019).
MAPK (mitogen-activated protein kinase) signaling pathways
regulate a variety of biological processes through multiple cellular
mechanisms (Yue and López, 2020). MAPK cascade is a critical
pathway for human cancer cell survival, dissemination, and
resistance to drug therapy (De Luca et al., 2012; Elbaz et al.,
2012). The MAPK/extracellular signal-regulated kinase (ERK)
pathway is a convergent signaling node that receives input from
numerous stimuli, including internal metabolic stress and DNA
damage pathways and altered protein concentrations, as well
as through signaling from external growth factors, cell-matrix
interactions, and communication from other cells (Morrison,
2012; Yang et al., 2013). Mutated genes responsible for the
regulation of cell fate, genome integrity, and survival can
lead to increased protein amplification and alter the tumor
microenvironment, thus overactivating the pathway (Birkbak
and McGranahan, 2020). These mutations can occur upstream
in membrane receptor genes, such as epithelial growth factor
receptor (EGFR) (Wang et al., 2020) in signal transducers
(RAS) (Malumbres and Barbacid, 2003) regulatory partners
(Sprouty) (Muram-Zborovski et al., 2010; Yan W. et al., 2020)
and downstream kinases that belong to the MAPK/ERK pathway
itself (BRAF) (Fang and Richardson, 2005; Burotto et al.,
2014; Moon and Ro, 2021). Low-grade glioma growth control
pathways. LGGs arise from mutations in genes whose protein
products regulate RAS pathway signaling. In this manner,
mutations in genes encoding receptor tyrosine kinases (RTK),
which transduce extracellular signals, as well as the downstream
effectors PTPN11, RAS, BRAF/RAF, lead to hyperactivation of
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mitogenic signaling downstream through the MAP kinase and
PI3-kinase pathways. In addition, mutational inactivation of the
neurofibromatosis type 1 (NF1) tumor suppressor gene results in
increased RAS activity. MEK and AKT can shorten G1 transition
through mammalian target of rapamycin (mTOR)-dependent
and -independent signaling. The presence of stromal growth
factors and chemokines in the tumor microenvironment generate
growth-promoting signals through tumor cell receptors and
further enhance glioma expansion in a paracrine fashion (Baker
et al., 2016; Figure 11).

BLOOD–BRAIN BARRIER AND SIGNAL
PATHWAYS

The blood–brain barrier (BBB) is an extremely of significance
factor to consider when determining treatments for various
neurological diseases, both because disruption of the BBB
can result in grievous pathology observed in many different
diseases, especially brain tumors, but also because crossing
the BBB is a basic element in the development of Central
nervous system therapy (Daneman and Prat, 2015). BBB, Genetic
and transcriptomic studies have proved activation of signaling
pathways, such as WNT–β-catenin and sonic hedgehog (SHH)-
dependent signaling in brain ECs (endothelial cells) within the
BBB (Daneman and Prat, 2015). Intriguingly, some pathways
including the G protein-coupled receptor (GPCR), GPR124 and
WNT-β-catenin axis also regulate additional characteristics of
vascular structure and function (Kuhnert et al., 2010; Umans
et al., 2017; Griveau et al., 2018) CNS (central nervous system)
ECs (endothelial cells) signaling pathways can be directly
regulated by pericytes and astrocytes.

Neuronal and non-neuronal cells regulate the expression of
transport and tight junction proteins in ECs, which in turn
may “loosen” or “tighten” the BBB (Arvanitis et al., 2020). We
introduce ways of key signaling pathways connecting astrocytes,
pericytes and neurons to ECs (Sweeney et al., 2019). These
pathways will modify transcellular transport by changing the
expression of transporters and the paracellular path by tangling
junctional protein complexes. Importantly, ECs mutually adjust
and control components of the NVU (neurovascular unit).
For instance, cognate receptor on pericytes are stimulated
by EC-secreted TGF-β (Umans et al., 2017; Griveau et al.,
2018). During development and maturation, glial cells, pericytes
and neurons regulate EC behavior via numerous ligands and
receptors, which in turn activate downstream signaling cascades
that instruct expression of junctional and transcytosis proteins
and control CNS homeostasis. Astrocytes directly modulate
NVU demands such as water content in the neuroparenchymal
space via the major water channel protein AQP4 (aquaporin 4)
(Vanlandewijck et al., 2018) regulate immune cell and cancer cell
(Arvanitis et al., 2020; Figure 12).

In conclusion, the brain microenvironment can thwart the
effectiveness of drugs against primary brain cancer as well as
brain metastases. It is a tremendous challenges that posed by
the BBB and BTB for drug delivery, how multiple cell types,
signaling pathways, and signaling cross-talk dictate BBB function
and the role of the BTB in tumors progression and treatment. We

believe emerging signal pathway targeting molecular to improve
drug delivery across the BBB and BTB (blood–tumor barrier)
and improve Prognosis of giloma, such as immune checkpoint
inhibitors, Nanotechology, and engineered T cells. Common key
signal pathways inhibitors glioma, Table 1.

CONCLUSION AND PROSPECT

In recent years, researchers have focused on signal pathways and
glioma. This paper discusses the mechanisms associated with
the Hippo/YAP, PI3K/AKT/Mtor, miRNA, Hedgehog, WnT/β-
catenin, Notch, and TGF-β signal pathways and the key enzymes
associated with glioma. The results can potentially help explore
new diagnostic and prognostic biomarkers for the identification
of new and efficient molecular therapeutic targets. However,
further research should be conducted to clarify a few points.
Significant levels of heterogeneity are observed in tumor cells
(attributable to the recruitment of various cells), resulting in
the generation of a tumor microenvironment. There are few
reports on signal pathways and tumor heterogeneity. Though the
relationship between signal pathways and glioma progression has
been reported in the literature, the crosstalk between multiple
signal pathways makes it difficult to determine the effective
molecular targets associated with glioma treatment. We believe
that the application of organic or inorganic nano carriers or
exosomes (combined with clinical medication and adjuvant
immunotherapy, such as monoclonal antibody-targeted therapy,
polypeptide vaccine, DC vaccine, adoptive immunotherapy,
and cytokine therapy), can potentially help in effectively
treating glioma. Large-scale cohort studies and related molecular
experiments should be conducted to find more reliable molecular
therapeutic targets and address the existing problems.
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