RESEARCH Open Access

Check for updates

Long-term effects of health during childhood on depressive symptoms in later life: evidence from a nationally representative survey in China

Yinghui You^{1†}, Zimo Wang^{1†}, Runzhou Sun^{2†}, Chunyan Wu¹, Jing Ban¹, Ziang Pang¹, Ling Wang¹ and Pengtao Liu^{1*}

Abstract

Background Childhood health significantly influences mental well-being in later life, but this relationship remains underexplored in China. This study aims to investigate the long-term associations between childhood health status and depressive symptoms in older adults, emphasizing the need for early interventions to promote lifelong mental health.

Methods We utilized data from a nationally representative survey conducted across 28 provinces of China, comprising 15,581 adults aged 45 years and older. Depressive symptoms were assessed using the Center for Epidemiological Studies Depression scale. Logistic regression and decision tree models were applied to examine the association between childhood health and depressive symptoms in later life.

Results The overall prevalence of depressive symptoms among participants was 33.75%. Those reporting excellent or very good childhood health had a lower prevalence (29.99%), while those with poor childhood health reported a markedly higher rate (47.57%). After adjusting for demographics and lifestyle factors, poor childhood health was associated with a higher likelihood of depressive symptoms (AOR 1.83, 95% CI 1.56–2.14, P < 0.0001). Other risk factors included aged 65–74 years (AOR 1.23, 95% CI 1.10–1.38, P = 0.0009), female gender (AOR 2.01, 95% CI 1.78–2.28, P < 0.0001), and never drinking (AOR 1.24, 95% CI 1.11–1.38, P = 0.0012). Protective factors included tertiary education (AOR 0.45, 95% CI 0.32–0.65, P = 0.0030), higher BMI (BMI 24–27.9 kg/m²: AOR 0.72, 95% CI 0.60–0.87 kg/m², P = 0.0033; BMI ≥ 28 kg/m²: AOR 0.69, 95% CI 0.56–0.85 kg/m², P = 0.0030), sleep duration of seven or more hours (7–10 h sleep: AOR 0.52, 95% CI 0.48–0.57, P < 0.0001), and urban residency (AOR 0.57, 95% CI 0.43–0.58, P < 0.0001), never smoked (AOR 0.77, 95% CI 0.68–0.86, P < 0.0001), and urban residency (AOR 0.57, 95% CI 0.50–0.64, P < 0.0001). The decision tree model highlighted key factors associated with depressive symptoms, including childhood health, non-communicable diseases, sleep duration, residency, alcohol consumption, and smoking status.

[†]Yinghui You, Zimo Wang and Runzhou Sun contributed equally to this work.

*Correspondence: Pengtao Liu lpt1978@126.com

Full list of author information is available at the end of the article

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

You et al. BMC Public Health (2025) 25:905 Page 2 of 8

Conclusions Our findings suggest that childhood health may influence mental well-being in later life. Promoting healthy behaviors from early childhood could help reduce depression risk in older age. However, the reliance on self-reported data and a cross-sectional design limit causal interpretation. Preventive care and targeted interventions for vulnerable children should be prioritized to improve long-term mental health outcomes.

Keywords Childhood health, Depressive symptoms, Healthy behaviors, China

Background

The health status of children is widely recognized as a critical determinant of lifelong physical and mental well-being. A growing body of evidence from developed countries demonstrates that adverse childhood health experiences can have lasting effects on health outcomes in adulthood, including increased risks of chronic diseases, disability, and mortality [1-4]. However, while the impact of childhood health on physical health outcomes is well-documented, the relationship between early-life health conditions and long-term mental health remains less explored, particularly in low- and middle-income countries (LMICs) such as China. Understanding this relationship is of particular importance in China, where rapid demographic transitions have led to an unprecedented increase in life expectancy and an aging population at risk for mental health disorders such as depression [5].

In China, depression among older adults is a growing public health concern, with studies reporting a high prevalence of depressive symptoms ranging from 20 to 40% in this population [6-9]. This poses a significant burden on families, communities, and healthcare systems, particularly in rural and economically disadvantaged regions. Historical events, such as the Great Chinese Famine of 1959–1961, provide a unique context for understanding the long-term effects of adverse childhood experiences on mental health in China [10, 11]. During this period, millions of children experienced severe malnutrition and other health-related adversities that may have had lasting consequences on their physical and psychological development. Studies suggest that early-life exposure to famine and deprivation is associated with a higher risk of chronic diseases in adulthood, including hypertension, diabetes, and cardiovascular diseases [11-15]. However, less attention has been paid to the potential mental health consequences of these early-life adversities, particularly in the context of depressive symptoms in older age.

Moreover, existing studies on childhood health and depression often focus on isolated factors, such as childhood malnutrition or disease exposure, without considering the combined influence of social factors, lifestyle behaviors, and physical health conditions across the life course [11–15]. In LMICs, where access to healthcare and education is often limited, understanding how early-life health interacts with social determinants and

behavioral factors to shape mental health outcomes in older adulthood is crucial. Social and lifestyle factors, such as educational attainment, smoking and drinking behaviors, sleep duration, and residential environment, are known to influence mental health in later life [16, 17]. However, few studies have explored how these factors may moderate the long-term relationship between childhood health and depression.

Addressing these gaps is critical for informing effective public health policies and interventions aimed at improving mental health outcomes among older adults in China. The current study seeks to fill this gap by investigating the association between childhood health status and depressive symptoms in older adulthood using data from a nationally representative survey conducted across 28 provinces in China. In addition, this study examines the potential moderating effects of social and lifestyle factors on this association. By identifying both risk and protective factors for depression, we aim to provide evidence to support the development of preventive and primary care strategies that target mental health disparities among older adults, particularly those with a history of poor childhood health. Our findings will be especially relevant for policymakers, healthcare providers, and public health practitioners seeking to address the growing mental health burden in China's aging population.

Methods

Study design and data collection

This study utilized data from the 2020 wave of the China Health and Retirement Longitudinal Study (CHARLS), a nationally representative survey of Chinese adults aged 45 years or older [18, 19]. The baseline survey, conducted between June 2011 and March 2012, included 17,708 participants from 28 provinces across China [20]. CHARLS employed a four-stage, stratified, cluster sampling method to ensure national representativeness, and participants have been followed up every two years [18]. Data collection was conducted through face-to-face household interviews, capturing detailed information on demographics, socioeconomic status, biomedical measurements, and self-reported health status [19, 21].

Depressive symptoms and childhood health status

Depressive symptoms were assessed using the 10-item short form of the Center for Epidemiological Studies Depression Scale (CES-D), a widely used tool for You et al. BMC Public Health (2025) 25:905 Page 3 of 8

evaluating depressive symptoms in population-based studies [22–24]. Scores on the CES-D short form range from 0 to 30, with higher scores indicating greater depressive symptom severity. In this study, a cutoff score of 10 or higher was used to classify participants as experiencing depressive symptoms. Childhood health status was assessed through a retrospective self-report measure in which participants were asked to evaluate their health up to age 15 using a 5-point Likert scale: excellent, very good, good, fair, or poor. Previous studies have validated this retrospective measure, demonstrating its strong correlation with the historical presence of various physical and psychological conditions during childhood [25, 26].

Table 1 General characteristics of participants stratified by childhood health status (n = 15581)

Factor	Total %	Excellent, Very good %	Good, Fair %	Poor %	P
Depressive symptoms					< 0.0001
No	66.25	70.01	63.80	52.43	
Yes	33.75	29.99	36.20	47.57	
Age (%)					< 0.0001
45-54	32.82	35.07	31.27	25.05	
55-64	31.33	30.88	31.83	31.65	
65-74	19.80	18.21	20.66	26.77	
≥75	7.25	7.19	7.23	7.78	
Gender (%)					< 0.0001
Male	47.65	49.73	46.24	40.38	
Female	52.35	50.27	53.75	59.62	
Education					< 0.0001
Lower secondary	85.72	85.48	85.42	89.54	
Upper secondary	11.30	11.51	11.48	8.50	
Tertiary	2.91	2.96	3.00	1.97	
BMI (kg/m2)					< 0.0001
< 18.5	4.15	3.53	4.65	5.81	
18.5-23.9	37.62	36.10	38.39	44.68	
24-27.9	26.23	27.72	24.58	25.11	
≥28	10.02	10.98	9.20	7.75	
Smoking status					< 0.0001
Ever or current	39.65	42.09	37.48	34.53	
Never	60.35	57.91	62.52	65.47	
Drinking frequency					0.0450
≥1 drink/month	27.24	28.89	25.51	25.40	
<1 drink/month	9.28	8.96	9.63	9.56	
Never	63.44	62.13	64.79	65.04	
Sleep duration					< 0.0001
<7 h sleep	41.56	40.02	41.61	53.48	
7–10 h sleep	47.83	49.57	47.29	37.54	
≥10 h sleep	9.41	9.45	9.73	6.98	
Residency					< 0.0001
Main city zone	21.56	23.25	20.67	14.02	
Others	18.93	19.11	18.34	21.32	
Village	59.51	57.65	60.99	64.66	

Patient and public involvement

Patients and public were not involved in the development, design and analysis of this study.

Data analysis

Descriptive and inferential statistical analyses were conducted using R 3.4.1 (https://www.r-project.org/). Chi-sq uare tests were performed to examine differences in categorical variables across childhood health groups. Logistic regression analysis was then used to assess the association between childhood health status, lifestyle behaviors, and depressive symptoms. A two-tailed p-value of less than 0.05 was considered statistically significant.

To further investigate the relationship between child-hood health and depressive symptoms, a decision tree model was constructed using SPSS Statistics version 25.0. The exhaustive chi-squared automatic interaction detection method was employed to develop the tree-based classification model. The significance threshold for splitting nodes and merging categories was set at 0.05. Node splitting and category merging for ordinal dependent variables were based on chi-square tests, calculated using the likelihood-ratio method.

Results

General characteristics of study participants

Table 1 presents the general characteristics of the study participants, stratified by reported childhood health status. Among all participants, the overall prevalence of depressive symptoms was 33.75%. Participants who reported excellent or very good health during childhood had a lower prevalence of depressive symptoms (29.99%), whereas those who reported poor childhood health showed a markedly higher prevalence (47.57%). Additionally, individuals reporting poor childhood health were more likely to have lower educational attainment, lower body mass index (BMI), and shorter sleep duration in later life compared to those with better childhood health. Detailed participant characteristics are provided in Table 1.

Association between childhood health status, lifestyle behaviors, and depressive symptoms

Logistic regression analysis revealed that participants who reported poor health during childhood had significantly higher odds of experiencing depressive symptoms in later life (adjusted odds ratio [AOR] 1.83, 95% confidence interval [CI] 1.56–2.14, P<0.0001) after adjusting for demographics and lifestyle behaviors. Other factors associated with an increased likelihood of depressive symptoms included age between 65 and 74 years (AOR 1.23, 95% CI 1.10–1.38, P=0.0009), female gender (AOR 2.01, 95% CI 1.78–2.28, P<0.0001), and never drinking alcohol (AOR 1.24, 95% CI 1.11–1.38, P=0.0012).

You et al. BMC Public Health (2025) 25:905 Page 4 of 8

Conversely, factors associated with a reduced likelihood of depressive symptoms included tertiary education (AOR 0.45, 95% CI 0.32–0.65, P=0.0030), higher BMI (24–27.9 kg/m²: AOR 0.72, 95% CI 0.60–0.87, P=0.0033; BMI \geq 28 kg/m²: AOR 0.69, 95% CI 0.56–0.85, P=0.0030), and adequate sleep duration (7–10 h: AOR 0.52, 95% CI 0.48–0.57, P<0.0001; \geq 10 h: AOR 0.50, 95% CI 0.43–0.58, P<0.0001). Participants who had never smoked (AOR 0.77, 95% CI 0.68–0.86, P<0.0001) and those living in main city zones (AOR 0.57, 95% CI 0.50–0.64, P<0.0001) were also less likely to report depressive symptoms. The complete results are shown in Table 2.

Decision tree model analysis

The decision tree model analysis (Fig. 1) provided a visual representation of the factors associated with depressive symptoms among the study participants. The model incorporated variables related to general characteristics, lifestyle behaviors, and physical health status, highlighting complex patterns of associations. Key factors identified by the model included childhood health status, sleep duration, gender, place of residence, and the presence of NCDs.

The decision tree structure indicated that participants with certain characteristics were more likely to report depressive symptoms. For example, participants who were male, reported excellent or very good health during childhood, did not have arthritis or rheumatism, had

Table 2 Associations between childhood health, lifestyle behaviors, non-communicable diseases and depressive symptoms

Variables	Depressive symptoms %	OR (95% CI)	Р	AOR (95% CI)	Р
 Health during childhood		(95% CI)		(95% CI)	
Excellent, very good	29.99	1.0		1.0	
Good, Fair	36.20	1.33(1.24,1.42)	0.0265	1.34(1.23,1.45)	0.7978
Poor	47.57	2.12(1.86,2.42)	< 0.0001	1.83(1.56,2.14)	< 0.0001
Age	47.57	2.12(1.00,2.42)	< 0.0001	1.03(1.30,2.14)	< 0.0001
45-54	30.76	1.00		1.00	
55-64	33.23	1.12(1.03,1.22)	0.1172	1.03(0.93,1.13)	0.1315
65–74	37.79	1.37(1.25,1.50)	< 0.0001	1.23(1.10,1.38)	0.1313
03-74 ≥75	35.55	1.24(1.08,1.42)	0.2531	1.09(0.93,1.28)	0.0009
Gender	33.33	1.24(1.00,1.42)	0.2331	1.09(0.93,1.26)	0.9319
Male	26.49	1.00		1.00	
Female	40.36	1.88(1.75,2.01)	< 0.0001	2.01(1.78,2.28)	< 0.0001
Education	40.30	1.00(1.73,2.01)	< 0.0001	2.01(1.70,2.20)	< 0.0001
Lower secondary	36.21	1.00		1.00	
*	19.29		< 0.0001	0.61(0.53,0.72)	0.4197
Upper secondary Tertiary	17.45	0.42(0.37,0.48) 0.37(0.29,0.48)	< 0.0001	0.45(0.32,0.65)	0.4197
BMI (kg/m ²)	17.43	0.37(0.29,0.46)	< 0.0001	0.43(0.32,0.03)	0.0030
18.5–23.9	42.85	1.00		1.00	
<18.5	36.80	0.78(0.66,0.91)	0.2364	0.85(0.71,1.01)	0.1599
24–27.9	31.87	0.62(0.53,0.74)	< 0.0001	0.72(0.60,0.87)	0.1399
24-27.9 ≥28	32.60				
Sleep duration	32.00	0.65(0.54,0.78)	0.0012	0.69(0.56,0.85)	0.0030
<7 h sleep	42.80	1.00		1.00	
7–10 h sleep	42.80 26.70	0.49(0.45,0.52)	< 0.0001	0.52(0.48,0.57)	< 0.0001
>10 h sleep	27.99	0.49(0.45,0.52)	< 0.0001	0.52(0.46,0.57)	< 0.0001
Smoking status	27.99	0.52(0.40,0.59)	< 0.0001	0.30(0.43,0.36)	< 0.0001
Ever or current	29.31	1.00		1.00	
Never	36.67	1.40(1.30,1.50)	< 0.0001	0.77(0.68,0.86)	< 0.0001
Drinking frequency	30.07	1.40(1.30,1.30)	< 0.0001	0.77(0.00,0.00)	< 0.0001
>1 drink/month	26.57	1.00		1.00	
<1 drink/month	30.34		0.2900		0.7918
< i drink/month Never	37.34	1.20(1.06,1.37) 1.65(1.52,1.78)	< 0.0001	1.09(0.93,1.28)	0.7918
Residence	37.34	1.03(1.32,1.76)	< 0.0001	1.24(1.11,1.38)	0.0012
	22.70	1.00		1.00	
Village	23.79 28.53	1.00	< 0.0001	1.00	< 0.0001
Main city zone Other	28.53 39.02	0.49(0.45,0.53) 0.62(0.57,0.68)	< 0.0001 0.0158	0.57(0.50,0.64) 0.75(0.67,0.84)	< 0.0001 0.9999

You et al. BMC Public Health (2025) 25:905 Page 5 of 8

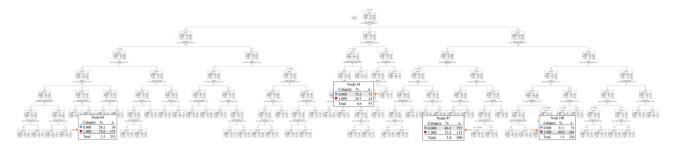


Fig. 1 The structure of the decision tree model

adequate sleep, maintained normal blood pressure, and were overweight had the lowest prevalence of depressive symptoms (13.5%, Node 97). Conversely, participants who reported poor or fair childhood health, slept less than 7 h, were female, lived in villages, and had conditions such as digestive diseases or arthritis showed the highest prevalence of depressive symptoms (75.8%, Node 84) (Fig. 1, Table S1).

The red boxes indicate the prevalence of depressive symptoms, while the blue boxes indicate the prevalence of no depressive symptoms. The factors included in the model are gender (1: Male, 2: Female), health during childhood (1: Excellent, 2: Very good, 3: Good, 4: Fair, 5: Poor), residence (1: Main city zone, 2: Other, 3: Village), sleep duration (1: <7 h, 2: 7-10 h, 3: ≥ 10 h), BMI (1: 18.5-23.9, 2: <18.5, 3: 24-27.9, 4: ≥ 28), hypertension (1: Yes, 2: No), arthritis or rheumatism (1: Yes, 2: No), stomach or other digestive diseases (1: Yes, 2: No), dyslipidemia (1: Yes, 2: No), chronic lung diseases (1: Yes, 2: No), heart problem (1: Yes, 2: No), and kidney disease (1: Yes, 2: No).

Discussion

Our study reveals a significant association between child-hood health status and depressive symptoms in later life, emphasizing the potential long-term impact of early-life health on adult mental health outcomes. These findings highlight the importance of addressing childhood health issues as part of a preventive approach to reduce the risk of depression in adulthood. Public health campaigns that promote healthy lifestyle behaviors from an early age may be instrumental in mitigating mental health risks later in life. This study underscores the need for policymakers and health professionals to recognize the enduring influence of childhood health on mental well-being and to prioritize preventive and primary care services for children, particularly in vulnerable populations.

This investigation primarily explored the relationship between childhood health and depressive symptoms in middle-aged and older Chinese adults. The prevalence of depressive symptoms was significantly lower among individuals who reported excellent or very good childhood health (29.99%) compared to those who reported poor childhood health (47.57%). Even after adjusting

for demographic factors and lifestyle behaviors, poor childhood health remained strongly associated with an elevated risk of depressive symptoms in adulthood. The decision tree model provided additional insights, suggesting that childhood health status influences adult mental health through complex pathways involving lifestyle factors, physical health conditions, and socio-demographic characteristics. Notable factors associated with depressive symptoms included NCDs, sleep duration, place of residence, and health behaviors such as smoking and drinking (Fig. 1, Table S1).

Our findings illustrate that while poor childhood health is associated with a higher prevalence of depressive symptoms in later life, this relationship is not uniform across all individuals. The decision tree analysis showed that certain lifestyle behaviors and physical health conditions modify the relationship between childhood health and adult depressive symptoms. For example, participants with poor childhood health but healthy lifestyle behaviors and adequate sleep in adulthood exhibited a relatively lower prevalence of depressive symptoms (Node 34, 24.7%). In contrast, participants with excellent or very good childhood health but unhealthy behaviors and physical ailments in later life had a notably high prevalence of depressive symptoms (Node 100, 68.9%). These observations suggest that adult mental health outcomes are shaped by both early-life health status and later-life experiences. Previous studies have similarly demonstrated that mental health trajectories are dynamic, evolving across different life stages, social roles, and experiences [27, 28].

The decision tree model highlighted arthritis/rheumatism and digestive diseases as the most significant NCDs associated with depressive symptoms (Fig. 1, Table S1). These conditions are prevalent among middleaged and older adults in China, with more than 40% of affected individuals experiencing depressive symptoms. This aligns with existing research showing a bidirectional relationship between physical and mental health, where chronic conditions can exacerbate psychological distress and depression may, in turn, worsen physical health outcomes [29]. Depression has been identified as both a consequence and a risk factor for NCDs, with

You et al. BMC Public Health (2025) 25:905 Page 6 of 8

untreated depression linked to poorer health outcomes and increased mortality in individuals with chronic diseases [30–32]. Additionally, research has indicated that untreated depression in older adults with NCDs is linked to worse health outcomes [33]. Understanding the interplay between arthritis/rheumatism, digestive diseases, and mental health could inform targeted interventions aimed at improving both physical and psychological wellbeing in aging populations.

Our study also identified protective factors that may reduce the risk of depressive symptoms in later life. Consistent with prior research, healthy lifestyle behaviors, higher education levels, urban residency, and adequate sleep were associated with better mental health outcomes [6, 7, 22]. Individuals living in main city zones reported lower rates of depressive symptoms, possibly due to better access to healthcare, social services, and community resources [34, 35]. Such results would promote more effective depression prevention programs addressing healthy lifestyle behaviors and good social status for Chinese over the entire life cycle, especially those who reported poor health during childhood.

However, some findings regarding lifestyle behaviors, such as alcohol consumption and BMI, were counterintuitive compared to existing literature [36]. Participants who never consumed alcohol were more likely to report depressive symptoms, which contradicts studies suggesting that moderate alcohol consumption may have a protective effect on mental health [36, 37]. This discrepancy may be explained by the cultural context of our study in China, where moderate alcohol consumption is often associated with positive social interactions. Conversely, abstaining from alcohol could signal social isolation or underlying health concerns, both of which are linked to depression [6, 34]. The association between higher BMI and a lower prevalence of depressive symptoms may reflect the "obesity paradox", where individuals with higher BMI may benefit from better social support or healthcare access, or it could be influenced by selfreporting biases and measurement errors [38, 39]. Future studies should explore these associations further, taking into account cultural factors, reverse causality, and the heterogeneity of obesity phenotypes.

Several potential mechanisms could explain the observed relationship between childhood health and adult depressive symptoms. Chronic inflammation, often resulting from early-life health challenges such as recurrent infections or malnutrition, has been implicated in the development of depressive symptoms in adulthood [40, 41]. Inflammation can disrupt neurotransmitter systems, impair neuroplasticity, and alter hypothalamic-pituitary-adrenal (HPA) axis function, all of which are linked to depression [42, 43]. Additionally, childhood health issues may lead to long-term social disadvantages,

such as reduced educational attainment, limited employment opportunities, and lower socioeconomic status, which are well-established risk factors for depression [43]. Poor childhood health may also impact self-esteem, resilience, and coping mechanisms, further influencing mental health outcomes later in life.

The role of early-life socioeconomic status (SES) and adverse childhood experiences (ACEs) should not be overlooked. Children from lower SES backgrounds often face limited access to healthcare, nutritious food, and safe environments, which can contribute to both physical and mental health challenges in adulthood [43, 44]. Furthermore, ACEs such as abuse, neglect, or household dysfunction can have long-lasting effects on mental health by impairing emotional regulation, disrupting brain development, and increasing susceptibility to depression [45-48]. Our study did not explicitly measure SES or ACEs, which are potential confounders that may have influenced the observed associations. Future research should incorporate these factors to better understand the multifaceted pathways linking childhood health to adult mental health.

Our study has several limitations that should be considered when interpreting the results. First, the crosssectional nature of our study does not allow us to establish causality or determine the temporal sequence of events. While we identified associations between childhood health, lifestyle factors, and depressive symptoms in later life, it is possible that reverse causality may be at play. For example, depressive symptoms could lead to changes in sleep patterns, influence an individual's ability or willingness to move from a village to a city, and even affect their perception of experiencing arthritis/rheumatism and digestive diseases. Therefore, our results should be viewed as highlighting potential pathways and associations rather than definitive causal relationships. Second, the health status during childhood and other variables such as arthritis and rheumatism were self-reported by the participants. This reliance on self-reported data could introduce bias, as individuals with depression may perceive and recall their health differently. Additionally, we did not account for changes in living situations over the life course, which could have significant impacts on both physical and mental health. Lastly, the use of a single time points for measuring adult outcomes limits our ability to observe changes over time and establish temporal precedence. Future longitudinal studies with multiple time points would be better equipped to address these limitations and provide a more comprehensive understanding of the relationships between childhood health, lifestyle factors, and mental health outcomes.

You et al. BMC Public Health (2025) 25:905 Page 7 of 8

Conclusions

In conclusion, this study highlights significant associations between childhood health and depressive symptoms in later life among middle-aged and older Chinese adults. The findings underscore the importance of early-life health as a determinant of mental well-being in later life, suggesting that public health policies should prioritize early interventions to promote healthy development. Addressing modifiable risk factors, including lifestyle behaviors and NCD management, could help reduce the burden of depression in aging populations. Further longitudinal research is needed to clarify the complex pathways linking childhood health to adult mental health outcomes and to develop effective strategies for improving mental health across the lifespan.

Abbreviations

CES-D Center for Epidemiological Studies Depression

LMICs Low- and middle-income countries

CHARLS China Health and Retirement Longitudinal Study

NCD Non-communicable disease

BMI Body mass index
OR Odds ratio

OR Odds ratio
SES Socioeconomic st

SES Socioeconomic status
ACEs Adverse childhood experiences

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12889-025-21862-w.

Supplementary Material 1

Acknowledgements

We thank the China Center for Economic Research and the National School of Development of Peking University for providing the data. We thank the editor and reviewers for their comments.

Author contributions

PL and LW designed the study. PL, RS, JB and ZP analyzed the data. YY, ZW, PL, CW, JB and ZP interpreted the data. PL, ZW, CW, RS and YY drafted the report. PL, ZW, CW, YY, RS, JB and ZP participated in revising the manuscript. All authors critically reviewed, approved the final version of the manuscript and agreed to be responsible for all facets of this work.

Funding

This study was supported by Shandong medical and health science technology development program (2017WS410). The funding body did not play a role in the design of the study, data collection, analysis, interpretation of data, and in writing the manuscript. The content is solely the responsibility of the authors.

Data availability

The datasets generated and/or analyzed during the current study are available in the CHARLS repository. All data in CHARLS are maintained at the National School of Development of Peking University and will be accessible to researchers around the world at the study website (https://charls.charlsdata.com/pages/data/111/zh-cn.html).

Declarations

Ethics approval and consent to participate

Ethical approval for the study was granted by the Ethical Review Committee of Peking University (approval No. IRB00001052-11015). The study was

conducted in accordance with the principles outlined in the Declaration of Helsinki. All individuals in this study provided written consent at the time of participation, and written informed consent was obtained from all study participants.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Author details

¹Shandong Second Medical University, Weifang, Shandong Province 261053, China ²Beijing Tongren Hospital, Beijing Tongren Eye Center, Capital Medical University, Beijing 100000, China

Received: 30 November 2023 / Accepted: 7 February 2025 Published online: 06 March 2025

References

- Haas SA. The long-term effects of poor childhood health: an assessment and application of retrospective reports. Demography. 2007;44(1):113–35.
- Osler M, Madsen M, Nybo Andersen AM, Avlund K, McGue M, Jeune B, Christensen K. Do childhood and adult socioeconomic circumstances influence health and physical function in middle-age? Soc Sci Med. 2009;68(8):1425–31.
- Hayward MD, Gorman BK. The long arm of childhood: the influence of earlylife social conditions on men's mortality. Demography. 2004;41(1):87–107.
- Fryers T, Brugha T. Childhood determinants of adult psychiatric disorder. Clin Pract Epidemiol Ment Health. 2013;9:1–50.
- Yang W, Sun R, Wang C, Chen J, Zhang C, Yu J, Liu H. Epidemiology of depressive disorders among youth during Gaokao to college in China: results from Hunan Normal University mental health survey. BMC Psychiatry. 2023;23(1):481.
- Li LW, Liu J, Zhang Z, Xu H. Late-life depression in Rural China: do village infrastructure and availability of community resources matter? Int J Geriatr Psychiatry. 2015;30(7):729–36.
- Li LW, Liu J, Xu H, Zhang Z. Understanding rural-urban differences in depressive symptoms among older adults in China. J Aging Health. 2016;28(2):341–62.
- Zeng Y, Feng Q, Hesketh T, Christensen K, Vaupel JW. Survival, disabilities in activities of daily living, and physical and cognitive functioning among the oldest-old in China: a cohort study. Lancet. 2017;389(10079):1619–29.
- Ji JS, Zhu A, Bai C, Wu CD, Yan L, Tang S, Zeng Y, James P. Residential greenness and mortality in oldest-old women and men in China: a longitudinal cohort study. Lancet Planet Health. 2019;3(1):e17–25.
- Wang Y, Wang X, Kong Y, Zhang JH, Zeng Q. The great Chinese famine leads to shorter and overweight females in Chongqing Chinese population after 50 years. Obes (Silver Spring). 2010;18(3):588–92.
- 11. Chen Y, Zhou LA. The long-term health and economic consequences of the 1959–1961 famine in China. J Health Econ. 2007;26(4):659–81.
- 12. Wang Q, Zhang H, Rizzo JA, Fang H. The Effect of Childhood Health Status on Adult Health in China. Int J Environ Res Public Health 2018, 15(2).
- Smith JP, Shen Y, Strauss J, Zhe Y, Zhao Y. The Effects of Childhood Health on Adult Health and SES in China. Econ Dev Cult Change. 2012;61(1):127–56.
- Wang Q, Shen JJ. Childhood Health Status and Adulthood Cardiovascular Disease Morbidity in Rural China: are they related? Int J Environ Res Public Health 2016. 13(6).
- Wan YH, Ma SS, Xu SJ, Zhang SC, Hao JH, Tao FB. [Study of association between adverse experiences in childhood, social support, and physical and psychological sub-health status among middle school students in 3 cities in China]. Zhonghua Yu Fang Yi Xue Za Zhi. 2017;51(9):786–91.
- Li S, Yin Y, Cui G, Zhang C, Zhu H, Yao Y. The mediating and moderating effects of resilience between childhood trauma and geriatric depressive symptoms among Chinese community-dwelling older adults. Front Public Health. 2023;11:1137600.
- Rinne GR, Mahrer NE, Guardino CM, Shalowitz MU, Ramey SL, Dunkel Schetter C. Childhood family stress modifies the association between perinatal stressful life events and depressive symptoms. J Fam Psychol. 2023;37(4):432–42.

You et al. BMC Public Health (2025) 25:905 Page 8 of 8

- Zhao Y, Hu Y, Smith JP, Strauss J, Yang G. Cohort profile: the China Health and Retirement Longitudinal Study (CHARLS). Int J Epidemiol. 2014;43(1):61–8.
- Ning M, Zhang Q, Yang M. Comparison of self-reported and biomedical data on hypertension and diabetes: findings from the China Health and Retirement Longitudinal Study (CHARLS). BMJ Open. 2016;6(1):e009836.
- Strong C, Tsai MC, Lin CY, Cheng CP. Childhood adversity, timing of Puberty and adolescent depressive symptoms: a longitudinal study in Taiwan. Child Psychiatry Hum Dev. 2016;47(3):347–57.
- 21. Yuan X, Liu T, Wu L, Zou ZY, Li C. Validity of self-reported diabetes among middle-aged and older Chinese adults: the China Health and Retirement Longitudinal Study. BMJ Open. 2015;5(4):e006633.
- Xia N, Feng S, Wang LD-L. Depressive symptoms and healthy lifestyle behaviours in soon-to-be old and older adults in China: an analysis of data from a nationwide cross-sectional survey. Lancet. 2017;390:S15.
- Xu Y, Yang J, Gao J, Zhou Z, Zhang T, Ren J, Li Y, Qian Y, Lai S, Chen G. Decomposing socioeconomic inequalities in depressive symptoms among the elderly in China. BMC Public Health. 2016;16(1):1214.
- Andresen EM, Malmgren JA, Carter WB, Patrick DL. Screening for depression in well older adults: evaluation of a short form of the CES-D (center for epidemiologic studies Depression Scale). Am J Prev Med. 1994;10(2):77–84.
- Smith JP, Strauss J, Zhao Y. Healthy aging in China. J Econ Ageing. 2014:4:37–43
- Kendig H, Gong CH, Yiengprugsawan V, Silverstein M, Nazroo J. Life course influences on later life health in China: Childhood health exposure and socioeconomic mediators during adulthood. SSM Popul Health. 2017;3:795–802.
- Stone J, Netuveli G, Blane D. Life-course occupational social class and health in later life: the importance of frequency and timing of measures. Eur J Ageing. 2014;11(3):273–84.
- Umberson D, Thomeer MB, Williams K, Thomas PA, Liu H. Childhood Adversity and men's relationships in Adulthood: life course processes and racial disadvantage. J Gerontol B Psychol Sci Soc Sci. 2016;71(5):902–13.
- 29. WHO. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i–xii.
- Steptoe A, Mohabir A, Mahon NG, McKenna WJ. Health related quality of life and psychological wellbeing in patients with dilated cardiomyopathy. Heart. 2000;83(6):645–50.
- 31. Andrews G. Should depression be managed as a chronic disease? *BMJ* 2001, 322(7283):419–421.
- Katon WJ. Epidemiology and treatment of depression in patients with chronic medical illness. Dialogues Clin Neurosci. 2011;13(1):7–23.
- WHO. Mental health and older adults. Available: http://www.who.int/mediac entre/factsheets/fs381/en/. Accessed 10 Sept 2018.
- Wang JL, Schmitz N, Dewa CS. Socioeconomic status and the risk of major depression: the Canadian National Population Health Survey. J Epidemiol Community Health. 2010;64(5):447–52.
- Hudson DL, Neighbors HW, Geronimus AT, Jackson JS. The relationship between socioeconomic position and depression among a US nationally representative sample of African americans. Soc Psychiatry Psychiatr Epidemiol. 2012;47(3):373–81.

- Keyes KM, Allel K, Staudinger UM, Ornstein KA, Calvo E. Alcohol consumption predicts incidence of depressive episodes across 10 years among older adults in 19 countries. Int Rev Neurobiol. 2019;148:1–38.
- Pedrelli P, Borsari B, Merrill JE, Fisher LB, Nyer M, Shapero BG, Farabaugh A, Hayden ER, Levine MT, Fava M, et al. Evaluating the combination of a brief motivational intervention plus cognitive behavioral therapy for Depression and heavy episodic drinking in college students. Psychol Addict Behav. 2020;34(2):308–19.
- Elsabaawy M. Liver at crossroads: unraveling the links between obesity, chronic liver diseases, and the mysterious obesity paradox. Clin Exp Med. 2024;24(1):240.
- Kishore BK. Reverse epidemiology of obesity paradox: fact or fiction? Physiol Rep. 2024;12(21):e70107.
- 40. Chiang JJ, Lam PH, Chen E, Miller GE. Psychological stress during Childhood and Adolescence and its Association with inflammation across the Lifespan: a critical review and Meta-analysis. Psychol Bull. 2022;148(1–2):27–66.
- Natale BN, Manuck SB, Shaw DS, Matthews KA, Muldoon MF, Wright AGC, Marsland AL. Systemic Inflammation Contributes to the Association between Childhood Socioeconomic Disadvantage and midlife cardiometabolic risk. Ann Behav Med. 2023;57(1):26–37.
- 42. Hertis Petek T, Marcun Varda N. Childhood Cardiovascular Health, obesity, and some related disorders: insights into chronic inflammation and oxidative stress. Int J Mol Sci 2024, 25(17).
- Antoniou G, Lambourg E, Steele JD, Colvin LA. The effect of adverse childhood experiences on chronic pain and major depression in adulthood: a systematic review and meta-analysis. Br J Anaesth. 2023;130(6):729–46.
- Chandrasekar R, Lacey RE, Chaturvedi N, Hughes AD, Patalay P, Khanolkar AR. Adverse childhood experiences and the development of multimorbidity across adulthood-a national 70-year cohort study. Age Ageing 2023, 52(4).
- Beach SRH, Ong ML, Lei MK, Klopack E, Carter SE, Simons RL, Gibbons FX, Lavner JA, Philibert RA, Ye K. Childhood adversity is linked to adult health among African americans via adolescent weight gain and effects are genetically moderated. Dev Psychopathol. 2021;33(3):803–20.
- Kim JH, Park EC. Impact of socioeconomic status and subjective social class on overall and health-related quality of life. BMC Public Health. 2015;15:783.
- Lin L, Wang HH, Lu C, Chen W, Guo VY. Adverse childhood experiences and subsequent chronic diseases among Middle-aged or older adults in China and associations with demographic and socioeconomic characteristics. JAMA Netw Open. 2021;4(10):e2130143.
- Folayan MO, Oginni O, Arowolo O, El Tantawi M. Association between adverse childhood experiences, bullying, self-esteem, resilience, social support, caries and oral hygiene in children and adolescents in sub-urban Nigeria. BMC Oral Health. 2020;20(1):202.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.