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A novel 2‑phase residual U‑net 
algorithm combined with optimal 
mass transportation for 3D brain 
tumor detection and segmentation
Wen‑Wei Lin1, Jia‑Wei Lin1, Tsung‑Ming Huang2*, Tiexiang Li3,4*, Mei‑Heng Yueh2 & 
Shing‑Tung Yau5

Utilizing the optimal mass transportation (OMT) technique to convert an irregular 3D brain image 
into a cube, a required input format for a U‑net algorithm, is a brand new idea for medical imaging 
research. We develop a cubic volume‑measure‑preserving OMT (V‑OMT) model for the implementation 
of this conversion. The contrast‑enhanced histogram equalization grayscale of fluid‑attenuated 
inversion recovery (FLAIR) in a brain image creates the corresponding density function. We then 
propose an effective two‑phase residual U‑net algorithm combined with the V‑OMT algorithm for 
training and validation. First, we use the residual U‑net and V‑OMT algorithms to precisely predict 
the whole tumor (WT) region. Second, we expand this predicted WT region with dilation and create 
a smooth function by convolving the step‑like function associated with the WT region in the brain 
image with a 5× 5× 5 blur tensor. Then, a new V‑OMT algorithm with mesh refinement is constructed 
to allow the residual U‑net algorithm to effectively train Net1–Net3 models. Finally, we propose 
ensemble voting postprocessing to validate the final labels of brain images. We randomly chose 1000 
and 251 brain samples from the Brain Tumor Segmentation (BraTS) 2021 training dataset, which 
contains 1251 samples, for training and validation, respectively. The Dice scores of the WT, tumor core 
(TC) and enhanced tumor (ET) regions for validation computed by Net1–Net3 were 0.93705, 0.90617 
and 0.87470, respectively. A significant improvement in brain tumor detection and segmentation with 
higher accuracy is achieved.

With the rapid development of convolutional neural network (CNN) architecture design, deep CNNs have 
undoubtedly become one of the most widely used artificial intelligence techniques for object detection, feature 
extraction, image classification, and segmentation in medicine and computational science. A deep CNN consists 
of three key parts, namely, input data, computational steps, and a model. The last two items include the design of 
the optimization algorithm and the training of the model structure weights. The former is primarily driven by 
feeding large quantities of data into CNNs to develop more powerful prediction systems. Over the past decade, 
innovations in high-performance computing, such as graphics processing unit (GPU) accelerators, have driven 
powerful advances in deep learning. However, due to the GPU memory constraint, it is difficult to train models 
for large-scale 3D image data; therefore, the computation of these models becomes extremely expensive and 
inefficient. Recently, to overcome the difficulty of large-scale 3D image data input, a random sampling technique 
with several filters has been proposed to cover the entire region of the 3D image. Although this approach is 
advantageous in addressing insufficient GPU memory, it requires more voxels to cover the original image and 
may lose the connectivity information of the 3D global image. Thus, properly addressing the geometric structure 
is a crucial task for 3D image segmentation.

In recent years, two benchmark datasets, the Medical Segmentation Decathlon 2018 (MSD2018)1,2 and Brain 
Tumor Segmentation (BraTS)  20203–5 datasets, which contain 484 and 369 labeled 3D brain image samples for 
brain tumor segmentation, respectively, have provided a challenging platform and have attracted enormous 

OPEN

1Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu 300, 
Taiwan. 2Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan. 3Nanjing Center for 
Applied Mathematics, Nanjing 211135, People’s Republic of China. 4School of Mathematics and Shing-Tung Yau 
Center, Southeast University, Nanjing 210096, People’s Republic of China. 5Department of Mathematics, Harvard 
University, Cambridge, USA. *email: min@ntnu.edu.tw; txli@seu.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-10285-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6452  | https://doi.org/10.1038/s41598-022-10285-x

www.nature.com/scientificreports/

attention and interest from researchers in this field. The brain samples were scanned with four modalities, namely, 
fluid-attenuated inversion recovery (FLAIR), T1-weighted (T1), T1-weighted contrast-enhanced (T1CE), and 
T2-weighted (T2), by multiparametric magnetic resonance imaging (mpMRI). The challenge is the evaluation of 
state-of-the-art methods for the task of brain tumor segmentation of whole tumor (WT, labeled {2,1,4}), tumor 
core (TC, labeled {1,4}), and enhanced tumor (ET, labeled {4}) regions in the human brain. To address this 
issue, in the early years, random forest algorithms and machine learning techniques were used to perform image 
 classification6–8 and  segmentation6,9–11. In 2021, Biratu et al. provided a significantly comprehensive  survey12 of 
three model techniques, including region  growing13, shallow machine  learning14, and deep  learning15, for brain 
tumor segmentation and classification. Later, BraTS  20213,4,16 was expanded to include a large number of new 
brain samples in the database, providing 1251 labeled samples for training and 219 unlabeled samples for valida-
tion. Subsequently, CNN structures with two  layers17 and eight  layers18 were proposed and made good progress 
in brain tumor segmentation. Then, a more sophisticated multiple CNN architecture, called the U-net model, 
was first developed  in19 and improved  in20 by assembling two full CNNs and U-net. The merits of applying the 
U-net model to the challenge of MSD  20181,2 were first proposed by Isensee et al.21. In 2018, a variant U-net, 
called the residual U-net22 (ResUnet), was proposed to enhance the segmentation accuracy. By combining U-net 
and residual  units23,24, ResUnet simplifies the training of deep networks, promotes the dissemination of informa-
tion via a large number of skip connections, and implements a network designed with leaner parameters and 
superior performance. Therefore, we adopt ResUnet as the U-net architecture used for the model training and 
prediction in this paper.

For the study of brain tumor segmentations, preprocessing to effectively represent large quantities of input 
data for CNNs is crucial. For example, taking an irregular 3D physical brain image obtained from an MRI, which 
is generally composed of 1.5 million voxels, by randomly selecting several cubes (e.g., 16 cube filters were used 
by Isensee et al.25) with seamless coverage to overlay the irregular brain image is a natural way to fit the input 
format of tensors for a U-net architecture. Nevertheless, the random sampling technique may lose the global 
information of the brain image, and it increases the quantity of input data. On the other hand, an efficient two-
stage optimal mass transportation (2SOMT) algorithm, newly proposed by Lin et al.26, was designed to first 
transform an irregular 3D brain image into a unit ball and then into a cube with minimal distortion and transport 
costs. This strategy can greatly reduce the capacity of input data and retain the global information of the 3D 
brain image, so the existing computing resources can be effectively used to attain the expected result. However, 
the 2SOMT did not fully use the merits of the density distribution of the brain image so that a U-net algorithm 
could not predict the tumor region more accurately. In addition, 2SOMT may produce more conversion loss 
between transformations from a brain to a ball and then to a cube. Thus, we are motivated to consider directly 
transforming an irregular brain image into a cube with a more precise density function to detect possible tumor 
regions so that a U-net algorithm is better positioned to learn to label the segmentation.

Optimal mass transportation (OMT) is a very old optimization problem that was raised by Monge in 1781 
 (see27 for details) to find an optimal solution that minimizes the transport cost and preserves the local mass 
ratios between two spaces. The existence and uniqueness of a solution to the OMT problem was proven by 
 Kantorovich27 by relaxing the probability measure with a joint probability distribution. The regularity condition 
for the solution of the OMT problem was first shown by  Caffarelli11, and an elegant theoretical survey paper 
“Optimal Transport: Old and New”, which summarized the achievements of predecessors, was published by 
 Villani28. For numerical methods,  Brenier10 proposed an alternative scheme for solving the OMT problem with 
a quadratic cost function for a special class of convex domains. Based on Brenier’s approach and the variational 
 principle29, Su et al.30 developed a volume-preserving parameterization from a 3-manifold M with a spherical 
boundary to a unit ball B3 . Recently, Yueh et al.31 proposed a novel algorithm to compute a volume-preserving 
parameterization from M to B3 by modifying the denominators of the coefficients of the corresponding Lapla-
cian matrix by imposing the local volume stretch factor at each iteration step and adopted the projected gradi-
ent method (PGM) combined with the homotopy technique  in32 to find the OMT map between M and B3 . In 
addition, the 2SOMT procedure from M to B3 and from B3 to a cube was developed by Lin et al.26 and applied 
prior to ResUnet training and inference in 3D brain tumor segmentation.

In this paper, we study the applicability of mapping an irregular 3D image (i.e., a human brain) to a canonical 
domain (i.e., a cube or a cuboid), which minimizes the transport cost and preserves the local mass ratios. First, 
based on the homotopy technique, a direct one-stage OMT approach from a 3-manifold M with a genus-zero 
boundary to a cube is developed for 3D ResUnet training and inference to improve the higher conversion loss 
of  2SOMT26 from M to B3 and B3 to a cube. Thus, we can construct a one-to-one correspondence between the 
input data of irregular images and the associated cubic tensors. With slight conversion loss between OMT maps, 
the usage of the capacity of the training data of the 3D ResUnet model is greatly reduced, and it is our belief that 
3D ResUnet training can easily find a local minimum and achieve better performance.

Next, we propose a two-phase ResUnet with OMT (2P-ResUnet-OMT) algorithm utilizing the density distri-
bution of brain tumor features and train four related networks to detect tumor regions and segment tumor labels. 
Given an irregular 3D brain, in Phase I, we first construct the associated density map at each vertex according 
to the normalized contrast-enhanced histogram equalization (CEHE) grayscale values of the FLAIR modality 
of a brain image by MRI. Then, we compute OMT maps from brain images to cubes for the training set and 
train Net0 by the ResUnet algorithm for the detection of possible tumor regions. In fact, there are no clues at the 
beginning; the CEHE grayscales of FLAIR, which typically reflect the distribution of WT, should be an effective 
way to detect tumor regions. Next, we covered these possible tumor regions with 5 voxels with morphological 
dilation. In Phase II, because ET ⊂ TC ⊂ WT , we construct a smooth density function by convolving the 
step-like function with exp(FLAIR) on the expanded WT region and 1.0 on the others, with a 5× 5× 5 blur 
box tensor. We remesh the tetrahedron with finer meshes in the higher density region in the brain so that the 
target tumor region can be enlarged in the cube by OMT and better viewed and learned by ResUnet. We then 
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train Net1 for WT, Net2 for TC and Net3 for ET by ResUnet. In practice, for the testing issue, Net0 can help by 
first detecting a WT region as much as possible. As discussed above, by covering this region with 5 voxels using 
dilation and creating a similar smooth density function with finer meshes on the raw brain image, we compute 
the corresponding OMT map and call Net1–Net3 combined with ensemble voting postprocessing to make the 
final label prediction and image segmentation.

Contribution.  The 2P-ResUnet-OMT procedure transforms an irregular 3D brain image into a cube with 
density estimates and mesh refinement to fit the input format of the ResUnet algorithm. Unlike the previous 
methods, 2P-ResUnet-OMT minimizes the transport cost and preserves the global features of input data to sur-
pass the other methods. The main contributions of this paper are summarized as follows. 

1. Our proposed 2P-ResUnet-OMT algorithm transforms an irregular 3D brain image into a cube to satisfy 
the input format of ResUnet while preserving the local mass ratios between two domains and minimizing 
the transport cost and the distortion. These advantages for 2SOMT were highlighted  in26. However, 2SOMT 
did not make full use of estimating the distribution of the density function, so ResUnet could not infer the 
target object accurately. 2P-ResUnet-OMT fully grasps the distribution of the associated density function 
to create an effective OMT map from an irregular 3D domain to a cube and provides it to ResUnet for train-
ing a high-performance prediction network. 2P-ResUnet-OMT inherits the advantages of 2SOMT in that it 
needs to use only a cube to represent an irregular 3D brain image without losing the most important global 
features and conversion accuracy. In this way, the computational cost and the computer environment can 
be greatly economized during ResUnet training and used for data augmentation, which exactly considers 
the limitation of the memory capacity.

2. One of the characteristics of the OMT map is to preserve the local mass ratios. With this peculiar feature, 
in Phase II of 2P-ResUnet-OMT, we apply mesh refinement on the expanded WT region detected during 
Phase I. The mesh refinement technique can increase the number of tetrahedrons in a specific region in the 
brain and enlarge the portion of volume appearing in the target domain; that is, using the ResUnet algo-
rithm is similar to using a magnifying glass to view and learn how to mark the segmentation labels well. The 
numerical experiment with the trained Net1–Net3 models combined with ensemble voting shows that the 
Dice scores of validation for WT, TC and ET can reach 0.93705, 0.90617 and 0.87470, respectively; hence, 
this approach significantly boosts the accuracy of brain tumor detection and segmentation.

3. The OMT approach must convert the labels predicted by ResUnet to a brain image; therefore, to evaluate the 
Dice score more precisely, we propose a new conversion technique with ensemble voting postprocessing to 
convert the predicted labels on the cube back to each voxel of the brain by using the multiple values on the 
cube validated by various models to precisely evaluate the labels corresponding to voxels in the brain image. 
The expressively high validation Dice scores on the BraTS 2021 validation data suggest that using a cube 
to represent an irregular 3D brain image by OMT is indeed an innovative idea and the most streamlined 
approach for CNN training and prediction.

This paper is organized as follows. In “Discrete OMT problems and cubic OMT maps”, we introduce the 
discrete OMT problem and the spherical-cubic area-measure-preserving and cubic volume-measure-preserving 
OMT maps. In “Two-phase ResUnet with OMT for training and validation”, we propose a two-phase ResUnet 
model with OMT maps for training and validation. For the evaluation of high Dice scores, we develop an effec-
tive conversion technique to convert the predicted labels on the cube back to the brain image using all related 
probability information corresponding to each voxel in the brain image. In “Results and discussions”, we show 
the improvement in the Dice score obtained by the ResUnet models in Phase II with mesh refinements on the 
expanded WT region provided by Phase I and the ensemble voting postprocessing for the label evaluation. 
Finally, concluding remarks are given in “Conclusions”.

Discrete OMT problems and cubic OMT maps
Let M be a simplicial 3-complex that describes an irregular 3D brain image with a genus-zero boundary. M 
is generally composed of sets of vertices V(M) , edges E(M) , faces F(M) and tetrahedrons T(M) . A discrete 
OMT problem consists of finding a bijective function that maps M to a canonical simple domain with minimal 
distortion. The canonical shape could be a ball B3 or a unit cube C3 . A tensor form is necessary for the input 
of the U-net algorithm; therefore, a cube or a cuboid is the target domain for M . In this section, we propose a 
one-stage OMT approach to map M to C3.

Discrete OMT problem. Let ρ be a density map on V(M) . The piecewise linear density functions of ρ on 
F(∂M) and T(M) are defined by

respectively, where v̂i ∈ V(α) , α ∈ F(∂M) , vi ∈ V(τ ) , and τ ∈ T(M) . Furthermore, we define the local area/
volume measures (i.e., local mass) by

(1)ρ(α) =
1

3

3∑

i=1

ρ(v̂i), ρ(τ) =
1

4

4∑

i=1

ρ(vi),
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respectively, where |α| and |τ | are the area and volume of α and τ , respectively.
Denote 

and

 as the sets of all area-/volume-measure-preserving (i.e., mass-preserving) piecewise linear maps from ∂M to 
∂C3 and from M to C3 , respectively, in which the bijective maps between α and g(α) , as well as τ and f (τ ) , are 
determined by the barycentric coordinates on α and τ , respectively. For given g ∈ Gρ and f ∈ Fρ , we define the 
transport costs of g and f, respectively, by

where aρ(v̂) and mρ(v) are the local area/volume measures at v̂ ∈ V(∂M) and v ∈ V(M) , respectively, as in (2). 
The discrete OMT problems on ∂M and M with respect to � · �2 consist of finding a g∗ρ ∈ Gρ and f ∗ρ ∈ Fρ that 
solve optimal problems

where dρ(g) and cρ(f ) are given in (4). Without loss of generality, hereafter, each simplicial 3-complex M is 
centralized and normalized so that the center of mass is located at the origin and the mass is one.

Cubic area‑measure‑preserving OMT maps. Let M be a simplicial 3-complex with a genus-zero bound-
ary and of mass one with density functions ρ : T(M) → R and ρ : F(∂M) → R defined on the tetrahedrons 
of M and triangles of ∂M , respectively. We define the area-weighted stretch energy on ∂M with m = #V(∂M) . 
For v̂i ∈ V(∂M) , g(v̂i) = (g1i , g

2
i , g

3
i ) , i = 1, . . . ,m , gt = (gt1, . . . , g

t
m)

⊤ , t = 1, 2, 3 and g = [g1, g2, g3] ∈ R
m×3 . 

The piecewise linear function g on ∂M is given by the barycentric coordinates, g is called the induced function 
by g and g is the inducing matrix for g. The area-weighted stretch  energy33 on ∂M is defined as 

where LS(g) is the area-weighted Laplacian matrix with

and

 where θi,j(g) and θj,i(g) are two angles opposite to edge g([vi , vj]) and σg−1 (α) = ρ(α)|α|/|g(α)| , for α ∈ F(∂M) , 
is the local area-measure stretch factor.

To compute the cubic area-measure-preserving OMT (A-OMT) map from ∂M to ∂C3 , we utilize the 
PGM proposed  in32, which can be used to efficiently compute the A-OMT maps h∗ρ : ∂M → S2 , where 
S2 denotes the unit sphere in R3 and h∗1 : ∂C3 → S2 ( ρ = 1 ), respectively. Then, the composition map 
g∗ρ = (h∗1)

−1 ◦ h∗ρ : ∂M → ∂C3 , as shown in Fig. 1, is the desired A-OMT map. The computational procedure 
is summarized in Algorithm 1. 

(2)aρ(v̂) :=
1

3
ρ(v̂)

∑

v̂⊂α

|α|, mρ(v) :=
1

4
ρ(v)

∑

v⊂τ

|τ |,

(3a)Gρ =
{
g : ∂M → ∂C3

∣∣ ρ(α)|α| = |g(α)|, ∀α ∈ F(∂M)
}

(3b)Fρ =
{
f : M → C

3
∣∣ ρ(τ)|τ | = |f (τ )|, ∀τ ∈ T(M)

}

(4)dρ(g) =
∑

v̂∈V(∂M)

�v̂ − g(v̂)�22aρ(v̂), cρ(f ) =
∑

v∈V(M)

�v − f (v)�22mρ(v),

(5)g∗ρ = argmin
g∈Gρ

dρ(g), f ∗ρ = argmin
f ∈Fρ

cρ(f ),

(6a)ES(g) =
1

2

3∑

t=1

(gt)⊤LS(g)g
t ,

(6b)[LS(g)]i,j =





wi,j(g), [vi , vj] ∈ E(∂M),
wi,i(g) = −

�
ℓ�=i wi,ℓ(g), i = j,

0, otherwise ,

(6c)wi,j(g) = −
1

2

(
cot θi,j(g)

σg−1 ([vi , vj , vℓ])
+

cot θj,i(g)

σg−1 ([vj , vi , vm])

)
, i �= j,
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Cubic volume‑measure‑preserving OMT maps. In this section, we will develop the OMT algorithm 
for directly solving the cubic OMT map f ∗ρ  , as in (5), from M to C3 . Let g∗ρ be the cubic A-OMT map from ∂M 
to ∂C3 computed by Algorithm 1. We now construct a homotopy gζ : ∂M → R

3 for the boundary maps by

Then, [0, 1] is uniformly partitioned by {0 = ζ0 < ζ1 < · · · < ζp = 1} . Let LV (f ) be the mass-weighted Lapla-
cian matrix with the (i, j)th coefficient

as  in31, where θℓ,mi,j (f ) is the dihedral angle between f ([vi , vℓ, vm]) and f ([vj , vm, vℓ]) in tetrahedron 
f ([vi , vj , vℓ, vm]) . For k = 1, . . . , p , we compute the interior map by solving the linear system

where f (0) = id. , n = #(V(M)) , B = {i | v̂i ∈ ∂M} , and I = {1, . . . , n}\B . The map f (p) : M → C3 is the desired 
cubic volume-measure-preserving (V-OMT) map f ∗ρ  . The corresponding computational procedure is stated in 
Algorithm 2. 

(7)gζ (v̂) = (1− ζ )v̂ + ζ g∗ρ (v̂), v̂ ∈ V(∂M), ζ ∈ [0, 1].

(8)
wi,j(f ) = −

1

9

∑

τ ∈ T(M)

[vi , vj] ∪ [vℓ, vm] ⊂ τ

[vi , vj] ∩ [vℓ, vm] = ∅

|f ([vi , vℓ, vm])||f ([vj , vm, vℓ])| cos θ
ℓ,m
i,j (f )

ρ(τ)|τ |
,

(9)[LV (f
(k−1))]I,If

(k)
I = −[LV (f

(k−1))]I,B[gζk (v̂)]v̂∈V(∂M),

Figure 1.  A diagram illustrating the construction of the A-OMT map g∗ρ between (∂M, ρ) and (∂C3, δ ≡ 1).
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To study the partition number p of homotopy in step (9), we define the total mass distortion and the local 
mass ratio as

respectively, where N (v) is the set of 1-ring neighboring tetrahedrons of v.

Two‑phase ResUnet with OMT for training and validation
A brain image scanned by mpMRI typically provides four modalities, namely, FLAIR, T1, T1CE and T2, with 
various grayscale values ranging from 0 to 65535 on each voxel of four 240× 240× 155 cuboids, denoted by 
{Is}

4
s=1 . For a training brain image, let L denote the 240× 240× 155 labeled cuboid, where WT = {2, 1, 4} , 

TC = {1, 4} , ET = {4} and {0} for others. The grayscale values on Is can be normalized by utilizing the Z-score. 
In practice, these grayscale values are adjusted by CEHE, denoted by Is.

A physical brain image M is contained in Is and accounts for approximately 12–20% of the voxels. Suppose 
M is a simplicial 3-complex with a genus-zero boundary composed of tetrahedral meshes representing a brain 
image. Furthermore, I1 records the adapted CEHE grayscales of FLAIR, and in general, the FLAIR modality 
typically reflects the distribution of WT = {2, 1, 4} ; therefore, the adapted CEHE grayscales on the voxel I1(i, j, k) 
can help with defining the density map on V(M) by

where γ is a value chosen from the interval [1, 2].

Two‑phase ResUnet with OMT for training. For the given samples in the training set of 3D brain 
images, we propose a 2P-ResUnet-OMT algorithm with density function estimates to construct an effective 
input tensor for the ResUnet algorithm. In general, a real brain image contains approximately 1.5 million verti-
ces. Therefore, it is reasonable to cover a brain image with 1283 voxels.

The tumor regions of the brain are initially unknown; therefore, in the first phase, we utilize the grayscale of 
FLAIR to construct the density function in (11) for OMT and train a Net0 by the ResUnet algorithm to detect 
the possible tumor region of WT. For better coverage, we expand the possible tumor regions by a few voxels 
with dilation. In the second phase, we construct a new density function in  (12) (see the following) according to 
the predicted and outer expanded tumor regions with higher densities for a new OMT, yielding enlarged tumor 
regions in the target cube while retaining unchanged nontumor regions. We then train Net1, Net2 and Net3 for 
WT, TC and ET, respectively, by the ResUnet algorithm. Consequently, the new OMT provided in Phase I is 
implemented analogously to a magnifying glass that enhances viewing and marking the brain tumor segmenta-
tions in Phase II.

Phase I.  We first construct training tensors by using the OMT algorithm with the density ργ (v) , as in (11). 
We compute the OMT map f ∗ργ with Algorithm 2 from M to a 128× 128× 128 cube N γ

0  . Then, we construct 
four 128× 128× 128 tensors {N γ

0,s}
4
s=1 , one 128× 128× 128 tensor Lγ

0 corresponding to the grayscales of 
M ⊆ Is , s = 1, . . . , 4 , and labels in M ⊂ L , as shown in Fig. 2a. The constructed procedure is as follows: via the 
OMT map f ∗ργ , we define the grayscale and the label on each voxel u ∈ N

γ
0,s and Lγ

0 by f ∗−1
ργ

(cu) in some voxels 
v of Is and L , respectively, where cu is the center of u , for s = 1, . . . , 4 . Then, as shown in Fig. 2b, we use ResUnet 
to train Net0 with {N γ

0,s}
4
s=1 and Lγ

0 as the input tensors, where Lγ
0 labels are 0 and 1 for normal and WT regions, 

respectively, in which 0 = {0} and 1 = {2, 1, 4} form the 2402 × 155 MRI image.

(10)dM(f ) =
∑

v∈V(M)

∑

τ∈N (v)

∣∣∣∣
ρ(τ)|τ | − |f (τ )|

4

∣∣∣∣, rf (v) =
∑

τ∈N (v)

ρ(τ )|τ |

|f (τ )|
,

(11)ργ (v) = exp(γ I1(i, j, k)), v ∈ I1(i, j, k),
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Phase II.  For a given training brain image computed by Phase I, we expand the possible tumor regions of 
WT by m voxels with morphology dilation, denoted by T ⊆ M . Let ργ (v) be a step-like function defined as

Then, we construct a new smooth density function using the image filtering technique by convolving ργ (v) 
in (12) with a m×m×m blur box tensor, as follows:

As shown in Fig. 3a, we compute the OMT map f ∗
ρ̃γ

 from M to a 128× 128× 128 cube N γ
1  and construct 

four 128× 128× 128 tensors {N γ
1,s}

4
s=1 corresponding to the grayscale values of M ⊆ Is via OMT f ∗

ρ̃γ
 , as in Phase 

I. Furthermore, we construct three 128× 128× 128 tensors Lγ
1  , Lγ

2  and Lγ
3  associated with the labels of 

{0 = {0}, 1 = {2, 1, 4}} , {0 = {0, 2}, 1 = {1, 4}} , and {0 = {0, 2, 1}, 1 = {4}} , respectively, of M by MRI. Here, Lγ
1 , 

L
γ
2 and Lγ

3 with 0 and 1 elements are the new labels of WT, TC, and ET, respectively. Then, as shown in Fig. 3b, 
we use ResUnet to train Net1, Net2 and Net3 for WT, TC and ET, respectively, where {N γ

1,s}
4
s=1 applies Lγ

1 , Lγ
2 

and Lγ
3 as the initial input tensors.

Net0 and Net1–Net3 for validation. Once we have computed Net0 and Net1–Net3 in Phase I and Phase 
II, respectively, we use Net0 to detect the possible tumor region of WT = {2, 1, 4} with the density function ργ (v) 
defined in (11) and cover WT by m voxels with dilation, that is, T ⊆ M , and construct a new density function 
ρ̃γ , as in (12) and (13). We compute four 128× 128× 128 cubes {N γ

1,s}
4
s=1 for the grayscale values of FLAIR, T1, 

T1CE and T2 via OMT f ∗
ρ̃γ

 and use Net1, Net2 and Net3 to validate three 128× 128× 128 cubes, Lγ
1 , Lγ

2 and Lγ
3 , 

for the predicted labels. Here, each voxel uti in Lγ
t  , t = 1, 2, 3 , is predicted by a probability 0 � p̃ti � 1 . The valida-

tion of a brain image in the validation set proceeds as follows. Let L∗ ⊃ M be a 240× 240× 155 cuboid with 
each voxel in L∗ set to {0} . 

 i. For each voxel vj ∈ M ⊂ L∗ , let f ∗−1
ρ̃γ

(c
u
t
i
) ∈ vj for t = 1, 2, 3 , where c

u
t
i
 is the center of uti  for 

i = 1, . . . , n(j) �= 0 , and let f ∗−1
ρ̃γ

(c
u
t
k
) be the closest to the center of vj if n(j) = 0 . Then, we define the 

probability ptj of vj as 

 ii. For t = 1, 2, 3 , at each voxel vj ∈ M:
   Net1 evaluates 0 = {0} if 1© p1j < 1/2 and 1 = {2, 1, 4} , if 2© p1j ≥ 1/2;
   Net2 evaluates 0 = {0, 2} if 3© p2j < 1/2 and 1 = {1, 4} , if 4© p2j ≥ 1/2;
   Net3 evaluates 0 = {0, 2, 1} if 5© p3j < 1/2 and 1 = {4} and if 6© p3j ≥ 1/2.
 iii. The voxel vj ∈ M ⊂ L∗ is labeled by the procedure in Fig. 4.

(12)ργ (v) =

{
exp(γ I1(i, j, k)), if v ∈ I1(i, j, k) ⊆ T,
1.0, if v /∈ T.

(13)ρ̃γ (v) ← ργ (v)⊗
�m×m×m

m3
, v ∈ M.

(14)ptj =

{∑n(j)
i=1 p̃

t
i/n(j), if n(j) �= 0,

p̃tk , if n(j) = 0.

Figure 2.  The procedure of Phase I. (a) Compute the OMT map f ∗ργ from M to N γ
0  and construct {N γ

0,s}
4
s=1 of 

128× 128× 128× 4 grayscale values for FLAIR, T1, T1CE, and T2 and Lγ
0 with labels of 128× 128× 128 for 

M by MRI. (b) Input format {N γ
0,s}

4
s=1 and Lγ

0 for ResUnet and the trained Net0.
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In (ii), we see that for each voxel vj in M , we utilize the multiple values pti and i = 1, . . . , n(j) on the cube to 
define the most likely probability, which can be used to make a more precise evaluation of the label prediction.

Now, we denote GT as the ground truth of WT ⊃ TC ⊃ ET and PD as the prediction of WT , TC and ET , by 
(i)–(iii) above. The associated relationship between sets of GT and PD is plotted in Fig. 5. Let GTc and PDc be 
the complementary sets of GT and PD , respectively. We consider the confusion matrix as 

GT GTc

PD TP (true positive) FP (false posi-
tive)

PDc FN (false negative) TN (true nega-
tive)

 Here, we recall the following  metrics1 for numerical experiments:

Figure 3.  The procedure of Phase II. (a) Compute OMT f ∗
ρ̃γ

 from M to N γ
1  and {N γ

1,s}
4
s=1 of 

128× 128× 128× 4 grayscale values for {Is}4s=1 . Let Lγ
1 , Lγ

2 and Lγ
3 be labels of 128× 128× 128× 3 for M 

corresponding to WT, TC and ET, respectively, where ρ̃γ is given in (13). (b) Input format {N γ
1,s}

4
s=1 with Lγ

1 , Lγ
2 

and Lγ
3 for ResNet and the trained Net1, Net2 and Net3 models for WT, TC and ET, respectively.

Figure 4.  Flowchart of predicting the label of vj ∈ M ⊂ L∗.

Figure 5.  The relationships between WT, TC and ET of the ground truth and prediction.
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Furthermore, if we define GTp and PDp as the probability density tensors of GT and PD, respectively, we can 
define

The Dice loss in (16) can help to check the convergence of the training procedure for WT, TC and ET vs. 
epochs by the ResUnet algorithm.

Improvement in dice scores with mesh refinement and ensemble voting postprocessing. In 
this subsection, we propose two methods to improve the Dice scores of WT, TC, and ET. One is mesh refinement 
on the WT region for the OMT map, and the other is ensemble voting postprocessing. 

a. Mesh refinement With the merits of 2P-ResUnet-OMT, the density distribution of possible tumor regions in a 
brain image computed by Phase I can be enlarged with finer meshes and can be better viewed in Phase II for 
ResUnet training. One of the most important features of the OMT map is that the density can be increased 
in the region of interest, and then the region can be remeshed by the mesh refinement technique. In this 
way, due to the mass-preserving property of OMT, the region of interest can be enlarged in the cube, which 
enables ResUnet to learn more efficiently and achieve high-performance prediction results.

b. Ensemble voting postprocess We propose an ensemble voting postprocessing approach to determine the 
final labels in the brain image for validation. The main purpose of this postprocessing step is to modify the 
probability pti , t = 1, 2, 3 , in Steps (i)–(iii) of paragraph “Net0 and Net1–Net3 for Validation”. We first select 
the three best models {Net1ν , Net2ν , Net3ν}3ν=1 for WT, TC and ET from the training procedure. For each 
128× 128× 128 brain tensor (R0) for validation, we further build four 128× 128× 128 tensors with 90 
degree counterclockwise rotations (R1) , mirroring from the left to the right (R2) , mirroring from the top to 
the bottom (R3) and mirroring from the left to the right followed by a 90 degree counterclockwise rotation 
(R4).

  For t = 1, 2, 3 , at each voxel uti  in R0, . . . ,R4 , Nett1 , Nett2 and Nett3 can predict 15 probabilities 
{ptµ,ν(i) | µ = 0, . . . , 4, ν = 1, 2, 3} . We compute 

 and 

where [ptµ,ν ] = The set of {0, 1} by taking Gaussian symbols of ptµ,ν(i) and N =
∑3

ν=1

∑4
µ=0 αµ,ν . Then, we 

perform the conversion in Steps (i)–(iii) to convert the associated labels back to the brain image.
  The various rotations R1, . . . ,R4 of the brain tensor R0 constructed above indeed help to improve the 

Dice scores with the ensemble voting technique developed in (17) and (18).

Results and discussions
Based on the CNN technique, the U-Net algorithm is designed to learn an effective network from training data 
using an optimization process that requires decreasing the model error of the loss function on the training and 
validation sets. We adopt the ResUnet  algorithm22 and set the hyperparameters as follows: encoder depth: 3, 
initial learning rate: α0 = 1.0× 10−4 , learning rate drop factor: F = 0.95 , learning rate drop period: P = 10 , L2
-regularization: 1.0× 10−4 , and minimum batch size: 8.

For the 1251 brain image samples in the BraTS 2021 challenge  database3,4,16, we randomly fix 1000 samples 
for training and 251 for validation. Our utilized ResUnet is implemented in PyTorch and the Medical Open 
Network for AI (MONAI)34, and training is carried out on a server equipped with an NVIDIA Tesla V100S 
PCIe 32 GB×4 GPU.

Partition number p in Algorithm 2. We select BraTS0002 as an M from the BraTS 2021 dataset and 
compute the cubic V-OMT from M to C3 by Algorithm 2. In Fig. 6, we plot the statistical summary of the local 
mass distortion 

∑
τ∈N (v) |ρ(τ)|τ | − |f (τ )||/4 , as in (10), and rf (v) for all v ∈ V(M) versus the partition num-

ber p of homotopy. In each box, the red centerline indicates the median, and the bottom and top edges of the box 
indicate the 25th and 75th percentiles, respectively. The dotted lines extend to the most extreme data points that 
are not considered outliers, and the outliers are represented separately with “+” signs. Furthermore, in Fig. 7, we 
also plot the statistical summary of the total mass distortion dM(f ) and the mean and standard deviation (SD) 
of rf (v) vs. the partition number p for the first 1000 brain samples from the BraTS 2021 dataset.

(15)

Dice =
2|GT ∩ PD|

|GT| + |PD|
, Sensitivity =

|TP|

|TP| + |FN|
, Specificity =

|TN|

|TN| + |FP|
, Precision =

|TP|

|TP| + |FP|
.

(16)

Loss function = Dice loss+ Cross entropy loss ≡

(
1−

2
∑

i(GTp · PDp)i∑
i(GTp + PDp)i

)
−

∑

i

(GTp)i log(PDp)i .

(17)Dice([pt0,1], [p
t
µ,ν ]) ≡ Dµ,ν , αt

µ,ν =

{
1, Dµ,ν � 0.8,
0, otherwise

(18)pti =

3∑

ν=1

4∑

µ=0

αµ,νp
t
µ,ν(i)/N ,
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Figure 6 shows that when p = 11 , the cubic V-OMT between BraTS0002 and C3 has the smallest local mass 
distortion and the closest local mass ratio to one. Moreover, in Fig. 7, when p = 11 , the first 1000 brain samples of 
BraTS 2021 have the smallest total mass distortion and the best mean and SD of the local mass ratios. Therefore, 
we choose p = 11 in Algorithm 2.

Dimension m of blur box tensor. We now discuss the dimension m of the blur box tensor in (13), which 
covers the WT region by m voxels. To choose a suitable number m for the covering voxels with dilation for WT, 
we apply the sensitivity and precision metrics defined in (15), in which PD denotes the prediction of {WT cov-
ered by m voxels with dilation} by Net0.

In fact, the sensitivity metric in (15) indicates how many voxels lie in the prediction, and the precision metric 
in (15) indicates how precise the prediction is. Thus, we want to make both the sensitivity and precision as large 
as possible. In Fig. 8, we plot the mean, minimum, median and maximum values of the sensitivity and precision 
metrics of the WT validation vs. the numbers of covering voxels with dilation. We find that m = 5 is a suitable 
number to balance the sensitivity and precision values for the validation data.

For a fixed m = 5 , in Table 1, we list the mean, minimum, median, maximum and SD values of the transport 
costs, folding numbers and enlarged ratios for both the 1000 training samples and the 251 validation samples. 
The enlarged ratio is defined by (the ratio of WT in the cube)/(the ratio of WT in the raw data).

In Table 1, we observe that the numerical results of the transport costs, folding numbers and enlarged ratios 
for the 1000 training and 251 validation samples computed by f ∗

ρ̃1
 in (13) are in line with what we expected.

Dice scores and loss functions. We first compare 2P-ResUnet-OMT developed in Section “Two-Phase 
ResUnet with OMT for Training and Validation” with one-phase ResUnet-OMT (1P-ResUnet-OMT), i.e., the 
density functions of (11) with γ = 1.0 and 1.5 are used for training Net1. We learn Net1 by using 2P- and 
1P-ResUnet-OMT with 300 epochs. In Fig. 9a,b, we plot the Dice scores of WT for training and validation by 2P- 
and 1P-ResUnet-OMT, respectively. We observe that for both the training and validation scores, 2P-ResUnet-
OMT is obviously much better than 1P-ResUnet-OMT. Therefore, in the following numerical experiments, we 
prefer to adopt 2P-ResUnet-OMT. Furthermore, in Fig. 10, we compare the prediction results of FP (purple area) 
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Figure 6.  Statistical summary of the (a) local mass distortion and (b) rf (v) for all vertices of BraTS0002 vs. the 
partition number p of homotopy.
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and FN (blue area) using Phases I and II, respectively, for the worst (BraTS00098) and best (BraTS01321) Dice 
performance of real brain images. For the worst case, we see from Fig. 10a that Phase II significantly reduces the 
ratios of FP and FN and has a considerable improvement in Dice, sensitivity, and precision. For the best case 
shown in Fig. 10b, Phases I and II have only a slight difference between the four metrics in (15). Overall, Phase 
II actually reinforces the examples of underperforming prediction accuracy by Phase I.

To expand the training data in Phase II, we use three different density functions ρ̃1(v) , ρ̃1.5(v) and ρ̃2(v) for 
v ∈ I1(i, j, k) ⊆ T  , as in (13), to create 3000 augmented brain images for training. We now use 2P-ResUnet-OMT 
to train Net0 and Net1-Net3 on 3000 training samples. Then, we utilize them to obtain predictions on the 251 
validation samples. In Fig. 11, we plot the Dice scores with blue “o” and “x” symbols and the loss functions with 
red “o” and “x” symbols vs. the epoch numbers for the training and validation sets of WT, TC and ET, respectively. 
Note that the Dice scores for WT, TC and ET are defined by (15), and the loss function is defined by (16). The 
predicted labels of WT, TC and ET in a brain image are evaluated by Steps (i)–(iii), which are precisely deter-
mined by the probability value ptj =

∑n(j)
i=1 p

t
i/n(j) , ( t = 1, 2, 3 ) in each voxel vj ∈ M.

We see that the training and validation Dice scores for WT, TC and ET increase very quickly during the first 50 
epochs but then do not increase significantly and reach (0.9720, 0.9673, 0.9330) and (0.9325, 0.8965, and 0.8614), 
respectively, after 300 epochs. On the other hand, the training and validation loss functions for WT, TC and ET 
decrease very quickly during the first 50 epochs and approach ( 7.008× 10−2 , 7.067× 10−2 , and 8.678× 10−2 ) 
and ( 8.006× 10−2 , 9.487× 10−2 , and 9.957× 10−2 ), respectively, after 300 epochs. The trends of both the Dice 
score and loss function value indicate the typical training and validation history. Thus, based on the clear ten-
dency of the curves of the Dice scores and loss functions, in our experiment, we run ResUnet for 300 epochs.
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Figure 8.  Mean, minimum, median and maximum values of the sensitivity and precision metrics of the WT 
validation vs. the numbers of covering voxels.

Table 1.  Mean and SD values of the transport costs, folding numbers and enlarged ratios of f ∗
ρ̃1

 from M to C3.

BraTS 2021

Transport cost #Fold. Enlarged ratio

Mean SD Mean SD Mean SD

Validation (1000) 0.028 0.004 17.13 9.49 1.480 0.078

Testing (251) 0.029 0.003 18.62 9.24 1.444 0.079
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Figure 9.  Dice scores of WT for training and validation by 2P- and 1P-ResUnet-OMT.
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Merits of mesh refinement on the WT region. Based on the discussion of the merits of mesh refine-
ment on the expanded WT region in the brain image, we compute OMT maps with the smooth density functions 
ρ̃γ (v) , γ = 1.0 , 1.5, 1.75, and 2.0 in (13) for 1000 brain samples to obtain 4000 augmented brain cubes and use 
ResUNet to train Net1–Net3. Furthermore, for validation, we compute 2P-OMT for 251 brain samples with the 
density function ρ̃1.75(v) on the expanded WT region by Phase I with mesh refinement.

We train ResUnet for 300 epochs on 4000 augmented brain tensors. From epochs 10 to 300, for every 10 
epoch, we validate the Dice scores on the 251 samples of validation data for WT, TC and ET. In Table 2, we show 
the top three validation Dice scores for WT at epochs 150, 170, and 130; for TC at epochs 140, 120, and 170; and 
for ET at epochs 100, 70, and 80 by Steps (i)–(iii) in the previous section. The corresponding training Dice scores 
for WT, TC and ET are listed in the first three columns of Table 2. We see that the validation Dice scores for WT, 
TC, and ET for the brain image reach 0.93469, 0.90251 and 0.86912, respectively, which is a satisfactory result.

Dice scores with ensemble voting postprocessing. In this subsection, we show the improvement 
in Dice scores with mesh refinement and the ensemble voting postprocessing approach to determine the final 
labels in the brain image for validation. We first select the three best models for WT, TC and ET at epochs 
(150, 170, 130), (140, 120, 170) and (100, 70, 80), respectively, from the training procedure, as shown in Table 2, 
and call them Net1ν , Net2ν , and Net3ν for ν = 1, 2, 3.

Figure 10.  FP (purple area) and FN (blue area) for WT segmentation predicted by Phases I and II for (a) the 
worst case (BraTS00098) and (b) the best case (BraTS01321).
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Figure 11.  Dice scores (blue) and loss functions (red) for the training ( ◦ ) and validation ( × ) sets of WT, TC and 
ET vs. the epoch number.

Table 2.  Dice scores of WT, TC and ET for the brain image with mesh refinement on the training and 
validation sets.

Epochs
(WT, TC, ET)

Dice scores

Training Validation

WT TC ET WT TC ET

(150, 140, 100) 0.95388 0.95411 0.90912 0.93451 0.90251 0.86912

(170, 120, 70) 0.95363 0.95038 0.90496 0.93469 0.90167 0.86720

(130, 170, 80) 0.95241 0.95475 0.89994 0.93355 0.90187 0.86697
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In Fig. 12a–c, we plot the histograms of the Dice scores with and without ensemble voting postprocessing in 
blue and green lines for WT, TC, and ET, respectively, vs. the epoch number. Furthermore, the associated incre-
ments of the Dice scores are plotted with red lines in Fig. 12a–c. We see that the Dice scores for WT, TC, and ET 
with the ensemble voting technique are much better than those without voting postprocessing. In addition, the 
Dice score curves for WT, TC and ET have a relatively stable upward trend.

In Table 3, we show the Dice, sensitivity, specificity, and 95th percentile of the Hausdorff  distance35 (HD95) 
scores of 251 validation samples for WT, TC, and ET in brain images by Net1ν–Net3ν , ν = 1, 2, 3 , with the 
ensemble voting technique. We see that Net1ν–Net3ν with mesh refinement and ensemble voting postprocessing, 
as well as with the precise conversion of Steps (i)–(iii), significantly boosts the validation Dice scores (251) on 
BraTS 2021. This result is very promising for brain tumor detection and segmentation.

Based on the description on the BraTS  homepage12, we believe that the 2021 dataset is rich enough and 
contains almost all valid brain image data from past datasets (BraTS 2017–2020). To compare our results with 
related works in the survey  paper12, we list some comparable results and associated techniques  of12, which utilize 
the BraTS 2018 and 2019 datasets, as shown in Table 4. From this comparison, the 2P-ResUnet-OMT is quite 
satisfactory based on the Dice score performance.

Finally, to present visualization results of brain tumor segmentations, in Fig. 13, we show GT and PD pre-
dicted by Net1ν–Net3ν , ν = 1, 2, 3 , and the corresponding FP and FN for (a) the worst case (BraTS00098) and 
(b) the best case (BraTS01321), respectively. In Fig. 13a, we observe that FN is mostly distributed in the area with 
low FLAIR values (dark gray area). This may be because we use the value of FLAIR as the density function to 
which OMT refers. Due to the mass-preserving property of OMT and the smaller density function value in the 
dark gray area, its proportion in the cube by the OMT is also smaller than that in the original image. Therefore, 
the predictions for this area are likely to be less accurate. The selection of a more effective density function to 
improve the prediction accuracy of this region is one of our main research topics in the near future.

Conclusions
In this paper, we introduce 2P-ResUnet-OMT with density estimates for 3D brain tumor detection and segmenta-
tion. We first propose a cubic volume-measure-preserving OMT algorithm to compute an OMT map for trans-
forming an irregular 3D brain image to a cube while preserving the local mass ratios and maintaining minimal 
deformation. Furthermore, OMT is bijective and minimizes the transport cost. The concept of expressing an 
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Figure 12.  Dice scores with (blue line) and without (green line) the ensemble technique and increments (red 
line) for (a) WT; (b) TC; and (c) ET vs. the epoch number.

Table 3.  Dice, sensitivity, specificity and HD95 scores on 251 validation samples for WT, TC and ET with the 
mesh refinement and the ensemble voting techniques.

2P-ResUnet-OMT + mesh refinement + ensemble voting

Validation Dice score Sensitivity Specificity HD95

WT 0.93705 0.93641 0.99947 6.0129

TC 0.90617 0.90886 0.99974 7.9799

ET 0.87470 0.86945 0.99984 9.8300
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irregular brain image as a cube with minimal distortion is proposed for the first time in this research field, and 
these cubes are typically adequate for the tensor input format of the ResUnet algorithm that creates validation 
networks. Representing 3D brain images as cubes significantly reduces the effective brain images from sizes of 
240× 240× 155 to cubes of sizes 128× 128× 128 and preserves the global information of tumor features. This 
novel OMT preprocessing technique can save a large quantity of input data and reduce the computational time 
for training. In addition, the ensemble voting technique proposed in (17)–(18) and the robust conversion Steps 
(i)–(iii) of paragraph “Net0 and Net1–Net3 for Validation” from cubes ( 128× 128× 128 ) with predicted labels 
back to brain images ( 240× 240× 155 ) considerably increase the Dice scores for brain images compared to 
those for cubes on the 1,251 brain image samples.

One of the characteristics of the OMT map is that it can control the densities of tumor regions in brain images, 
and then, by mass-preserving OMT, the high-density areas can be enlarged in the cube so that the ResUnet 
algorithm can strengthen the cognition and learning in the high-density regions. In fact, 2P-ResUnet-OMT in 
the paragraph “Two-Phase ResUnet with OMT for Training and Validation” is designed for this purpose. Phase 
I first captures the possible region of WT and then covers this region with 5 voxels by dilation. Next, Phase II 
reconstructs new smooth density functions, as in (13), and performs mesh refinement on the range estimated 
by Phase I. With the advantage of the mass preservation of OMT, the portion of the possible WT region can 
be enlarged in the cube. Then, the ResUnet algorithm is utilized to train more effective Net1–Net3 models for 
tumor prediction and validation.

The Dice scores of WT, TC and ET by Net0 and Net1ν–Net3ν for ν = 1, 2, 3 , with mesh refinement and 
ensemble voting postprocessing reach 0.93705, 0.90617 and 0.87470 for validation, respectively. 2P-ResUnet-
OMT with mesh refinement sufficiently utilizes the mass-preserving property to significantly improve the tumor 
detection and segmentation accuracy.

In future work, because an irregular 3D brain image needs to be represented by only a cube in our approach, 
we have much room to expand the augmented data with various density settings, such as in (12); these settings 
include rotating, mirroring, shearing and cropping and will allow for more opportunities to boost the prediction 

Table 4.  Comparison results of the preprocessing method, model architecture, and performance in some deep 
learning-based algorithms and BraTS datasets. Here DSC, SEN, and SPE denote the dice score, sensitivity, and 
specificity, respectively.

Paper BraTS dataset Preprocessing Model architecture Tumor type Performance (DSC, SEN, SPE)

Ali et al.36 2019 Z-score normalization,cropping, 
rotation,and mirroring Ensemble of a 3D CNN and a 3D U-net WT TC ET

(0.906,−,−)

(0.846,−,−)

(0.750,−,−)

Sun et al.37 2018 Z-score normalization and cropping 3D FCN WT TC ET (0.900, 0.904, 0.995) (0.795, 0.751, 0.998) 
(0.771, 0.769, 0.998)

Sun et al.37 2019 Z-score normalization and cropping 3D FCN WT TC ET (0.890, 0.883, 0.995) (0.779, 0.762, 0.997) 
(0.761, 0.767, 0.998)

Akil et al.38 2018 intensity normalization (remove 1% 
highest and lowest intensities) DCNN (Dense-MultiOCM) WT TC ET (0.862, 0.848, 0.995) (0.737, 0.710, 0.998) 

(0.710, 0.760, 0.998)

Aboelenein et al.39 2018 – Hybrid two track U-net (HTTU-Net) WT TC ET (0.865, 0.883, 0.999) (0.808, 0.800, 0.998) 
(0.745, 0.780, 0.999)

Proposed 2021 Z-score normalization and two phase 
OMT ResUnet with ensemble voting WT TC ET (0.937, 0.936, 0.999) (0.906, 0.909, 0.999) 

(0.875, 0.870, 0.999)

GT PD FN FP

WT

TC

ET

(a) Worst case (BraTS00098)

GT PD FN FP

WT

TC

ET

(b) Best case (BraTS01321)

Figure 13.  Segmentation of WT, TC and ET by Net1-Net3 of MRI images in FLAIR values for (a) the worst 
case (BraTS00098) and (b) the best case (BraTS01321).
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accuracy. In addition, we believe that for a 3D image provided by real 3D scanning instruments that may be 
developed in the future, the use of OMT to represent an irregular 3D object must retain the structure of the 
global information. This 3D OMT representation takes advantage of a precise conversion in the three directions 
in space and is beneficial to the input format of CNN algorithms. We believe this is a cross-trend research direc-
tion for medical images in the near future.
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