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Accepted: 28 November 2018 © Surveillance for invading insect pests is costly and the trapper usually finds the traps empty of the target
Published online: 25 February 2019 : pest. Since the successful establishment of new pests is an uncommon event, multiple lures placed
. into one trap might increase the efficiency of the surveillance system. We investigated the effect of the
combination of the Tephritidae male lures — trimedlure, cuelure, raspberry ketone and methyl eugenol
—on catch of Ceratitis capitata, Zeugodacus cucurbitae, Bactrocera tryoni, B. dorsalis, B. aquilonis and
B. tenuifascia in Australia and the USA (not all species are present in each country). The increase in trap
density required to offset any reduction in catch due to the presence of lures for other Tephritidae was
estimated. The effect of increasing trap density to maintain surveillance sensitivity was modelled for
a hypothetical population of B. tryoni males, where the effective sampling area of cuelure traps for
this species has been estimated. The 3-way combination significantly reduced the catch of the methyl
eugenol-responsive B. dorsalis. Unexpectedly, we found that trimedlure-baited traps that contained
methyl eugenol had x 3.1 lower catch of C. capitata than in trimedlure-only-baited traps in Australia,
but not in Hawaii where no difference in catch was observed, we cannot satisfactorily explain this result.
Based on the data presented here and from previous research, combinations of some male lures for
the early detection of tephritid flies appear compatible and where there is any reduction in surveillance
sensitivity observed, this can be offset by increasing the density of traps in the area.

Surveillance for biosecurity pests is conducted to detect new species incursions as soon as possible after incursion,
in order to support trade while mitigating the risk of pest establishment. A reduction in the sensitivity of a surveil-
lance detection grid could lead to a delayed detection of the target species, which could increase the time taken to
eradicate it, and consequently, the cost required for an eradication programme’=. One of the more costly aspects
of a surveillance grid is trap servicing®. In cases where trapping grids are placed for the early detection of new
species incursions, traps are likely to be empty the majority of the time. While finding an empty trap is a desired
outcome, as it indicates that the pest is unlikely to be present, it would be beneficial from a cost perspective if the
surveillance system was to target more than one species at a time.

Insect trapping systems often use odours such as pheromones or host plant volatiles to attract insects to a
trap. Odours are a powerful monitoring tool for the early detection of a species and population monitoring’. Lure
combinations offer the prospect of greater surveillance effort being achieved for only a small increase in the cost
for the additional lures and no significant increase in labour costs, making such efficiency gains attractive. Recent
work in Australia and the USA has sought to trap several species of fruit fly (Diptera: Tephritidae) using various
lure combinations®!°. There are other examples of combinations of lures for trapping moths!!'?, beetles'>!* and
species from other insect orders'>. However, some odours contained in a single trap may not be compatible, thus
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Figure 1. Mean catches of three species of fruit fly in Hawaii (catch/24h), and one in Australia (right panel;
catch/37 days) in the presence of attractants for different fruit fly species. C = cuelure, M = methyl eugenol,
T =trimedlure, R =raspberry ketone. Dotted horizontal lines in each panel are at the means for the single-
component lure. Error bars show 95% confidence limits for the means.

reduce the catch of the target!!. For example, related sympatric species Archips argyrospilus and A. mortuanus use
the same sex pheromone compounds but in different ratios'. It is unlikely that both pheromone blends offered
together would attract both species as effectively as their respective blends presented singly. Further, odour
incompatibility may occur between species that are not as closely related!”. For the attraction of male Tephritidae
using male attractants, it has been observed that the presence of cuelure reduces the catch of the methyl eugenol
responsive B. dorsalis'8, but this reduction can be overcome by increasing the amount of methyl eugenol released
when presented together with cuelure!.

The sensitivity of a trapping system is influenced by the trap and lure combination as well as the configura-
tion of the trap system'®. The efficacy of the system can be predicted by estimating the probability of catch of an
insect from a population as a function of distance from a trap such as, but not limited to, the effective sample area
(ESA)*2! or the effective attraction radius*>-*%. The ESA multiplied by the density of traps in the target area then
gives the amount of trap cover by a surveillance system, up to a maximum of 100% coverage when there is ESA
overlap. While a surveillance system may have 100% coverage of an area, this does not mean that the system will
catch 100% of the target insects present. Trap sensitivity is dictated by the effectiveness of the lure. For example,
highly attractive lures require fewer traps per area than less attractive lures, which require a higher density of traps
baited with the lures to have a comparable surveillance efficacy®*26-31.

We trialled the combination of multiple male lures: raspberry ketone, cuelure, trimedlure and methyl eugenol,
for use in fruit fly (Diptera: Tephritidae) surveillance traps. We estimated the change in efficacy from a single lure
trapping system for a particular species (Bactrocera tryoni) in the presence of additional lures that target other
species. Any reduction in catch may be a result of a change in the behaviour of the target insect. The additional
odours may reduce the attraction of the target by reducing release rates in the mixtures through chemical interac-
tions when the compounds are combined on the same substrate. Further, attraction may be reduced because the
additional odours act as antagonists, odours that are perceived by the target that reduce behavioural attraction as
has been observed in moths reacting to sex pheromones containing compounds of related species®. This change
reduces the effective sampling area of a trap. We estimate what a potential change in grid sensitivity for a target
species, because of the presence of a lure for an additional species, may mean for the probability of detection for
that target. When there has been a reduction in sensitivity in the grid due to the additional lures, we estimate
whether the original sensitivity of the surveillance system can be regained by increasing the density of traps of the
less sensitive multi-lure system.

Results

Fruit fly lure combinations. Hawaii and New South Wales (Australia). The catch per trap of C. capitata
males did not vary significantly between the different lure types (F = 1.26, 45, P =0.299). Catch of male C. capi-
tata in traps containing the addition of methyl eugenol was 62-64% of the catch in traps that contained trimedlure
alone. Catches of both Z. cucurbitae males (F=0.62, 45, P=0.649) and B. tryoni (X*=7.49, d.f.=4,P=0.112)
did not differ significantly for the lure combinations tested. There was a significant reduction in catch of B. dor-
salis only in the combined lure traps containing trimedlure, methyl eugenol and cuelure (TMC) (F = 0.62( 45),
P =0.012); catch in the combination lure was 32% of the catch in the methyl eugenol-only-baited traps (Fig. 1).

Western Australia trial 1. 'The mean catch per trap per day for the two C. capitata treatments for each assessment
period (time between trap checks) is shown in Fig. 2. Catch was very low from the commencement of trapping
in mid-August until mid-October, with catches in almost all traps remaining below five flies per trap per day
before this date. At the end of October, mean trap catches increased steadily for both lure types until after 24
November, when catches increased dramatically. After this date, there was greater than 4-fold increase in catch for
the next assessment for the trimedlure, and a more than 3-fold increase in catch for the combination lure. Catches
remained relatively high until the final assessment.

The combination lure caught just over half the number, mean 215.2 (confidence limits: 122.2, 379), of C. capitata
that were caught with trimedlure alone, mean 418.8 (confidence limits: 279.1, 628.3). However, this difference was
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Figure 2. Mean trap catch at each assessment date for each of two lures for Ceratitis capitata and Bactrocera
aquilonis male fruit fly in trial 1 in Western Australia. Tp =3 g trimedlure plug, Cw=1g cuelure on a cotton
dental wick, and WATC trimedlure 3 g plug 4 cuelure 1g wafer. Error bars show 95% confidence limits: for
clarity, these are given for just the largest, smallest and a mid-range mean from within each plot, redrawn to the

side.
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Figure 3. Mean Ceratitis capitata male trap catch per day for each assessment period for four lures (A), and
mean trap catch (B) for the entire trial with lures ordered by their means in trial 2 in Western Australia. Error
bars (A) show 95% confidence limits: for clarity, these are given for just the largest, smallest and a mid-range
mean from within each plot, redrawn to the side. For (B), error bars are 95% confidence limits. Letters in

the legend represent: C = cuelure, M = methyl eugenol, T = trimedlure, R=raspberry ketone and Tp=3¢g
trimedlure plug.

not statistically significant (F = 5.13; 5, P = 0.053), largely because of the small number of replicates (only 10 traps),
and the generally high variation between catches.

For B. aquilonis (Fig. 2), mean catch summed over all assessments was about 25% greater with the combina-
tion lure (498 per trap [confidence limits 410.7, 603.8]) than with cuelure alone (403 per trap [confidence limits
325.3, 499.2]), although this effect was not significant (F =2.89, 5 P =0.128).

Western Australia trial 2. In the trials testing additional Farma Tech combination lures against the standard
lures for surveillance, the mean C. capitata trap catch per day for the four treatments at each assessment was low
for the entire trial, with catches in all traps remaining below 2 flies per trap per day (Fig. 3). There were differences
in fly catch between replicates, indicating possible fly hotspots, so this was adjusted for in the final analysis by
including replicate as a random effect. Even after adjusting for replicates, there was high over-dispersion, so this
was allowed for in the final Poisson-gamma HGLM used.

The two trimedlure-only lures, the wafer and plug (T, Tp) caught on average three times as many C. capitata
(28 and 22 per trap respectively (confidence limits: 17.8, 45.2 and 13.4, 36.1 respectively); mean =25; T vs TP
[F=1.40,,3), P =0.258]) over the trial than the two wafer combination lures (TMR, TMC with 9 and 7 per
trap respectively (confidence limits: 4.5, 17.1 and 3.5, 14.8 respectively); mean = 8; TMR vs TMC [F =0.03, ;3),
P=0.865]; T or Tp vs TMR or TMC [F =9.45-17.52, 3, 0.001 < P < 0.005]) (Fig. 3).
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Figure 4. Mean catch per trap per day of Bactrocera aquilonis (A) and Bactrocera tenuifascia (B) males at each
assessment for each of the four lures in trial 2 in Western Australia. Mean trap catch (totalled over assessments)
for Bactrocera aquilonis (C) and Bactrocera tenuifascia (D) males, for four lures, with lures ordered by their
means. Error bars show 95% confidence limits: clarity, these are given for just the largest, a small, and a mid-
range mean from within the plot, redrawn to the side. Note that an upper confidence limit for a mean of

0 cannot easily be obtained, and so is not shown. Letters in the legend represent: C = cuelure, M = methyl
eugenol, T = trimedlure, R =raspberry ketone and Cw = 1 g cuelure on a cotton dental wick.

The mean catch per trap per day in the four treatments for B. aquilonis was quite low for the trial (Fig. 4A).
Changes in B aquilonis catch over time were quite similar for all four lures, with a peak in catch in all treatments
at the second to last assessment (18 May 2015). Catch per trap per day of B. tenuifascia was initially high then
dropped to near zero for the remainder of the trial and no flies were caught with the C or CW lures (Fig. 4B).

For B. aquilonis catches totalled over all assessments, there were no strong spatial trends across the trial, so
no adjustments for such trends were made in the final analysis. There was moderate over-dispersion, so this
was allowed for in the analysis. There were significant differences in mean total catch between the treatments
(F=4.66(3 59), P=0.013 for an overall test): catches for the C (mean, 21.0 per trap [confidence limits: 16.4, 26.9])
and CW (mean, 17.5 per trap [confidence limits: 13.3, 22.9]) lures were the highest, significantly larger than
those for TMR (mean 10.3 per trap [confidence limits: 7.3, 14.7]) in both cases (t=3.43, d.f. =20, P=10.003 and
t=2.47, d.f. =20, P=0.023 respectively), but significantly greater than TMC (mean 13.8 per trap [confidence
limits: 10.2, 18.8]) only for C (CW: t=1.20, d.f. =20, P =0.243; C: t=2.24, d.f. =20, P=0.038). Differences
between CW and C, and TMR and TMC were not significant (t=1.04, d.f. =20, P=0.312 and t=1.31, d.f. =20,
P =0.207 respectively) (Fig. 4C).

For B. tenuifascia, there were between replicate differences. However, since none of this species was caught in
the C and CW traps, adjustment for such a difference can be unreliable. Therefore, as for B. aquilonis, no adjust-
ments for such trends were made in the final analysis, and the substantial over-dispersion was allowed for in the
analysis. There were significant differences in catch between the lures (F = 182.63 5), P < 0.001 for an overall test),
which related primarily to there being no catch with the C and CW lures, but a large catch with both of the other
lures. However, the catch with TMR was about 1.5x that with TMC (t=282.6, d.f. =20, P < 0.001), at 1182 per trap
(confidence limits: 1031, 1357) compared with 787 per trap (confidence limits: 665, 931) (Fig. 4D).

Surveillance sensitivity. The predicted multiple of increase in the density of traps required when using
traps with a combination of lures that are less sensitive than a single lure surveillance system was modelled
(Fig. 5). The model behaved as expected and the predicted number of male B. tryoni trapped in a surveillance
grid that used cuelure only was equal to the number predicted to be caught in a less sensitive surveillance grid
that had a greater density of traps to offset catch reduction. By using eqn. 2 (see methods), it is predicted that to
maintain a similar probability of detecting B. dorsalis when using the TMC combination, which had 32.2% of the
catch of methyl eugenol alone, 3.1 times the density of TMC traps would be required to maintain the sensitivity
of a methyl eugenol only trapping grid (32.2 x 3.1 =100). For example, if this was translated to the New Zealand
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Figure 5. The modelled number of traps required to maintain trap grid sensitivity as a function of percentage
change in trap sensitivity.

fruit fly surveillance trapping grid, this would require a change from methyl eugenol traps placed 1200 m apart,
0.007 traps/ha*, to TMC combination lure traps placed 600 m apart, 0.027 traps/ha. The surveillance grid for both
trimedlure and cuelure responsive species in New Zealand has a closer trap spacing 400 m apart, 0.063 traps/ha®.
If the combination lure was used in traps for surveillance for B. dorsalis, as well as for the trimedlure- and
cuelure-responsive species, placed 400 m apart, grid sensitivity for B. dorsalis would still be as good as, if not
better than, B. dorsalis-lure-only baited traps placed 1200 m apart. The percentage reduction in trapping results
for C. capitata in Western Australia with the combination lure was similar to that of B. dorsalis in Hawaii; thus
the calculated required increase in density was also similar (x3.1). This was derived by using eqn. 2, a mean of
eight were trapped in the TMC combination trap and 25 in the single trimedlure trap, 8/25 = 0.32, so catch in the
combination trap was 32% of catch in the single lure trap. The complement of this is 1/0.32 =3.1. Using a similar
process for B. aquilonis, an increase of x 1.7 the traps would be required to maintain the expected sensitivity of a
grid of single cuelure traps if a combination of TMR was used.

Discussion

Trapping of the cuelure-responsive species Z. cucurbitae, and B. tryoni, and of the trimedlure-responsive species,
C. capitata, in the presence of each other’s lures in the same trap did not significantly reduce the efficacy of the
respective traps in the Hawaiian trial. These results corroborate earlier results from previous research®-'°.

The catch of B. dorsalis attracted to methyl eugenol was significantly reduced in traps that contained trimed-
lure, cuelure and methyl eugenol together. This reduction could be offset by either increasing the amount of
methyl eugenol on the combination lure'® or by increasing the density of traps used for the early detection of B.
dorsalis (e.g.>%).

Catch of C. capitata was greater in the standard 3-g trimedlure plug-alone trap than in the plug plus cuelure
combination in Western Australia. Based on results in Hawaii and in the literature’'>** we did not expect to see
an effect of cuelure on C. capitata catch. The lures were not replaced during the 20-week trial (Fig. 2A) and it is
possible that the effect of lower catch in the combination lure could be related to the ratio of trimedlure to cuelure
changing over the course of the study, which was longer than the trial by Vargas et al.’®* where lures were aged
for eight weeks. Ratios of lures in a combination trap have been shown to play an important role on the catch of
different fruit fly species!®. Trimedlure appears to be the most volatile of the compounds tested here, followed by
methyl eugenol and cuelure>-*” and it likely that the trimedlure: cuelure ratio changed from the beginning to the
end of the trial. As the attractants used in Western Australia trial 1 differed to those used in the Hawaiian trial, we
re-ran the trial using some of the same lures as used in Hawaii with the expectation that the catches of C. capitata
in traps baited with trimedlure alone and with the full combination in Western Australia trial 2 may be slightly
but not significantly reduced. However, again we saw an effect and found that the combination lure traps caught
only a third of the numbers caught with trimedlure-only traps (Fig. 3). Further, catch was consistently higher
in the trimedlure-alone traps through time, thus rejecting our hypothesis that lure age had influenced results
in Western Australia. Previous trials*** and the trial here have shown that the presence of methyl eugenol can
reduce catch of C. capitata, but this reduction is not expected to be significant. It is unlikely that methyl eugenol
is naturally abundant in citrus orchards in Australia where the trials were conducted, as the only time methyl
eugenol has been reported from citrus is after the application of an abscission compound that was assessed to help
with fruit harvest®®. This is the first time the combination lure has been trialled on C. capitata outside of Hawaii.
It appears that geographic, climate and/or habitat differences have affected the combination lure to lead to the
reduction in C. capitata catch in Western Australia. However, because geographic, climate and habitat differ-
ences between the two sites were not explicitly tested, we thought that further comparisons between a 1-day trial
(Hawaii) and a 91-day trial (Western Australia trial 2) would be inappropriate and could be misleading. At this
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time, we cannot conclude as to why we have observed this difference in C. capitata catch between the two sites in
the presence of cuelure and methyl eugenol.

It appeared that the combination of trimedlure and methyl eugenol negatively affected the catch of B. aquilo-
nis. Catches of B. aquilonis to both the cuelure-alone lures and the cuelure plus trimedlure traps were similar in
Western Australia trial 1. Since catch was not different in cuelure-alone and cuelure plus trimedlure traps, it is
likely that the presence of methyl eugenol affected catch. B. tenuifascia was not trapped in cuelure-only baited
traps, but was attracted to the combination trap containing all lures. Catch was x 1.5 greater in the TMR traps
than in the TMC traps, suggesting that cuelure has a negative effect on catch. It has been shown that sexually
mature virgin females of both B. tenuifascia and B. aquilonis are attracted to the male lures methyl eugenol and
cuelure, respectively®.

The approach we used here to estimate the ratio change in catch to predict the increase in trap density
required, offers a system that is not reliant on prior knowledge of the probability of trapping an insect with
distance (ESA). But it does need knowledge of the relative effect on catch of the target species with and without
additional lure to estimate the density of less-sensitive traps required to maintain the relative surveillance efficacy
of the original lure system in a known area. This estimate was tested against the ESA of a cuelure trapping system
for B. tryoni*’. The ESA value is developed from spatial trapping data such as mark-release-recapture trials where
the number of and distance from the traps of the released insects are known. ESAs have not been developed for
many species and can differ for the same species depending on lure and trap combinations. One potential pitfall
of this approach is that it does not assume any overlap in attraction area so that the traps are not competing with
each other for insects*!. As the density of traps increase, so does the probability that the attraction area of multiple
traps will begin to overlap. However, as long as the insect does not suffer from sensory fatigue“, but see®?, the
increase of relative trap density improves the likelihood of trapping an attracted insect. But where traps are less
sensitive, this effect of competing traps is less likely to be an issue.

The reduced catch of B. dorsalis in traps that contained trimedlure, methyl eugenol and cuelure (TMC) repre-
sented a significant reduction in trap catch which is probably related to a reduction in trap sensitivity. However,
because the catch of the other two species was not significantly affected, in the New Zealand trapping system
example used here, it is predicted that the probability of B. dorsalis being trapped with 400 m between traps would
be as good if not better than the current 1200m- methyl eugenol-only system. Of concern is the reduction of C.
capitata catch in multi-lured traps in Western Australia, as this would suggest that combination traps should be
placed 225m apart, or 3.1 x the density of traps/ha, to maintain the trap cover achieved by the current trimedlure
system.

The benefits of combining lures into a single trap are that fewer traps need to be checked. A possible negative
effect of combining lures is that a higher density of traps might be required. In the example here, to maintain
trap grid sensitivity for B. dorsalis in a combination-lure trap, more methyl eugenol lures would be required for
surveillance, but since the traps that contain trimedlure or cuelure are currently 400 m apart, closer than needed
to offset the reduction, the only increase in cost would be the additional lures. If the reduction in catch of C.
capitata in Western Australia was due to the presence of methyl eugenol or cuelure then there is the risk that
a combination lure used in a grid of traps placed 400 m apart for the early detection of fruit flies would detect
C. capitata later than a single lure grid. This is because the sensitivity of the trap for C. capitata is reduced and
it was estimated that to maintain grid sensitivity, a combination lure surveillance grid would need traps to be
placed 225 m apart. It appears that the reduction in C. capitata catch due to the presence of additional lures may
differ between geographic regions. Post detection, if sensitivity of the trapping system is reduced because of the
presence of multiple lures, sensitivity could be increased by placing out the single lure for the target species only.
While the probability of fruit fly eradication is high under most scenarios, primarily due to the large numbers of
tools available*, the risks of late detection are that the population would be larger by the time it was detected, and
the probability of accidental transportation elsewhere in a country prior to detection would be greater. This would
lead to a prolonged, thus, expensive eradication.

The potential options for surveillance are to: 1. Keep all three lures separate and trap for each species sepa-
rately; 2. Combine trimedlure and cuelure into individual traps placed at 400 m spacing and keep methyl eugenol
in a separate trap spaced 1200 m apart; 3. Combine all lures into one trap, placing these 400 m apart. Based on
the results here it appears that the recommendations would change depending on the area that trapping was
conducted. In Hawaii, all three lures could be combined, in Western Australia all three lures could be combined
but trap density would need to be increased for the early detection of C. capitata. While an increase in trap den-
sity will cost more to service, this cost may be offset by no longer needing separate traps to survey for the methyl
eugenol- nor cuelure-responsive species. We do not know whether option 2 is viable as this was not tested in
Western Australia. Many countries maintain a trapping grid for the early detection of fruit flies. If those countries
are considering on combining lures but do not have any fruit flies present to test the effects of combination on
catch, these results are not easy to interpret. Decisions will have to weigh the risks posed to each country. In this
and previous trials, the cuelure/raspberry ketone responsive species have not been negatively affected by the pres-
ence of trimedlure nor methyl eugenol. However, methyl eugenol —responsive B. dorsalis catch has been reduced
in the presence of other lures, but this reduction in catch (i.e. grid sensitivity) would be offset with the higher
density of traps that is often used for cuelure or trimedlure responsive species. The catch of C. capitata provides
the most difficulty for interpretation as this is the first time a reduction in catch has been observed due to the
presence of additional lures. We cannot determine whether this is from the presence of cuelure/raspberry ketone
or methyl eugenol or both. More work is required to determine why this difference has been observed in Western
Australia but not in Hawaii. Comparisons at various locations that have species such as, C. capitata in Europe® or
southern Africa that have both C. capitata®® and B. dorsalis*’, coupled with analyses of environmental conditions
could help elucidate the differences recorded here.
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*Percentage a.i. of compounds by weight

Grams | of commercially prepared lures when
Lure Code | (a.i.) combined with other compounds Trial sites
Trimedlure wafer* T 35 15.3 Hawaii, NSW and WA
Methyl eugenol wafer* | M 5.5 238 Hawaii, NSW and WA
Cuelure wafer* C 2.0 8.6 Hawaii, NSW and WA
Raspberry ketone wafer* | R 2.0 8.6 Hawaii, NSW and WA
Trimedlure plug Tp 3.0 — ‘WA only
Cuelure on cotton wick | Cw 1.0 — ‘WA only
Trimedlure plug+ ware | 30 _ WA only
cuelure wafer 1.0

Table 1. Compounds used (grams of active ingredient [a.i.]) as well as percentage of a.i. by weight of
commercially prepared lures when combined with other compounds* for Tephritidae trapping trials carried out
in Hawaii, New South Wales (NSW), and Western Australia (WA) Australia.

Large numbers of insects are making their way around the globe and these movements do not appear to be
slowing down***, If climate changes as predicted, new areas may become more climatically suitable for new
species®. Combining lures for the early detection of a new species offers the ability to maintain surveillance for
current threats and for a small increase in cost mainly of lures. Any reduction in trap sensitivity due to the pres-
ence of additional lures could be offset by increasing the density of traps.

Methods

Fruit fly lure combinations. Combinations of standard commercially available and novel lures were trialled
to assess any impact on catch relative to catch with a single-component lure. Trials were carried out in Hawaii,
USA, and in New South Wales and Western Australia, Australia. Lures comprised various combinations of rasp-
berry ketone (R), cuelure (C), trimedlure (T) and methyl eugenol (M) (Table 1).

In Hawaii, the species targeted were Mediterranean fruit fly, Ceratitis capitata, attracted to trimedlure; ori-
ental fruit fly, Bactrocera dorsalis, attracted to methyl eugenol; and melon fly, Zeugodacus cucurbitae, attracted
to cuelure and raspberry ketone. In New South Wales, Queensland fruit fly, B. tryoni, attracted to cuelure and
raspberry ketone was targeted, and in Western Australia, C. capitata, attracted to trimedlure and the Northern
Territory fruit fly, B. aquilonis, attracted to cuelure (a species closely related to B. tryoni) were targeted™. In addi-
tion, B. tenuifascia was attracted in large numbers to methyl eugenol in Western Australia, so the effect of lure
combinations was assessed.

Farma Tech International Corp. (North Bend, WA, USA) (www.farmatech.com) fruit fly lures were formu-
lated on to a wafer (polymer matrix) 5.1 x 7.6 X 0.6 cm (2" x 3" x 1/4”) at +12%. Lure loadings (+10%) were
5.5g for methyl eugenol, 2 g for cuelure or raspberry ketone and 3.5 g for trimedlure, the same rates used in trials
by Vargas et al.8. Comparisons between captures of pest fruit fly species associated with the three test sites (i.e.
Hawaii, New South Wales and Western Australia) were made using single, double and triple combinations of the
lures: trimedlure, methyl eugenol and cuelure. Raspberry ketone was only used in the triple combination. All
lures were fitted into Lynfield traps (Cowley 1990). Gloves were changed between distributing the different lure
treatments to prevent possible contamination. Dichlorvos-impregnated strips (DDVP strips), Hercon Vaportape
IT in Hawaii and Killmaster® pest strips in Australia were added to traps to kill flies entering the traps. Traps were
placed 20 m apart. As this trial assessed the relative difference in catch between treatments, any reduction in trap
catch due to competition between traps was not expected to influence the relative results.

Hawaiian trial. In Hawaii, trials were conducted for 24 h. This was to simulate areas of lower capture and
to prevent traps from overflowing. Trials were conducted near Numila, Kauai Island, HI, at a large (c. 1,400 ha)
commercial coffee [Coffea arabica L. ‘Arabica’ (Rubiaceae)] plantation (lat. 21.910, long.—159.548), at an aver-
age elevation of 125 m, where Ceratitis capitata, Bactrocera dorsalis and Zeugodacus cucurbitae co-occur. Field
attraction experiments were conducted on 14-15 November 2013. Traps were hung in coffee trees apart using a
randomized complete block design with ten replicates of each treatment (Table 1). The DDVP strips were aged for
two days before the trial to reduce any repellent effects.

New South Wales trial. The effects of trimedlure and methyl eugenol on cuelure- and raspberry ketone-
responsive Bactrocera tryoni were tested in Somersby, Central Coast of New South Wales (lat. —33.367, long.
151.305). Five replicates of the five treatments were placed out in a mixed citrus orchard in a randomized com-
plete block design. Traps were placed out at 1130 h and were initially operated for 24 h. After 24 h, very few insects
were trapped and many zeros were recorded. Traps were operated for a further 36 days (26 February 2014 until 30
March 2014). The DDVP was aged as above.

Western Australian trials.  Various combinations of lures were tested in Western Australia. The combi-
nation of trimedlure and cuelure was tested for the trimedlure-responsive C. capitata in an orange Citrus X sin-
ensis orchard in the West Swan area (lat. —31.833, long. 116.000) near Perth (Western Australia trial 1), and
the cuelure-responsive B. aquilonis in a grapefruit Citrus x paradisi orchard in Kununura (lat. —15.779, long.
128.742) (Western Australia trial 2). Lures were not replaced during the trials.
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Western Australia trial 1. The initial trial compared the Farma Tech lures to current standard lures used
in Western Australia for C. capitata, a 3-g trimedlure plug, and for B. aquilonis, 1 g of cuelure on a cotton dental
wick. Five replicates of each treatment were carried out, laid out in a rectangular array of 5 x 2 traps in a sys-
tematic design. Because of an initial low population, C. capitata traps were checked weekly and operated from 8
August 2014 until 15 January 2015. Trapping for B. aquilonis occurred from 27 August 2014 until 31 November
2014. Traps were checked every 2 weeks.

Western Australia trial 2. In the second C. capitata trial the Farma tech lures, T, TMR and TMC combi-
nations were tested as well as current standard trimedlure plug (Tp). The Farma Tech lure loadings were as from
Hawaii above and the trimedlure plug (Tp) as in Table 1. Pest strips were added as above. Five replicates of each
treatment were used, laid out in a randomized block design. Traps were out from 9 February 2015 until 11 May
2015. Traps were serviced weekly.

The lure combinations tested for B. aquilonis were the Farma Tech lure, C, TMR and TMC, as well as the
standard cuelure-loaded dental wick (Cw). The Farma Tech lure loadings were as above and the cuelure on a cot-
ton dental wick (Cw) as in Table 1. Pest strips were added as above. Six replicates of the lures were used, laid out
in a randomized block design. Five of the replicates were laid out in a grid, with one replicate per row of trees. The
remaining replicate was placed out in a 2 x 2 array. In addition to catches of B. aquilonis, there were large catches
another fruit fly, B. tenuifascia, so the catch of these flies was also analysed.

Target species were caught only in traps that contained their specific lure (i.e. no C. capitata or B. dorsalis were
trapped in cuelure-only traps). Consequently, analyses for the different species did not include the traps that did
not contain their lure.

Surveillance sensitivity. The probability of an insect being trapped in a trap is a function of distance from
the trap and time, as well as biological attributes (e.g. sex, age, prior feeding) and abiotic habitat and climate var-
iables. The probability of an insect being attracted to, and entering a trap, decreases as its original distance from
the trap increases. If this is displayed as a catch probability surface, it will show a high probability of catch at the
trap in the centre, with catch tailing off with increasing distance 360° around the trap (assuming no wind etc.),
similar to the shape a ball under a blanket would make. The Effective Sampling Area (ESA) condenses the area
under the probability surface into a cylinder of unit height, the area of the top of the resulting cylinder is the ESA.
This value is not an estimate of the actual trapping area of a trap; rather, this value can be interpreted as a density
conversion coefficient that can then be used to estimate the probability of capture per area over time**?!. The
estimated daily ESA of cuelure traps for male B. tryoni from Stringer et al.*’, was used to estimate the probability
that a uniformly distributed B. tryoni would be trapped (Ptrapped) in a grid of traps following the inverse cube
law for detection, eqn. 12,

P

trapped = ERF X g x ESA x Trap density] = ERF X [% x Trap cover

1
Trap cover is the combined area that is covered by the traps and their effective sampling areas; ERF denotes the
Gauss error functlon20 53, or the probability that the \/2 x Trap cover value encompasses the whole area to be

sampled. As the Y™ x Trap cover value increases, the probability that a fly will be trapped increases. Once Py,,pea
is estimated, the catch can be predicted by multiplying Py,,,peq X Pop (trappable population of males). Using this
estimate as the target catch to determine the amount of change in the catch of flies in response to different lure
combinations, the proportion of the catch of the target species in the multiple-lured traps was divided by the catch
in its single-lured specific trap:

Proportion of catch = P, = (catch in multiple —lured trap/catch in single —lured trap)

The inverse of Pcatch’ was calculated to assess how that reduction could be reversed (eqn. 2). The result was
hypothesised to be the multiple by which the original trap density needed to be increased by to regain the trap
sensitivity of the single-lure trap surveillance system.

Increase in trap density required = Ny, = 1/By )

We tested this hypothesis by calculating the number of flies from a hypothetical population of 80 trappable

male B. tryoni expected to be captured in a single-lure trap surveillance system N,,.. We then compared this with

pop:
the expected catch in a multi-lure surveillance system N, (eqn. 3) when there had been an increase in trap
density (Nips )-

x P,

N = POp X catch X Nlraps (3)

lrappe

Statistical Analyses. Analysis methods for the four trials were similar. To allow a measure of variability to
be included in figures, data at each assessment were analysed using a Poisson generalized linear model (GLM>*),
with a logarithmic link. Where there was over-dispersion (dispersion >1), this was estimated.

Total counts for each trap were calculated, and analysed formally. Initially, the total counts were analysed with
a Poisson-gamma Hierarchical Generalized Linear Model (HGLM), which included lure as a fixed effect with
Poisson distribution and logarithmic link, and spatial factors (replicate etc.) as random effects with a gamma
distribution and logarithmic link. The importance of the spatial factors was assessed by a X? test of the change in
deviance on dropping the term, as implemented in GenStats HGRTEST procedure (GenStat Committee 2015).
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Where random effects were found to be important, the fixed treatment effects, and any contrasts between treat-
ments, were assessed using a similar test as implemented in GenStat's HGFTEST procedure, but using an F-test of
the statistic to adjust for bias in a similar manner to that used for REML*®. Denominator degrees of freedom for
this were those associated with traps.

Where Poisson GLM were used for the final analyses (when there we not any important random effects), treat-
ments were assessed using F-tests where there was over-dispersion, and X2 tests otherwise.

In the results, approximate 95% confidence limits were obtained on the logarithmic scale, and
back-transformed for presentation. In the figures illustrating changes with assessment, all results were adjusted to
flies/trap/day for the assessment periods and catch per trap over then entire trial. For clarity, confidence limits for
only three selected means from within the plot are shown, but drawn to the side.

All analyses were carried out with GenStat v. 18".

Compliance with ethical standards. This article does not contain any studies with human participants
performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care
and use of animals were followed.

Data Availability
Data are stored at The New Zealand Institute for Plant & Food Research Ltd. and are available from the lead au-
thor on request.
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