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Chromatin remodeling in peripheral blood cells reflects COVID-19 symptom severity 

Short title: PBMC chromatin remodeling reflects COVID-19 symptom severity 

One sentence summary: Chromatin accessibility in immune cells from COVID-19 subjects is 

remodeled prior to seroconversion to reflect disease severity. 
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Abstract 

SARS-CoV-2 infection triggers highly variable host responses and causes varying degrees of 

illness in humans. We sought to harness the peripheral blood mononuclear cell (PBMC) response 

over the course of illness to provide insight into COVID-19 physiology. We analyzed PBMCs 30 

from subjects with variable symptom severity at different stages of clinical illness before and after 

IgG seroconversion to SARS-CoV-2. Prior to seroconversion, PBMC transcriptomes did not 

distinguish symptom severity. In contrast, changes in chromatin accessibility were associated with 

symptom severity. Furthermore, single-cell analyses revealed evolution of the chromatin 

accessibility landscape and transcription factor motif occupancy for individual PBMC cell types. 35 

The most extensive remodeling occurred in CD14+ monocytes where sub-populations with 

distinct chromatin accessibility profiles were associated with disease severity. Our findings 

indicate that pre-seroconversion chromatin remodeling in certain innate immune populations is 

associated with divergence in symptom severity, and the identified transcription factors, regulatory 

elements, and downstream pathways provide potential prognostic markers for COVID-19 subjects. 40 

 

Introduction 

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2) infection, manifests with highly variable symptom severity (1). Infected subjects 

demonstrate clinical trajectories that range from remaining asymptomatic to developing life-45 

threatening illness. The development of specific antibodies (IgG) against SARS-CoV-2 marks an 

inflection point in a COVID-19 patient’s disease progression, indicating a transition from innate 

immunity to acquired immunity (2, 3). IgG seroconversion typically occurs within two weeks of 

symptom onset and roughly coincides with the time that patients without critical illness will see 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.04.412155doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.412155
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

clinical improvement (4-6). However, limited data are available examining the COVID-19 50 

peripheral blood immune response in the context of seroconversion. 

Several recent publications described bulk or single cell RNA-sequencing (scRNA-seq) to profile 

transcriptomic responses in immune cells of subjects with COVID-19 (7-11). Specifically, they 

reported suppressed immune responses in subjects with mild symptoms, as indicated by deficient 

expression of Type I and III interferons (12). Subjects with more severe disease demonstrated up-55 

regulation of pro-inflammatory factors, including IL-6 and TNF-alpha (13). The number of 

monocytes and associated IL-6, CCL2, and CCL8 production in the peripheral blood are also 

elevated in subjects with severe COVID-19 (14, 15). However, no investigation of the association 

between molecular profiles in PBMCs prior to seroconversion and symptom severity has been 

performed. 60 

To test the hypothesis that the landscape of chromatin accessibility harbors biomarkers that define 

early molecular mechanisms underpinning divergent immunologic responses in SARS-CoV-2 

infection, we performed bulk and single-cell RNA-seq and ATAC-seq on longitudinal PBMC 

samples from subjects before and after seroconversion. 

Results 65 

PBMCs were collected from healthy controls, uninfected close contacts (CC), and COVID-19 

subjects and profiled using bulk and single-cell RNA-seq and ATAC-seq sequencing (Fig. 1A). 

PBMCs from healthy subjects (n=7) were collected before the pandemic started. Infection with 

SARS-CoV-2 was confirmed using polymerase chain reaction (PCR) on nasopharyngeal (NP) 

swab samples, and serology testing for IgG against the SARS-CoV-2 spike domain was performed 70 

for each COVID-19 subject on study collection days. COVID-19 subjects included in this cohort 
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were out-patients, and molecular profiling was performed at three timepoints, corresponding to 

early (IgG-), mid, and late (IgG+) acute disease within a 14-day window (Fig. 1B). At the mid 

timepoint, IgG seroconversion was observed in only some subjects; by the late timepoint, all 

subjects were observed to be IgG+ (Fig. 1B). CC subjects (n=7) were profiled at three timepoints 75 

and were PCR negative and IgG- at all timepoints. Subject symptoms were recorded for 39 

symptom categories, and the total score was used to stratify the subjects into mild symptom (MS, 

n=7; mean score = 12.9) and pronounced symptom (PS, n=7; mean score = 33.6) cohorts.  

Complete subject demographics and clinical metadata are summarized in Tables S1-2. 

 80 

Samples from each COVID-19 (MS and PS) subject’s first IgG+ timepoint were compared with 

healthy controls and CC subjects to determine whether differential chromatin accessibility in 

PBMCs can stratify subjects by symptom severity (Fig. 1C). A total of 6168 significantly 

differentially accessible peaks were identified that distinguished each group in a pairwise 

comparison. Patterns of correlated chromatin peak accessibility emerged following analysis with 85 

soft clustering, indicating trends of increased accessibility that correspond with differential 

symptom severity (Fig. 1D, Fig. S1A). Clusters 3 and 6 were composed of peaks with decreased 

accessibility in healthy controls and increased accessibility following exposure (CC) or infection 

(MS and PS). Conversely, cluster 10 was composed of peaks with a negative correlation between 

accessibility and disease severity. This observed dependence on subject symptom severity 90 

suggested that the epigenome harbors biomarkers associated with COVID-19 severity. To evaluate 

whether the identified clusters contribute to disease variability, we performed gene set enrichment 

analysis (GSEA) for each cluster of peaks (Fig. 1E). Peaks with increased accessibility in MS and 

PS subjects were enriched in pathways related to interleukin signaling and regulation of cell 
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differentiation and morphology. In contrast, healthy controls had the highest accessibility in peaks 95 

that were enriched for genes related to exocytosis, transendothelial migration, and vascular 

adhesion. 

 

We compared bulk RNA-seq of PBMCs from the CC, MS, and PS cohorts at the earliest IgG- 

timepoint to the healthy controls. Activation of interferon response genes (IFI27, SIGLEC1, 100 

IFI44L) was observed in both seronegative MS and PS subjects compared to healthy controls (Fig. 

1F, S1B) (9). However, these early transcriptomic differences do not reliably distinguish between 

MS and PS subjects (Fig. 1F). 

 

Regulatory chromatin containing transcription factor motifs becomes accessible prior to 105 

downstream gene expression (16). To test whether chromatin changes can better distinguish 

disease severity, differential chromatin accessibility analysis was applied to the earliest 

seronegative samples from COVID-19 subjects compared to healthy controls. A set of 443 peaks 

of differentially accessible chromatin identified in seronegative subjects differentiates mild from 

more pronounced disease severity (Fig. 1G, S1C). As proof-of-principle, ATAC-PCR was 110 

performed to confirm enrichment of peaks annotated to LGALS17A and DEFA4 that were 

differentially accessible in PS subjects (Fig. 1H, S1D). Identification of an association between 

LGALS17A, a known interferon-stimulated gene, DEFA4, a marker of neutrophil activation in 

COVID-19 subjects, and disease severity confirmed the observations of the differential analysis 

(17, 18). 115 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.04.412155doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.412155
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

Motif occupancy analysis was applied to samples from the seronegative timepoint to identify 

regulatory transcription factors that bind newly accessible chromatin and poise gene expression. 

The seronegative timepoints from MS or PS subjects were compared to healthy controls using 

bivariate analysis to estimate the change in flanking accessibility and footprint depth at each motif 120 

(Fig. S1E-F). A group of transcription factors motifs with increased accessibility in PS subjects 

compared to MS subjects was identified by comparing samples from COVID-19 subjects before 

IgG seroconversion to a common baseline of healthy controls, in contrast to a second group of 

transcription factor motifs that demonstrated similar accessibility in both MS and PS subjects (Fig. 

1I). The differential occupancies in the first group identified alternative regulation of myeloid 125 

activation pathways in MS vs. PS subjects. For example, KLF and CREB transcription factor 

families, which are known to regulate monocyte-macrophage polarization, have elevated motif 

occupancy in PS subjects compared to MS (20, 21). In the second group, CPEB1 displacement in 

both MS and PS subjects, marked by an increase in motif flanking accessibility and decrease in 

footprint depth, suggests involvement of the IL-6 and NFkB signaling pathways which was not 130 

observed in healthy controls (S1E-F) (19). Direct comparison of seronegative MS and PS subjects 

also demonstrated enrichment of KLF and CREB motif occupancy in PS subjects and served to 

further characterize differential regulation of immunity in each cohort (Fig. 1J). Furthermore, MS 

subjects were characterized by elevated AP-1 and C/EBP motif occupancies, which are known to 

negatively regulate IFN-gamma (22, 23). 135 

 

The robust chromatin accessibility signature that was detected in the bulk ATAC-seq datasets 

confirms that PBMCs undergo extensive chromatin remodeling in response to SARS-CoV-2 

infection. To understand how each cell type contributes to this signature and track the evolution of 
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the chromatin landscape of each cell type during seroconversion, we performed single-cell ATAC-140 

seq profiling of five subjects from each of the healthy, MS, and PS cohorts (Fig. 2A, Fig. S2A-F, 

Table S3). Cell type annotations were transferred from complementary single-cell gene expression 

libraries using canonical-correlation analysis, and expression of marker genes for each cell type 

was confirmed (Fig. S2G, Fig. S3A-E) (see Methods). Differential transcription factor motif 

occupancy analysis was applied to MS and PS PBMCs to identify shared regulatory mechanisms 145 

activated before seroconversion. Increased occupancy at transcription factor motifs including the 

proinflammatory C/EBP family and BACH1 marked the seronegative timepoint in both MS and 

PS subjects and further confirmed that the chromatin landscape is being remodeled prior to 

seroconversion (Fig. 2B) (24, 25). Differential accessibility in motifs of SMAD3, a known 

regulator of TGF-beta signaling, suggests a potential molecular driver that differentiates PS and 150 

MS subjects (26). Following seroconversion, both MS and PS subjects exhibit an increased 

accessibility at motifs of the transcription factor KDM2B, which is known to promote IL-6 

production via chromatin remodeling (27). 

 

To identify the cell types with the most significant chromatin remodeling over time, we applied a 155 

global trajectory analysis to major cell types, including CD4+ mature T cells, CD8+ T cells, and 

CD14+ monocytes, represented in the scATAC-seq datasets (Fig. 2C-E). Similar analysis was also 

applied to CD4+ naïve T cells and NK cells, which contribute to the epigenetic signal to a lesser 

extent (Fig. S4A-B). Cells from MS and PS subjects were pooled into early (IgG-), mid, and late 

(IgG+) timepoints in pseudotime using a supervised trajectory algorithm (see Methods). 160 

Transcription factor motif enrichment, chromatin accessibility, and differential gene expression 

analyses were then performed for each individual cell population. A monotonic trend correlated 
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with pseudotime was observed for each trajectory, demonstrating the progression of the host 

response in peripheral blood cells during development of acquired immunity. The shift in 

differential transcription factor motif and peak accessibility associated with pseudotime preceded 165 

changes in gene expression for all cells analyzed. We identified transcription factor activators, 

defined as genes with highly correlated expression and motif accessibility that act as robust multi-

omic biomarkers that develop over time, in CD14+ monocytes (Fig. 2F). Gene activity scores, 

estimated using accessibility counts, were analyzed to identify chromatin biomarkers associated 

with seroconversion, which showed a clear transition in CD14+ monocytes (Fig. S4C).  170 

 

Comparison of pooled PBMCs collected from MS and PS subjects identified specific peaksets 

enriched on the day of study enrollment (IgG-) versus a timepoint 2-4 weeks later (IgG+) (Fig. 

S5A, Fig. 3A top). A total of 5615 peaks were identified as uniquely accessible at one of the three 

longitudinal (early, mid, and late) timepoints (Fig. 3A bottom). A similar experimental approach 175 

was applied to each major cell type to detect those with extensive chromatin remodeling prior to 

seroconversion (Fig. 3B-C, S5B). The only cell types with enrichment of significant peaks at the 

early, IgG- timepoint were CD14+ monocytes (and, to a much lesser extent, CD4+ naïve T cells), 

which are the main contributor to the IgG- signature in the PBMCs shown in Fig. 3A-B. The 

remaining cell types, including CD4+ mature T cells, CD8+ T cells, and NK cells, were not 180 

characterized by peaks detectable prior to seroconversion. Transcription factor motifs enriched in 

peaks accessible prior to seroconversion had the highest occupancy in cells from the myeloid 

lineage, specifically CD14+ monocytes, dendritic cells, and CD16+ monocytes (Fig. 3D-E). In 

contrast, motifs enriched in peaks accessible after seroconversion lack elevated occupancy in 

monocytes, instead showing the highest activity in B cells and plasmablasts (Fig. S5C). The 185 
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enrichment of accessible transcription factor motifs established early further supports the 

observation that CD14+ monocytes underwent the most chromatin remodeling among PBMCs 

prior to seroconversion. 

 

Our analysis further identified transcription factors acting as activators or repressors, which have 190 

a positive or negative correlation between motif accessibility and gene expression, respectively, 

within the context of seroconversion (Fig. 3F). chromVAR deviation scores and accessibility at 

these activator motifs revealed an enrichment in CD14+ monocytes and other myeloid cells, 

including dendritic cells and CD16+ monocytes (Fig. 3F-G, Fig. S5D-E). A minority of activators 

(4 of 23) instead have enriched activity in B or T cells, potentially serving to poise these cells for 195 

future activation (Fig. S5D-E). These observations confirm that CD14+ monocytes are marked by 

a transcription factor activity signature that was established prior to seroconversion and undergo 

extensive chromatin remodeling during infection. Domains of regulatory chromatin (DORCs) 

were identified in all cell types collected from both seronegative MS and PS subjects by counting 

the number of peak-to-gene linkages for each gene in the scATAC-seq datasets (16). A total of 200 

1109 genes with greater than 10 peak-to-gene linkages were defined as DORC genes, and those 

known to be regulated by a super-enhancer were labeled (Fig. 3H). These DORCs showed cell 

type-specific profiles and appeared to have higher accessibility than gene expression in these cells, 

suggesting that these genes are being primed for activation (Fig. S5F). Accessibility at the DORCs 

regulated by a super-enhancer was enriched in CD14+ monocytes and other myeloid cells, 205 

including dendritic cells and CD16+ monocytes (Fig. 3I, S5G). 
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We then determined the chromatin accessibility changes and corresponding cell types that 

discriminate seronegative MS and PS subjects. First, specific peaksets and transcription factor 

motifs enriched in all cells from seronegative MS and PS subjects were identified (Fig. 3J-K). MS-210 

specific transcription factors, including subunits of AP-1, reproduce many of the same 

observations from bulk accessibility data comparing MS and PS subjects, and the motifs have the 

highest occupancy in CD14+ monocytes (Fig. 1I-J, Fig. 3K-L). In contrast, PS-specific 

transcription factor motifs have the highest occupancy in plasmacytoid dendritic cells (pDCs), 

plasmablasts, and B cells (Fig. 3K, 3M). These observations suggest that alternative regulation of 215 

PBMC chromatin by adaptive and innate immunity mechanisms is established prior to 

seroconversion and can be leveraged as potential biomarkers of disease severity. 

 

CD14+ monocytes were identified as a key cell population that both responds to extensive 

chromatin reprogramming before seroconversion and distinguishes between subjects with mild or 220 

more pronounced symptoms. By applying a supervised trajectory algorithm and ordering 

monocytes from seronegative subjects in pseudotime from MS to PS, a strong correlation between 

differential chromatin accessibility and disease severity was identified (Fig. 4A). A differential 

gene expression and transcription factor motif enrichment signature distinguished CD14+ 

monocytes collected from MS and PS subjects (Fig. 4A). One timepoint was also profiled from 225 

six additional subjects who presented with critical symptoms (CS) and required intensive care unit 

(ICU) care (Table S4). Similar trends were observed in this independent cohort of IgG+, 

hospitalized subjects in which up-regulation of gene expression was observed in interferon 

response, IL-1 signaling, and neutrophil degranulation pathways (Fig. S6A-B). Additionally, we 
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identified differential transcription factor motif enrichment and chromatin accessibility that 230 

distinguished CS subjects from MS and PS subjects (Fig. S6C). 

 

We next identified sub-populations of CD14+ monocytes characterized by both transcriptomic and 

epigenetic biomarkers that distinguish seronegative MS and PS subjects. Single-cell gene 

expression data for CD14+ monocytes were processed using the uniform manifold and projection 235 

(UMAP) algorithm and labeled by either subject disease severity or cluster (Fig. 4B). Clusters 2 

and 4 identified a unique MS-specific sub-population of CD14+ monocytes from MS subjects, 

whereas cluster 7 identified a PS-specific sub-population. The gene regulatory networks were 

inferred for each scRNA-seq cluster to describe the activity of regulons, including transcription 

factors and their downstream target genes. Down-regulation of the KLF6, FOS, and POU2F2 240 

regulons was observed in both the MS- and PS-specific monocyte subpopulations (Fig. 4C). The 

MS-specific sub-population was marked by up-regulation of the IRF7, IRF1, and STAT1 regulons, 

whereas the PS-specific sub-population was marked by up-regulation of the CEBPB and KLF3 

regulons (Fig. 4C). Single-cell accessibility data for CD14+ monocytes was processed using a 

similar approach to identify clusters with correlated regulon activity (Fig. 4D, S6D). Activity at 245 

the transcription factor motifs was estimated, and the correlations between scRNA-seq and 

scATAC-seq clusters were calculated in a pairwise manner (Fig. 4E-F, S6E). Differential gene 

expression between the MS- and PS-specific sub-populations identified interferon-stimulated gene 

activation as a distinguishing feature of symptom severity (Fig. S6F-G). In addition to these 

transcriptomic markers, GSEA was then performed for the transcription factors with differential 250 

activity and their downstream target genes (Fig. 4G). Pathways identified using this epigenetic 

approach suggest alternative regulation of the adaptive immune response between MS and PS 
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subjects. Differential regulation of pathways related to the transition from innate immunity, 

marked by the implication of dectin-1 and the toll-like receptor cascade, to adaptive immunity, 

suggested by activation of T and B cell receptor signaling, were observed in these sub-populations 255 

(28-30). These observations confirm that chromatin accessibility remodeling corresponds to 

symptom severity, as first indicated by differential transcription factor activity. 

 

Discussion 

In this study, we identified an association between the evolution of the chromatin landscape in 260 

PBMCs and the severity of COVID-19 in a longitudinal cohort of subjects that underwent IgG 

seroconversion. We present evidence here that the epigenomes of PBMCs are remodeled 

extensively following infection by SARS-CoV-2 and reflect disease severity. Specifically, 

differential activity of transcription factors and chromatin accessibility prior to seroconversion 

were observed to distinguish disease severity, preceding the later transcriptional response. Upon 265 

analysis of each major cell type, we showed that CD14+ monocytes underwent extensive 

chromatin remodeling over time and harbor epigenetic biomarkers in seronegative subjects that 

distinguish disease severity. We further identified enrichment of DORC genes regulated by super-

enhancers in CD14+ monocytes which play a role in priming active chromatin states and cell fate 

decisions and observed sub-populations of CD14+ monocytes with severity-specific transcription 270 

factor activities (Fig. S6H) (16). Similar analysis applied to tissue-resident immune cell 

populations may further elucidate the factors driving divergence of disease severity (31, 32). These 

observations will inform new hypotheses to characterize the immunological host response to 

SARS-CoV-2 infection and be used to assess new strategies for treatment. 
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We demonstrated proof-of-principle that an ATAC-PCR-based assay can potentially be used as an 275 

epigenetic test to stratify disease severity (33). Development of a host-response assay that 

leverages the highly sensitive epigenetic biomarkers established early during infection and capable 

of predicting disease severity has the potential to fill an unmet clinical need in the care of COVID-

19 patients (34, 35). It will be important to apply this analysis to a longitudinal cohort of subjects 

who go on to develop worsening symptoms and require critical care in order to generate data for a 280 

prognostic epigenetic assay. 

 

In summary, we propose that evolution of the chromatin landscape in the peripheral blood of 

COVID-19 subjects primes the immunological host response mediated by CD14+ monocytes and 

drives the observed divergence in disease severity. We also demonstrate that these changes precede 285 

transcription of pathways related to adaptive immunity, and these observations can potentially be 

used to inform clinical approaches to COVID-19 patient treatment. 
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Figure 1: Chromatin accessibility in peripheral immune cells distinguishes COVID-19 symptom severity.
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Figure 1. Chromatin accessibility in peripheral immune cells distinguishes COVID-19 

symptom severity. (A) Summary of COVID-19 subject cohorts and multi-omic profiling 

experimental design. (B) Longitudinal timepoints available for COVID-19 subject cohort and IgG 

serological testing data. (C) Differential analysis of chromatin accessibility peaks from 

seropositive COVID-19 subjects identifies unique epigenetic biomarkers corresponding to 

symptom severity. Accessibility count data were normalized to reads per kilobase per million 

mapped reads and converted to z-scores for each group. (D) Differentially accessible peaks 

clustered by fuzzy c-means clustering with n=12. Membership indicates similarity of a peak to the 

centroid for each cluster. (E) Gene set enrichment analysis performed for peaks with membership 

> 50% for each cluster. Selected significant pathways plotted by -log(adj_p). (F) Differential gene 

expression of MS and PS subjects compared to a common healthy control baseline. (G) Accessible 

chromatin biomarkers that distinguish seronegative MS and PS subjects. Significant peaks have p 

< 0.05 and are plotted in pink. (H) ATAC-PCR enrichment of PS-specific markers LGALS17A 

and DEFA4 relative to internal control KIF26B. ATAC-seq libraries from seronegative MS (n=7) 

and PS (n=7) subjects were used as input. * p < 0.05 (I) Transcription factor footprinting analysis 

comparing motif flanking accessibility in MS and PS subjects compared to healthy controls. 

Outliers were determined by distance from BaGFoot center point. (J) BaGFoot comparing motif 

occupancies between MS and PS subjects. Elevated flanking accessibility and increased footprint 

depth indicates higher transcription factor occupancy at genome-wide motifs. 
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Figure 2: Epigenetic signature in cells collected from COVID-19 subjects evolves with disease progression.
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Figure 2. Epigenetic signature in cells collected from COVID-19 subjects evolves with disease 

progression. (A) UMAP plot of single-cell ATAC-seq datasets generated from healthy controls, 

uninfected CC, MS, and PS subjects. (B) BaGFoot analysis comparing transcription factor motif 

occupancies in PBMCs from MS and PS subjects collected prior to and after IgG seroconversion. 

(Red circle = average of all points; dark blue circle = 50% of all data; light blue circle = 75% of 

all data). Motifs with the top 5% change in flanking accessibility are plotted in red. (C-E) 

Supervised trajectory analysis using CD4+ mature T cells (C), CD8+ T cells (D), and CD14+ 

monocytes (E) collected from both MS and PS subjects. Differential transcription factor motif 

enrichment, chromatin accessibility, and gene expression were correlated with seroconversion. (F) 

Transcription factor regulators with correlated gene expression and transcription factor motif 

accessibility identified in CD14+ monocytes. 
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Figure 3: CD14+ monocytes undergo extensive chromatin remodeling prior to seroconversion and harbor 
severity-specific epigenetic biomarkers.
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Figure 3. CD14+ monocytes undergo extensive chromatin remodeling prior to 

seroconversion and harbor severity-specific epigenetic biomarkers. (A) Top: Differentially 

accessible chromatin peaksets between early and late acute infection timepoints in all cells 

collected from both MS and PS subjects. Significance is defined as adjusted p < 0.05 and absolute 

LFC > 0.5. Bottom: Chromatin peaks with differential accessibility associated with time in all cells 

collected from MS and PS subjects. (B) Chromatin peaks with differential accessibility between 

early and late timepoints in CD14+ monocytes collected from MS and PS subjects. (C) Chromatin 

peaks with differential accessibility between early and late timepoints in CD4+ mature T cells and 

CD8+ T cells collected from MS and PS subjects. (D) Transcription factor motifs enriched in peaks 

specific to either early (IgG-) or late (IgG+) timepoints. (E) Transcription factors motifs enriched  

at the early timepoint have footprints with increased occupancy in CD14+ monocytes, dendritic 

cells, and CD16+ monocytes. (F) Transcription factor activators and repressors with correlated 

gene expression and motif accessibility associated with seroconversion in all cells. (G) Activator 

accessibility specifically enriched in CD14+ monocytes. Accessibility was overlaid on a UMAP 

of all cell types. (H) Peak-to-gene linkages computed for all cells collected from seronegative MS 

and PS subjects. Genes with > 10 linkages are defined as domains of regulatory chromatin 

(DORCs). Labeled genes are known to be regulated by a super-enhancer. (I) DORCs regulated by 

super-enhancers have increased accessibility in CD14+ monocytes. Peak-to-gene linkages are 

plotted with a correlation cutoff of 0.5. (J) Differentially accessible chromatin peaksets in all cells 

collected from seronegative MS and PS subjects. Significance is defined as adjusted p < 0.05 and 

absolute LFC > 1. (K) Transcription factor motifs enriched in peaks specific to either seronegative 

MS or PS subjects. (L) Seronegative MS-specific transcription factors have increased occupancy 
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in CD14+ monocytes, dendritic cells, and CD16+ monocytes. (M) Seronegative PS-specific 

transcription factors have increased occupancy in pDCs, plasmablasts, and B cells. 
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Figure 4: CD14+ monocytes distinguish seronegative MS and PS subjects.
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Figure 4. CD14+ monocytes distinguish seronegative MS and PS subjects. (A) Supervised 

trajectory analysis using CD14+ monocytes collected from seronegative MS and PS subjects. 

Differential transcription factor motif enrichment, chromatin accessibility, and gene expression 

were correlated with symptom severity. (B) scRNA-seq UMAP of all CD14+ monocytes collected 

from seronegative MS and PS subjects. UMAP colored by disease severity (left) and cluster 

number (right). (C) Regulon activity computed for each scRNA-seq cluster using SCENIC. 

Activity of the top 10 regulons is plotted as a heatmap for each cluster of cells from the UMAP. 

Black box indicates clusters of interest from UMAP in 4D. (D) scATAC-seq UMAP of all CD14+ 

monocytes collected from seronegative MS and PS subjects. UMAP colored by disease severity 

(left) and cluster number (right). (E) Transcription factor motif enrichment of regulons identified 

in 4G plotted for each scATAC-seq cluster. (F) Correlation plot using regulon activity to link 

clusters between scRNA-seq (columns) and scATAC-seq (rows). Black box indicates clusters of 

interest from UMAP in 4F. (G) Gene set enrichment analysis for regulons down-regulated (KLF6, 

FOS, POU2F2, HMGB1) or up-regulated (MS: IRF7, IRF1, STAT1; PS: CEBPB, KLF3) in 

scRNA-seq clusters 2, 4, and 7. 
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Materials and Methods 

IRB Approvals 

Research protocols were approved by the relevant institutional IRBs and were performed in 

accordance with the Declaration of Helsinki.  Written informed consent was obtained from all 

research participants or their legally authorized representatives (LAR). 

 

Subjects and PBMC sample collection 

Subjects with confirmed or suspected SARS-CoV-2 infection, or their close contacts, were 

identified either in the hospital (Duke University Medical Center, Durham, NC; Duke Regional 

Hospital, Durham, NC; or Durham VA Health Care System, Durham, NC) or outpatient setting, 

and enrolled into the Molecular and Epidemiological Study of Suspected Infection protocol 

(MESSI, IRB Pro00100241). Where possible, longitudinal samples and data were collected 

through convalescence. The CC group consisted of seven participants with a close contact to 

someone in the same household with confirmed COVID-19 disease, but CC subjects had negative 

SARS-CoV-2 PCR and serological testing for at least two months after exposure.  

Eight subjects with mild symptoms (MS) had a total symptom score <20 on the day of enrollment 

(mean = 12.8). Seven subjects with more pronounced symptoms (PS) had a total symptom score 

>20 on the day of enrollment (mean = 33.6). Six subjects were hospitalized due to COVID-19 and 

were categorized as having critical symptoms (CS) including three with acute respiratory distress 

syndrome (ARDS) requiring intensive care unit (ICU) care (36). All MS and PS COVID-19 

subjects were longitudinally sampled from enrollment to convalescent phase. Seven healthy 

controls were asymptomatic and enrolled prior to the COVID-19 pandemic.  

 

SARS-CoV-2 IgG ELISA: 
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Antibody response testing was performed using the anti-SARS-CoV-2 IgG ELISA assay (EUROIMMUN 

Medizinische Labordiagnostika AG, Lübeck, Germany) according to manufacturer’s instructions.  Test 

results were evaluated by calculating the ratio of the OD (optical density) of the test sample over the OD of 

the calibrator sample.  Ratio of <0.8 was interpreted as negative and ratio of 1.1 or greater as positive (ratio 

of 0.8 to <1.1 as indeterminate and not utilized in phenotyping).   

 

SARS-CoV-2 quantification by qRT-PCR: 

Nasal swab Viral Transport Medium (VTM) was aliquoted and cryopreserved from study subjects to 

determine SARS-CoV-2 N1 gene copy number by RT-PCR to stratify subjects as COVID PCR positive or 

negative.  Viral RNA was extracted from 140 uL of VTM according to manufacturer’s instructions 

(QiaAmp Viral RNA minikit).  SARS-CoV-2 nucleocapsid (N1) and human RNase P (RPP30) RNA copies 

were determined using 5 µL of isolated RNA in the CDC-designed kit (CDC-006-00019, Revision: 03, 

Integrated DNA Technologies 2019-nCoV kit).  Standard quantitative RT-PCR (TaqPath 1-step RT qPCR 

Master Mix, Thermofisher) was run with test RNA and gene-specific standard curves (2e5 copy/mL – 20 

copy/mL).  Regression analysis was used to determine gene copy number and corrected to report copies/mL 

of VTM.  Samples with a Ct value less than 35 are called as COVID PCR Negative and samples greater 

than or equal to 35 are called COVID PCR Positive. 

 

Collection of PBMCs 

PBMCs were prepared using the Ficoll-Hypaque density gradient method. Whole blood was 

collected in ACD vacutainer tubes and processed within 8 hours. Blood was diluted 1:2 in PBS, 

layered onto the Ficoll-Hypaque in 50 ml conical tubes, and centrifuged at 420 g for 25 minutes. 

Buffy coat was collected and washed with D-PBS by centrifugation at 400 g for 10 minutes. Cell 

pellets were resuspended in D-PBS and washed again. PBMCs were assessed for viability and cell 
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count using a Vi-Cell automated cell counter (Beckman-Coulter). PBMCs were adjusted to 10x106 

cells/ml in cryopreservation media (90% FBS, 10% DMSO) and then aliquoted into 

cryopreservation vials on ice. Cells underwent controlled freezing at -80C using CoolCell LX 

(BioCision) for 12-24 hours and were then transferred to liquid nitrogen vapor phase. 

 

RNA extraction, total RNA-seq, and analysis 

For each sample, RNA was extracted from 300K cells using Zymo Direct-zol miniprep kit (Cat# 

R2051). RNA quality was assessed using Agilent DNA tape screen assay. The RNA Integrity 

Number (RIN) scores for all samples were > 7.0. Total RNA libraries were generated using 

NuGEN Ovation® SoLo RNA-Seq Library Preparation Kit (Cat# 0500-96). 

FASTQ processing 

FASTQ files were generated from the NovaSeq BCL outputs and quality was assessed with 

FASTQC(37). Eukaryotic rRNA sequences were removed using SortMeRNA, and the remaining 

reads were aligned against the hg19 human reference genome using STAR and the following 

commands: STAR –genomeDir /path/to/STARIndex/ --sjdbGTFfile /path/to/gene.gtf –readFilesIn 

/path/to/R1.fastq /path/toR2.fastq –runThreadN 8 –twopassMode Basic –outWigType bedGraph –

outSAMtype BAM SortedByCoordinate –readFilesCommand zcat –outReadsUnmapped Fastx –

outFileNamePrefix $sampleID. Following alignment, the gene count matrix was generated using 

featureCounts (38, 39). 

Differential gene expression analysis 

Differentially expressed genes were identified between subjects with different disease severity 

using the ‘wald’ test in DESeq2(40). Subject sex and RNA-seq library batch were added as 

variables to the design formula to account for expected technical variation in the counts. Ribosomal 
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protein genes and genes not annotated as protein coding in Ensembl were filtered from the gene 

count matrix. False discovery rate adjustment was performed for the p-values using the ‘BH’ 

method, and log2 fold change shrinkage was performed using the ‘ashr’ method. A gene was 

defined as significantly differentially expressed if the adjusted p-value < 0.05 and the shrunken 

absolute log2 fold changes > 1. Results from DESeq2 were passed to the EnhancedVolcano 

package to generate volcano plots with the same p-value and log2 fold change thresholds(41). 

 

ATAC-seq and analysis 

Nuclei were extracted from frozen PBMCs. Briefly, 100K cells were spun down at 300 g for 5 

minutes at 4oC. The supernatant was removed, and cells were mixed with 100 ul of lysis buffer 

(10mM NaCl, 3mM MgCl2, 10mM Tris-HCl pH7.4, 0.1% Tween-20, 0.1% NonidetTM P40) and 

lysed on ice for 4 minutes. Wash buffer (1 mL; 10mM NaCl, 3mM MgCl2, 10mM Tris-HCl pH7.4, 

0.1% Tween20) was added before nuclei spin at 500 g for 5 minutes at 4oC.  ATAC-seq libraries 

were generated as presented earlier (42). Briefly, transposition mix (25 μl 2× TD buffer, 2.5 μl 

transposase (Tn5, 100 nM final), 22.5 μl water) (Illumina Cat# 20031198) was added to the nuclear 

pellet. The reaction was incubated at 37 °C for 30 minutes. Samples were purified using Qiagen 

MinElute PCR Purification Kit (Qiagen Cat#28004). DNA fragments were PCR amplified for a 

total of 10-11 cycles. The resulting libraries were purified again using Qiagen MinElute PCR 

Purification Kit. The libraries were sequenced with an Illumina Novaseq 6000 S4 flow cell using 

100 bp paired-end reads. 

FASTQ processing 

FASTQ files were generated from the NovaSeq BCL outputs and used as input to the ENCODE 

ATAC-seq pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline) using the MACS2 
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peak-caller with all default parameters. Output narrowPeak files and aligned BAM files were used 

for downstream analysis. 

Differential chromatin accessibility analysis 

Differential accessibility was calculated between groups of subjects with different disease severity 

using the TCseq package(43). A peak count matrix was generated using a set of consensus peaks 

and the following parameter values: filter.type = “raw”, filter.value = 30, samplePassfilter = 6. 

Peaks that were differentially expressed (p < 0.05) in seropositive subjects were used as input to 

the comparison of healthy controls, CC, MS, and PS subjects. Differentially accessible peaks were 

defined as having a false discovery rate adjusted p-value < 0.1 and absolute fold change > 0.5. 

Clustering was applied to the differentially accessible peaks using the ‘cm’ method and k = 12. 

Peaks with a cluster membership > 0.5 were annotated to the closest gene using the ChIPseeker 

package and UCSC hg19 annotation database (available through the 

TxDb.Hsapiens.UCSC.hg19.knownGene package) (44, 45). Protein-protein interactions were 

estimated using STRING and the network was trimmed using k-means clustering to remove genes 

with few interactions (46). Functional profiling was performed for these genes using g:Profiler 

(47). 

Outputs from the ENCODE pipeline were also used for analysis with the DiffBind package to 

estimate differential accessibility between seronegative MS and PS subjects (48). A consensus 

peakset was generated requiring minOverlap = 0.9 in all samples. Peak count normalization was 

applied using the following parameter values: background = TRUE, method = DBA_EDGER, 

normalize = DBA_NORM_LIB, library = DBA_LIBSIZE_FULL, offsets = TRUE. Significant 

differentially accessible peaks were defined as having p<0.05. 

Bivariate genomic footprinting analysis 
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Bivariate genomic footprinting analysis was performed using the bagfoot package and all default 

parameter values (49). NarrowPeak files for all samples were merged to generate a consensus 

peakset for motif enrichment analysis. BAM alignment files were merged using picard 

MergeSamFiles and indexed with samtools (http://broadinstitute.github.io/picard/). 

 

scRNA-seq and analysis  

Frozen PBMCs were thawed, and count and cell viability were measured by Countess II. The cell 

viability exceeded 80% for all samples except PBMC samples from CS subjects, which had 

viability between 70-80%.  For single cell RNA-seq, 200K cells were aliquoted, spun down, 

resuspended in 30 ul PBS+0.04%BSA+0.2U/ul RNase inhibitor, and counted using Countess II. 

GEM generation, post GEMRT cleanup, cDNA amplification, and library construction were 

performed following 10X Genomics Single Cell 5’ v1 chemistry. Quality was assessed using 

Agilent DNA tape screen assay. Libraries were then pooled and sequenced using Illumina 

NovaSeq platform with the goal of reaching saturation or 20,000 unique reads per cell on average. 

Sequencing data were used as input to the 10x Genomics Cell Ranger pipeline to demultiplex BCL 

files, generate FASTQs, and generate feature counts for each library. 

Dimensionality reduction and cell type annotation 

Gene-barcode matrices generated using CellRanger count were analyzed using Seurat 3 with the 

default parameters unless otherwise specified (50). Cells with > 5% of reads mapping to the 

mitochondrial genome or > 2500 genes detected were removed from the analysis. Counts were 

log-normalized, and the top 2000 variable features were identified. Principal component analysis 

was performed using these variable genes, and the top 20 principal components were used for 

downstream analysis. UMAP dimensionality reduction was performed using the top 20 principal 
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components identified using the Harmony package (51). Graph-based clustering was performed 

with resolution = 0.5. Cell types were inferred by using the DatabaseImmuneCellExpressionData() 

method from the SingleR package (52). Labels were confirmed by identification of differentially 

expressed genes using the FindAllMarkers() method. 

Regulatory network inference 

The scRNA-seq Seurat object was converted into a SingleCellExperiment and used as input to 

analysis with the SCENIC package (53). Cells from seronegative MS and PS subjects were re-

clustered using Monocle 3, and the top 100 marker genes were computed for each cell partition 

(54). The standard workflow for running the SCENIC analysis was then performed using the count 

matrix for these marker genes as input (https://github.com/aertslab/SCENIC). Briefly, GENIE3 

was used to identify regulons of transcription factors and their downstream regulatory targets with 

correlated co-expression, and AUCell was then used to score the activity of these regulons in each 

cluster. The ‘top10perTarget’ co-expression parameter value was used to prune the list of scored 

regulons. 

 

scATAC-seq and analysis  

PBMCs were thawed and aliquoted as mentioned above. Nuclei were extracted as for ATAC-seq. 

The single-cell suspensions of scATAC-seq samples were converted to barcoded scATAC-seq 

libraries using the Chromium Single Cell 5′ Library, Gel Bead and Multiplex Kit, and Chip Kit 

(10x Genomics). The Chromium Single Cell 5′ v2 Reagent (10x Genomics, 120237) kit was used 

to prepare single-cell ATAC libraries according to the manufacturer’s instructions. Quality was 

assessed using Agilent DNA tape screen assay. Libraries were then pooled and sequenced using 

Illumina NovaSeq platform with the goal of reaching saturation or 25,000 unique reads per nuclei 
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on average. Sequencing data were used as input to the 10x Genomics Cell Ranger ATAC pipeline 

to demultiplex BCL files, generate FASTQs, and generate feature counts for each library. 

scRNA-seq and scATAC-seq integration 

Fragment file outputs generated using CellRanger ATAC count were analyzed using ArchR 

following the standard workflow and with default parameters unless otherwise specified (55). Cells 

with a transcription start site enrichment score < 4, cells with fewer than 1000 detected fragments, 

and putative doublets were removed from downstream analysis. Dimensionality reduction was 

computed using iterative latent semantic indexing (LSI), and batch effect correction was applied 

using Harmony. Graph-based clustering was performed using the FindClusters() method from 

Seurat 3 with resolution = 0.8. UMAP embeddings were calculated with the top 30 principal 

components from either LSI or Harmony. Constrained integration was performed using the 

addGeneIntegrationMatrix() method and scRNA-seq cell type annotations were used to label the 

identify of scATAC-seq clusters. 

Feature and motif enrichment analysis 

Peak calling was performed using MACS2 via the addReproduciblePeakSet() method in ArchR 

which uses pseudo-bulk replicates of cells grouped on a specific design variable. Differentially 

accessible peaks were identified between two groups and visualized using the ArchR methods 

getMarkerFeatures() and markerPlot(), respectively. Significance was defined as FDR <= 0.1 and 

absolute log2 fold change >= 0.5 unless otherwise specified. The ‘cisbp’ motif set was imported 

from TFBSTools using the ArchR addMotifAnnotations() method, and motif enrichment in 

differentially accessible peaks was performed using the peakAnnoEnrichment() method. 

Additionally, chromVAR deviation scores for these motifs were computed using the ArchR 
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implementation (56). Motif footprinting was performed by measuring Tn5 insertions in genome-

wide motifs and normalized by substracting the Tn5 bias from the footprinting signal. 

Integrative analysis with scRNA-seq 

The correlations between chromVAR transcription factor deviation scores and gene expression 

data were calculated using the ArchR method correlateMatrices() to identify activators and 

repressors. 

Peak-to-gene linkages were calculated using the addPeak2GeneLinks() method in ArchR using a 

correlation cutoff of 0.5 and resolution = 1. This approach uses low-overlapping cell aggregates to 

reduce noise that arises from doing correlative analyses with sparse scATAC-seq datasets. Peak-

to-gene linkages were plotted against peak accessibility at DORC genes for each cell type. DORC 

genes were defined as gene loci with > 10 peak-to-gene linkages, and these sites were used as input 

to the web tool Seanalysis to identify regulation by a known super-enhancer in peripheral blood 

cells (16, 57). 

The activity of the top-ranked transcription factor regulators that were correlated with scRNA-seq 

clusters was estimated for each scATAC-seq cluster. These activities were used to calculate 

Pearson correlation coefficients between scATAC-seq clusters (C1-C8) and scRNA-seq clusters 

(C1-C11) were calculated to identify scATAC-seq clusters with similar regulatory network 

activity. 

Supervised pseudotime trajectory analysis 

Cellular trajectories were established in a low-dimensional space using LSI embeddings and a 

user-defined trajectory backbone. For this study, a rough ordering of 2-3 groups of cells specified 

with a design variable was provided to the ArchR method addTrajectory(). Then, a k-nearest 

neighbors algorithm was used to order cells based on the Euclidean distance of each cell to the 
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nearest cluster’s centroid. Cells were then assigned pseudotime value estimates, and a heatmap 

was plotted using differential feature z-scores that were associated with the pseudotime trajectory. 

 

ATAC-qPCR 

The optimal primer regions for peaks of interests were designed by the ATACPrimerTool (APT) 

(https://github.com/ChangLab/ATACPrimerTool). The identification of the optimal primer 

regions and primer design were performed as previously described  (33). In short, original .bam 

files and .bed files containing peak of interests were provided as inputs for the APT, and hg19 

was used as the reference genome. Primers were designed by Primer3 Plus based on the APT 

identified optimal primer regions with the parameters listed in the original APT paper. The 

ATAC-qPCR was done by assembling a qPCR reaction containing 1ng ATAC-seq library, 

125nM of forward and reverse primers and SYBR Green Master Mix with the following cycling 

conditions: 2 minutes at 98C, 40 cycles of 10 seconds at 98C, 20 seconds at 60C and 30 seconds 

at 72C. The two Universal Normalization Primers AK5 and KIF26B were used as internal 

control for the qPCR experiment. 

Primers used:  

Universal Normalization primers: 

AK5 Forward primer: AGCGCGGAGACCACAG 

AK5 Reverse Primer: CGGTGCAGCCCTCTTTC 

KIF26B Forward primer: AAGCTCGGTGAAGGAGACAA 

KIF26B Reverse primer: ACGAGGAAAGCGAGGGATAC 
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PS-enriched gene primers: 

DEFA4 Forward primer: CACTGGGCTATGGAGGACTG 

DEFA4 Reverse primer: AGCCGACTTCACTGCTCTG 

 

LGALS17A Forward primer: GTGTGTGCTGGGATGTGACT 

LGALS17A Reverse primer: CTGCTGTGTTGGGAGGAAAC 
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Supplemental Table 1. Subject characteristics and number of samples used in sequencing 

assays. Summary of demographics for enrolled healthy controls, CC, MS, and PS subjects. 

Maximum severity score corresponds to the highest severity score during infection calculated from 

a survey of 39 symptom categories. (SE = standard error) 

  

Characteristics Healthy controls Close contacts (CC) 

Disease Severity 

Mild (MS) Pronounced 

(PS) 

Age 

Mean (Range), yr 

41.0 (27-60) 42.9 (17-60) 33.0 (26-60) 34.0 (20-51) 

Gender  

(Male, %) 

57.1% 57.1% 62.5% 42.9% 

Max severity score  SE N/A 9.92.8 12.92.1 33.62.4 

Supplemental Table 1. Subjects and demographics used for bulk assays 
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Disease 

Severity Alias ID Race Ethnicity Days of PBMC 

collection Serology Test (IgG) PCR 

Healthy 22CBD6 White NR* N/A N/A N/A  
77DA77 White NR N/A N/A N/A  
4F2EAD White NR N/A N/A N/A  
1FD3AC White NR N/A N/A N/A  
F8FF1A White NR N/A N/A N/A 

 
56E219 Black NR N/A N/A N/A  
3F3832 White NR N/A N/A N/A 

Close 

contacts 7768E4 NR NonHispanic Day 2, Day 14, Day 28 Negative, Negative, Negative Negative, Negative, Negative 
 

61BBAD White NonHispanic Day 0, Day 7, Day 14 Negative, Negative, Negative Negative, Negative, Negative  
80A16A Asian NonHispanic Day 0, Day 14 Negative, Negative Negative, Negative 

 CE0CE8 White NonHispanic Day 0, Day 7, Day 14 Negative, Negative, Negative Negative, Negative, Negative 
 5ABDCB White NonHispanic Day 0, Day 14, Day 28 Negative, Negative, Negative Negative, Negative, Negative 
 B96D3B White Hispanic Day 0, Day 14, Day 28 Negative, Negative, Negative Negative, Negative, Negative 
 6F894A White NonHispanic Day 0, Day 7, Day 14 Negative, Negative, Negative Negative, Negative, Negative 

Mild 0B943B White NonHispanic Day 0, Day 3, Day 14 Negative, Negative, Positive Positive, Positive, Positive  
2AD75E Asian NonHispanic Day 0, Day 7, Day 14 Negative, Negative, 

Borderline Positive Negative
&
, Negative, Negative 

 450905 White NonHispanic Day 0, Day 7, Day 14 Negative, Positive, Positive Positive, Positive, Positive 
 BAAF62 White NonHispanic Day 0, Day 7, Day 14 Negative, Positive, Positive Positive, Positive, Positive 
 1A9B20 White NonHispanic Day 0, Day 7, Day 14 Negative, Positive, Positive Positive, Positive, Positive  

75A2B6 Asian NonHispanic Day 0, Day 7, Day 14 Negative, Positive, Positive Positive, Positive, Positive  
DF309F White Hispanic Day 0, Day 7, Day 14 Negative, Positive, Positive Negative

&
, Negative, Negative 

Pronounced 180E1A White NonHispanic Day 0, Day 7, Day 14 Negative, Positive, Positive Positive, Negative, Negative  
82CCF5 White NonHispanic Day 0, Day 7, Day 14 Negative, Positive, Positive Positive, Positive, Positive  
B85D75 White NonHispanic Day 0, Day 7 Negative, Positive Positive, Positive  
40067F White NonHispanic Day 0, Day 14, Day 21 Negative, Negative, Positive Positive, Positive, Positive  
0BF51C White NonHispanic Day 0, Day 7, Day 14 Negative, Positive, NR Positive, Positive, Positive 

 0E1F8E White NonHispanic Day 0, Day 7, Day 14 Negative, Positive, Positive Positive, Positive, Positive 
 3F05F3 White NonHispanic Day 0, Day 7, Day 28 Negative, Positive, Positive Positive, Positive, Negative 

 

 

 

Supplemental Table 2. Subject serology and PCR results on days when PBMCs were 

collected for bulk assays. Serology testing was performed for IgG against the SARS-CoV-2 spike 

Supplemental Table 2. Subject serology and PCR results on days when PBMCs were collected for bulk assays 

*NR = not reported 

&
Positive clinical PCR prior to enrollment, but negative research qPCR 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.04.412155doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.412155
http://creativecommons.org/licenses/by-nc-nd/4.0/


protein on each day of PBMC collection. Collection days are relative to study enrollment with 

sequencing profiling and specified for each subject. 
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Disease 
Severity Alias ID Race Ethnicity Days of PBMC collection Serology Test (IgG) PCR 
Healthy 22CBD6 White NR* N/A N/A N/A  

77DA77 White NR N/A N/A N/A  
4F2EAD White NR N/A N/A N/A  
F8FF1A White NR N/A N/A N/A  
56E219 Black NR N/A N/A N/A 

Close 
contacts 7768E4 NR NonHispanic Day 2, Day 14, Day 28 Negative, Negative, Negative Negative, Negative, Negative 

 
61BBAD White NonHispanic Day 0, Day 7, Day 14 Negative, Negative, Negative Negative, Negative, Negative  
80A16A Asian NonHispanic Day 0, Day 14 Negative, Negative Negative, Negative 

Mild 0B943B White NonHispanic Day 0, Day 3, Day 14 Negative, Negative, Positive Positive, Positive, Positive  
7085CA White NonHispanic Day 0, Day 7, Day 14 Negative, Negative, Positive Negative

&
, Negative, Negative  

2AD75E Asian NonHispanic Day 0, Day 7, Day 14 Negative, Negative, 
Borderline Positive Negative

&
, Negative, Negative 

 450905 White NonHispanic Day 0, Day 7, Day 14 Negative, Positive, Positive Positive, Positive, Positive 
 BAAF62 White NonHispanic Day 0, Day 7, Day 14 Negative, Positive, Positive Positive, Positive, Positive 
Pronounced 180E1A White NonHispanic Day 0, Day 7, Day 14 Negative, Positive, Positive Positive, Negative, Negative  

82CCF5 White NonHispanic Day 0, Day 7, Day 14 Negative, Positive, Positive Positive, Positive, Positive  
B85D75 White NonHispanic Day 0, Day 7 Negative, Positive Positive, Positive  
40067F White NonHispanic Day 0, Day 14,  Day 21 Negative, Negative, Positive Positive, Positive, Positive  
0BF51C White NonHispanic Day 0, Day 7, Day 14 Negative, Positive, NR Positive, Positive, Positive 

 

 

Supplemental Table 3. Subject serology and PCR results on days when PBMCs were 

collected for single-cell assays. Serology testing was performed for IgG against the SARS-CoV-

2 spike protein on each day of PBMC collection. Collection days are relative to study enrollment 

with sequencing profiling and specified for each subject. 

  

Supplemental Table 3. Subject serology and PCR results on days when PBMCs were collected for single-cell assays 

*NR = not reported 

&
Positive clinical PCR prior to enrollment, but negative research qPCR 
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Disease 

Severity 
Alias 

ID Race Ethnicity Days of PBMC 

collection 
Serology 

Test (IgG) PCR Hospitalized ICU Respirator 

Critical 45FBA5 NR* NR Day 0 Negative Negative
# Y Y N  

2DB5F9 Black-African 
American NR Day 0 

Positive NR
#+ Y Y Y 

 EB057C Black-African 

American 
NonHispanic Day 0 

Positive NR
#+ Y Y Y 

 936128 White NonHispanic Day 0 Positive NR
#+ Y N N 

 460F8D White NonHispanic Day 0 Positive Negative
# Y N N 

 0993F8 Black-African 

American NonHispanic Day 0 
Positive NR

#+ Y N N 

 

 

 

Supplemental Table 4. Independent cohort of subjects with critical symptoms requiring 

hospitalization. Summary of demographics for subjects with critical symptoms and associated 

clinical data including hospitalization, admittance to the ICU, and treatment with a respirator. PCR 

results were either from clinical or research testing, as noted. 

  

Supplemental Table 4. Independent cohort of subjects with critical symptoms requiring hospitalization 

*NR = not reported 

#
Treated in hospital and clinically adjudicated as COVID-19 

+
Positive clinical PCR, but no research qPCR reported 
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Supplemental Figure 1
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Supplemental Figure 1. (A) Differentially accessible peaks clustered by fuzzy c-means clustering 

with n=12. Membership indicates similarity of a peak to the centroid of that cluster. (B) 

Differential gene expression from bulk RNA-seq comparing uninfected CC subjects vs. healthy 

controls (left), MS subjects vs. healthy controls (middle), and PS subjects vs. healthy controls 

(right). Only samples from the early (IgG-) timepoint were used. Significance is defined as 

adjusted p < 0.05 and absolute LFC > 1. (C) Heatmap of accessible chromatin peaks in 

seronegative MS and PS subjects. Significant peak (n=443) accessibility for subject. Severity 

annotation: purple = MS, pink = PS. Batch annotation: pink = batch 1, purple = batch 2, blue = 

batch 3. Sex annotation: pink = female, purple = male. (D) ATAC-PCR enrichment of PS-specific 

markers LGALS17A and DEFA4 relative to internal control AK5. ATAC-seq libraries from 

seronegative MS (n=7) and PS (n=7) subjects were used as input. *p < 0.05. (E) Bivariate genome 

footprinting analysis comparing transcription factor motif flanking accessibility and footprint 

depth in seronegative MS subjects to healthy controls. (F) Bivariate genome footprinting analysis 

comparing transcription factor motif flanking accessibility and footprint depth in seronegative PS 

subjects to healthy controls. 
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Supplemental Figure 2
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Supplemental Figure 2. (A) Relative abundance of cell types represented in scATAC-seq cell 

atlas for each subject cohort split into IgG- and IgG+ timepoints. (B) ATAC-seq fragment size for 

each single-cell library. (C) Normalized insertion profile for each single-cell ATAC-seq library. 

(D) Distribution of TSS enrichment for cells in each single-cell ATAC-seq library. (E) Distribution 

of the log10(number of fragments) for cells in each single-cell ATAC-seq library. (F) UMAP 

representation of merged scATAC-seq cell atlas colored by subject cohort (left) and Seurat cluster 

(right). (G) UMAP heatmap of marker gene expression for major cell types represented in 

scATAC-seq after CCA label transfer from paired scRNA-seq datasets. 
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Supplemental Figure 3
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Supplemental Figure 3. (A) Single-cell gene expression libraries prepared from each subject 

cohort. (B) Distribution of the number of genes represented in cells from each scRNA-seq library. 

Cells with > 2500 genes detected were removed from analysis. (C) Distribution of the number of 

unique molecular identifier (UMI) counts in cells from each scRNA-seq library. (D) Distribution 

of the percentage of mitochondrial reads in cells from each scRNA-seq library. Cells with > 5% 

of reads mapping to the mitochondrial genome were removed from analysis. (E) Cell type marker 

gene expression for profiled PBMCs. Column z-scores represent gene expression. Selected marker 

genes labeled for each cell type. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.04.412155doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.04.412155
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 4
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Supplemental Figure 4. (A-B) Supervised trajectory analysis using CD4+ naive T cells (A) and 

natural killer (NK) cells (B) collected from both MS and PS subjects. Differential transcription 

factor motif enrichment, chromatin accessibility, and gene expression were correlated with 

seroconversion. (C) Differentially accessible genes identified using gene activity score estimation 

correlated with seroconversion in CD4+ mature T cells, CD8+ T cells, CD14+ monocytes, CD4+ 

naïve T cells, and NK cells (left to right). 
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Supplemental Figure 5
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Supplemental Figure 5
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Supplemental Figure 5. (A) UMAP representation of all cells collected from MS and PS subjects 

at early, mid, and late timepoints. (B) Differentially accessible peaksets identified in each major 

PBMC type at early vs. late timepoints (top MA plot) or associated with seroconversion (bottom 

heatmap). Left: CD4+ naïve T cells; Right: NK cells. (C) PS-specific transcription factor motif 

footprint occupancy was enriched in B cells, plasmablasts, NK cells, and pDCs. (D) Distribution 

of activator motif chromVAR accessibility deviation scores for each cell type collected from MS 

and PS subjects at all timepoints. (E) Activator motif accessibility heatmaps overlaid onto UMAPs 

of all cells collected from MS and PS subjects. (F) DORC gene activity (left) and gene expression 

(right) for 1109 loci plotted for each cell type. Labeled DORC genes are known to be regulated by 

a super-enhancer. (G) DORC genes regulated by super-enhancers have increased accessibility in 

CD14+ monocytes and other myeloid cells, including dendritic cells (DCs) and CD16+ monocytes. 

Peak-to-gene linkages are plotted with a correlation cutoff of 0.5. 
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Supplemental Figure 6
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Supplemental Figure 6. (A) Differential gene expression between CD14+ monocytes collected 

from seropositive MS, PS, and CS subjects. K-means clustering (k=5) plotted as row annotation. 

(B) Gene set enrichment analysis applied to clusters 1 and 3 which correspond to CD14+ 

monocytes from CS subjects. Red line indicates p = 0.05. (C) Supervised trajectory analysis using 

CD14+ monocytes collected from seropositive MS, PS, and CS subjects. Differential transcription 

factor motif enrichment, chromatin accessibility, and gene activity were associated with disease 

severity. (D) Percentage of cells in each scATAC-seq cluster from either MS or PS subjects. (E) 

Transcription factor motif accessibility of regulons identified using SCENIC represented as z-

scores and overlaid on a UMAP representation of all CD14+ monocytes from MS and PS subjects. 

(F) scRNA-seq UMAP colored by Monocle 3 cell cluster partition. Partitions 2 (seronegative MS) 

and 3 (seronegative PS) are of interest. (G) Differential gene expression between partitions 2 and 

3 plotted as percentage of cells expressing each gene and the log(mean + 0.1) gene expression. 

The top 25 markers for each partition are shown. (H) Schematic summary of a theory that CD14+ 

monocytes undergo chromatin remodeling prior to seroconversion, leading to downstream gene 

expression that impacts adaptive immunity and symptom severity. 
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